Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = hub motors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3379 KiB  
Article
Research on Electric Vehicle Differential System Based on Vehicle State Parameter Estimation
by Huiqin Sun and Honghui Wang
Vehicles 2025, 7(3), 80; https://doi.org/10.3390/vehicles7030080 - 30 Jul 2025
Viewed by 220
Abstract
To improve the stability and safety of electric vehicles during medium-to-high-speed cornering, this paper investigates torque differential control for dual rear-wheel hub motor drive systems, extending beyond traditional speed control based on the Ackermann steering model. A nonlinear three-degree-of-freedom vehicle dynamics model incorporating [...] Read more.
To improve the stability and safety of electric vehicles during medium-to-high-speed cornering, this paper investigates torque differential control for dual rear-wheel hub motor drive systems, extending beyond traditional speed control based on the Ackermann steering model. A nonlinear three-degree-of-freedom vehicle dynamics model incorporating the Dugoff tire model was established. By introducing the maximum correntropy criterion, an unscented Kalman filter was developed to estimate longitudinal velocity, sideslip angle at the center of mass, and yaw rate. Building upon the speed differential control achieved through Ackermann steering model-based rear-wheel speed calculation, improvements were made to the conventional exponential reaching law, while a novel switching function was proposed to formulate a new sliding mode controller for computing an additional yaw moment to realize torque differential control. Finally, simulations conducted on the Carsim/Simulink platform demonstrated that the maximum correntropy criterion unscented Kalman filter effectively improves estimation accuracy, achieving at least a 22.00% reduction in RMSE metrics compared to conventional unscented Kalman filter. With torque control exhibiting higher vehicle stability than speed control, the RMSE values of yaw rate and sideslip angle at the center of mass are reduced by at least 20.00% and 4.55%, respectively, enabling stable operation during medium-to-high-speed cornering conditions. Full article
Show Figures

Figure 1

22 pages, 2015 KiB  
Article
Using Sentiment Analysis to Study the Potential for Improving Sustainable Mobility in University Campuses
by Ewerton Chaves Moreira Torres and Luís Guilherme de Picado-Santos
Sustainability 2025, 17(14), 6645; https://doi.org/10.3390/su17146645 - 21 Jul 2025
Viewed by 280
Abstract
This study investigates public perceptions of sustainable mobility within university environments, which are important trip generation hubs with the potential to influence and disseminate sustainable mobility behaviors. Using sentiment analysis on 120,236 tweets from São Paulo, Rio de Janeiro, Lisbon, and Porto, tweets [...] Read more.
This study investigates public perceptions of sustainable mobility within university environments, which are important trip generation hubs with the potential to influence and disseminate sustainable mobility behaviors. Using sentiment analysis on 120,236 tweets from São Paulo, Rio de Janeiro, Lisbon, and Porto, tweets were classified into positive, neutral, and negative sentiments to assess perceptions across transport modes. It was hypothesized that universities would exhibit more positive sentiment toward active and public transport modes compared to perceptions of these modes within the broader city environment. Results show that active modes and public transport consistently receive higher positive sentiment rates than individual motorized modes, and, considering the analyzed contexts, universities demonstrate either similar (São Paulo) or more positive perceptions compared to the overall sentiment observed in the city (Rio de Janeiro, Lisbon, and Porto). Chi-square tests confirmed significant associations between transport mode and sentiment distribution. An exploratory analysis using topic modeling revealed that perceptions around bicycle use are linked to themes of safety, cycling infrastructure, and bike sharing. The findings highlight opportunities to promote sustainable mobility in universities by leveraging user sentiment while acknowledging limitations such as demographic bias in social media data and potential misclassification. This study advances data-driven methods to support targeted strategies for increasing active and public transport in university settings. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

29 pages, 996 KiB  
Article
Enhancing Environmental Cognition Through Kayaking in Aquavoltaic Systems in a Lagoon Aquaculture Area: The Mediating Role of Perceived Value and Facility Management
by Yu-Chi Sung and Chun-Han Shih
Water 2025, 17(13), 2033; https://doi.org/10.3390/w17132033 - 7 Jul 2025
Viewed by 418
Abstract
Tainan’s Cigu, located on Taiwan’s southwestern coast, is a prominent aquaculture hub known for its extensive ponds, tidal flats, and lagoons. This study explored the novel integration of kayaking within aquavoltaic (APV) aquaculture ponds, creating a unique hybrid tourism landscape that merges industrial [...] Read more.
Tainan’s Cigu, located on Taiwan’s southwestern coast, is a prominent aquaculture hub known for its extensive ponds, tidal flats, and lagoons. This study explored the novel integration of kayaking within aquavoltaic (APV) aquaculture ponds, creating a unique hybrid tourism landscape that merges industrial land use (aquaculture and energy production) with nature-based recreation. We investigated the relationships among facility maintenance and safety professionalism (FM), the perceived value of kayaking training (PV), and green energy and sustainable development recognition (GS) within these APV systems in Cigu, Taiwan. While integrating recreation with renewable energy and aquaculture is an emerging approach to multifunctional land use, the mechanisms influencing visitors’ sustainability perceptions remain underexplored. Using data from 613 kayaking participants and structural equation modeling, we tested a theoretical framework encompassing direct, mediated, and moderated relationships. Our findings reveal that FM significantly influences both PV (β = 0.68, p < 0.001) and GS (β = 0.29, p < 0.001). Furthermore, PV strongly affects GS (β = 0.56, p < 0.001). Importantly, PV partially mediates the relationship between FM and GS, with the indirect effect (0.38) accounting for 57% of the total effect. We also identified significant moderating effects of APV coverage, guide expertise, and operational visibility. Complementary observational data obtained with underwater cameras confirm that non-motorized kayaking causes minimal ecological disturbance to cultured species, exhibiting significantly lower behavioral impacts than motorized alternatives. These findings advance the theoretical understanding of experiential learning in novel technological landscapes and provide evidence-based guidelines for optimizing recreational integration within production environments. Full article
(This article belongs to the Special Issue Aquaculture, Fisheries, Ecology and Environment)
Show Figures

Figure 1

28 pages, 6846 KiB  
Article
Phase–Frequency Cooperative Optimization of HMDV Dynamic Inertial Suspension System with Generalized Ground-Hook Control
by Yihong Ping, Xiaofeng Yang, Yi Yang, Yujie Shen, Shaocong Zeng, Shihang Dai and Jingchen Hong
Machines 2025, 13(7), 556; https://doi.org/10.3390/machines13070556 - 26 Jun 2025
Viewed by 186
Abstract
Hub motor-driven vehicles (HMDVs) suffer from poor handling and stability due to an increased unsprung mass and unbalanced radial electromagnetic forces. Although traditional ground-hook control reduces the dynamic tire load, it severely worsens the body acceleration. This paper presents a generalized ground-hook control [...] Read more.
Hub motor-driven vehicles (HMDVs) suffer from poor handling and stability due to an increased unsprung mass and unbalanced radial electromagnetic forces. Although traditional ground-hook control reduces the dynamic tire load, it severely worsens the body acceleration. This paper presents a generalized ground-hook control strategy based on impedance transfer functions to address the parameter redundancy in structural methods. A quarter-vehicle model with a switched reluctance motor wheel hub drive was used to study different orders of generalized ground-hook impedance transfer function control strategies for dynamic inertial suspension. An enhanced fish swarm parameter optimization method identified the optimal solutions for different structural orders. Analyses showed that the third-order control strategy optimized the body acceleration by 2%, reduced the dynamic tire load by 8%, and decreased the suspension working space by 22%. This strategy also substantially lowered the power spectral density for the body acceleration and dynamic tire load in the low-frequency band of 1.2 Hz. Additionally, it balanced computational complexity and performance, having slightly higher complexity than lower-order methods but much less than higher-order structures, meeting real-time constraints. To address time-domain deviations from generalized ground-hook control in semi-active systems, a dynamic compensation strategy was proposed: eight topological structures were created by modifying the spring–damper structure. A deviation correction mechanism was devised based on the frequency-domain coupling characteristics between the wheel speed and suspension relative velocity. For ride comfort and road-friendliness, a dual-frequency control criterion was introduced: in the low-frequency range, energy transfer suppression and phase synchronization locking were realized by constraining the ground-hook damping coefficient or inertance coefficient, while in the high-frequency range, the inertia-dominant characteristic was enhanced, and dynamic phase adaptation was permitted to mitigate road excitations. The results show that only the T0 and T5 structures met dynamic constraints across the frequency spectrum. Time-domain simulations showed that the deviation between the T5 structure and the third-order generalized ground-hook impedance model was relatively small, outperforming traditional and T0 structures, validating the model’s superior adaptability in high-order semi-active suspension. Full article
(This article belongs to the Special Issue New Journeys in Vehicle System Dynamics and Control)
Show Figures

Figure 1

24 pages, 8207 KiB  
Article
Research on Energy-Saving Optimization Control Strategy for Distributed Hub Motor-Driven Vehicles
by Bin Huang, Jinyu Wei, Minrui Ma and Xu Yang
Energies 2025, 18(12), 3025; https://doi.org/10.3390/en18123025 - 6 Jun 2025
Viewed by 424
Abstract
Aiming at the problems of energy utilization efficiency and braking stability in electric vehicles, a high-efficiency and energy-saving control strategy that takes both driving and braking into account is proposed with the distributed hub motor-driven vehicle as the research object. Under regular driving [...] Read more.
Aiming at the problems of energy utilization efficiency and braking stability in electric vehicles, a high-efficiency and energy-saving control strategy that takes both driving and braking into account is proposed with the distributed hub motor-driven vehicle as the research object. Under regular driving and braking conditions, the front and rear axle torque distribution coefficients are optimized by an adaptive particle swarm algorithm based on simulated annealing and a multi-objective co-optimization strategy based on variable weight coefficients, respectively. During emergency braking, the anti-lock braking strategy (ABS) based on sliding mode control realizes the independent distribution of torque among four wheels. The joint simulation verification based on MATLAB R2023a/Simulink-Carsim 2020.0 shows that under World Light Vehicle Test Cycle (WLTC) conditions, the optimization strategy reduces the driving energy consumption by 3.20% and 2.00%, respectively, compared with the average allocation and the traditional strategy. The braking recovery energy increases by 4.07% compared with the fixed proportion allocation, improving the energy utilization rate of the entire vehicle. The wheel slip rate can be quickly stabilized near the optimal value during emergency braking under different adhesion coefficients, which ensures the braking stability of the vehicle. The effectiveness of the strategy is verified. Full article
Show Figures

Figure 1

17 pages, 995 KiB  
Review
Broken Balance: Emerging Cross-Talk Between Proteostasis and Lipostasis in Neurodegenerative Diseases
by Jessica Tittelmeier and Carmen Nussbaum-Krammer
Cells 2025, 14(11), 845; https://doi.org/10.3390/cells14110845 - 4 Jun 2025
Viewed by 859
Abstract
Neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease, are characterized by progressive neuronal loss, leading to cognitive and motor impairments. Although these diseases have distinct clinical manifestations, they share pathological hallmarks such as protein aggregation and lysosomal dysfunction. The lysosome plays a vital [...] Read more.
Neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease, are characterized by progressive neuronal loss, leading to cognitive and motor impairments. Although these diseases have distinct clinical manifestations, they share pathological hallmarks such as protein aggregation and lysosomal dysfunction. The lysosome plays a vital role in maintaining cellular homeostasis by mediating the degradation and recycling of proteins, lipids, and other macromolecules. As such, it serves as a central hub for both proteostasis and lipostasis. This review outlines genetic and mechanistic parallels between rare lysosomal lipid storage diseases, such as Gaucher disease and Niemann–Pick disease, and more prevalent neurodegenerative diseases. We discuss how impaired lysosomal sphingolipid metabolism compromises lysosomal integrity, disrupts proteostasis, and contributes to neurodegeneration. Furthermore, we describe how age-related decline in lysosomal function may similarly drive neurodegeneration in the absence of overt genetic mutations. Taken together, this review highlights the lysosome as a central integrator of protein and lipid homeostasis and emphasizes the bidirectional relationship between lipostasis and proteostasis, whereby disruption of one adversely affects the other in the pathogenesis of multiple neurodegenerative diseases. Full article
Show Figures

Figure 1

23 pages, 10006 KiB  
Article
Research on Unbalanced Electromagnetic Force Under Static Eccentricity of the Wheel Hub Motor Based on BP Neural Network
by Xiangpeng Meng, Yunquan Zhang, Renkai Ding, Wei Liu and Ruochen Wang
World Electr. Veh. J. 2025, 16(5), 252; https://doi.org/10.3390/wevj16050252 - 28 Apr 2025
Viewed by 453
Abstract
Aiming at exploring a high-precision unbalanced electromagnetic force model suitable for the dynamic simulation of wheel hub direct-drive electric vehicles, this article establishes the unbalanced electromagnetic force model under static eccentricity of a wheel hub motor by an analytical method and verifies its [...] Read more.
Aiming at exploring a high-precision unbalanced electromagnetic force model suitable for the dynamic simulation of wheel hub direct-drive electric vehicles, this article establishes the unbalanced electromagnetic force model under static eccentricity of a wheel hub motor by an analytical method and verifies its accuracy by finite element modeling. Then, it optimizes the unbalanced electromagnetic force model based on a BP neural network and couples it with the 1/2 vehicle vertical vibration model to improve its calculation and operation efficiency. Finally, the correctness of the coupling model is further verified by bench experiments. The results show that the analytical model of the unbalanced electromagnetic force is accurate. A BP neural network optimization algorithm can reduce the time of electromagnetic force model simulation for 10 s from 1 h to about 50 s, which greatly improves the calculation efficiency of the electromagnetic force on the basis of ensuring the accuracy of the model, thus providing an unbalanced electromagnetic force model that is more suitable for the dynamic simulation of wheel hub direct-drive electric vehicles, which effectively solves the problem that the traditional electromagnetic force is difficult to couple with the vehicle dynamics model and lays a better foundation for subsequent research on the vertical vibration effect of wheel hub direct-drive electric vehicles. Full article
Show Figures

Figure 1

21 pages, 3496 KiB  
Review
Multimodality in the Collicular Pathway: Towards Compensatory Visual Processes
by Dario Rusciano and Paola Bagnoli
Cells 2025, 14(9), 635; https://doi.org/10.3390/cells14090635 - 25 Apr 2025
Cited by 1 | Viewed by 746
Abstract
The integration of multisensory inputs plays a crucial role in shaping perception and behavior, particularly in the visual system. The collicular pathway, encompassing the optic tectum in non-mammalian vertebrates and the superior colliculus (SC) in mammals, is a key hub for integrating sensory [...] Read more.
The integration of multisensory inputs plays a crucial role in shaping perception and behavior, particularly in the visual system. The collicular pathway, encompassing the optic tectum in non-mammalian vertebrates and the superior colliculus (SC) in mammals, is a key hub for integrating sensory information and mediating adaptive motor responses. Comparative studies across species reveal evolutionary adaptations that enhance sensory processing and contribute to compensatory mechanisms following neuronal injury. The present review outlines the structure and function of the multisensory visual pathways, emphasizing the retinocollicular projections, and their multisensory integration, which depends on synaptic convergence of afferents conveying information from different sensory modalities. The cellular mechanisms underlying multimodal integration remain to be fully clarified, and further investigations are needed to clarify the link between neuronal activity in response to multisensory stimulation and behavioral response involving motor activity. By exploring the interplay between fundamental neuroscience and translational applications, we aim to address multisensory integration as a pivotal target for its potential role in visual rehabilitation strategies. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Graphical abstract

13 pages, 1199 KiB  
Article
The Role of the Cerebellum in Multiple Sclerosis-Related Fatigue and Disability
by Nicola Manocchio, Ornella Argento, Michela Bossa, Barbara Spanò, Leonardo Pellicciari, Calogero Foti and Ugo Nocentini
J. Clin. Med. 2025, 14(8), 2840; https://doi.org/10.3390/jcm14082840 - 20 Apr 2025
Cited by 2 | Viewed by 496
Abstract
Background: Fatigue is a prevalent and debilitating symptom in people with multiple sclerosis (pwMS), significantly impairing quality of life. While the cerebellum is traditionally associated with motor control, emerging evidence suggests its involvement in cognitive, emotional, and integrative functions. This study aimed [...] Read more.
Background: Fatigue is a prevalent and debilitating symptom in people with multiple sclerosis (pwMS), significantly impairing quality of life. While the cerebellum is traditionally associated with motor control, emerging evidence suggests its involvement in cognitive, emotional, and integrative functions. This study aimed to explore the relationship between fatigue components (physical, cognitive, and psychosocial), clinical disability, and cerebellar structural changes in pwMS acquired via magnetic resonance imaging (MRI). Methods: Participants of this cross-sectional study underwent clinical assessments for fatigue (Modified Fatigue Impact Scale) and disability (Expanded Disability Status Scale). Cerebellar volumes were measured using high-resolution MRI and voxel-based morphometry (VBM) to identify correlations between fatigue subdomains and specific cerebellar subregions. Statistical analyses included group comparisons and correlation tests. Results: Forty-four pwMS were included. Fatigued MS patients exhibited reduced sensorimotor cerebellar volumes compared to non-fatigued counterparts. Physical fatigue correlated negatively with sensorimotor cerebellum volume, while cognitive fatigue showed an inverse relationship with limbic cerebellum regions. Interestingly, psychosocial fatigue was positively associated with limbic cerebellum volume, contrary to initial hypotheses. Higher disability scores were linked to atrophy in cognitive and limbic cerebellar regions. Conclusions: The findings highlight the cerebellum’s multifaceted role in MS-related fatigue, with distinct subregions contributing to physical, cognitive, and psychosocial fatigue components. These results underscore the cerebellum’s critical function as a hub for motor, cognitive, and emotional integration. Future longitudinal studies incorporating objective measures and advanced imaging are essential to elucidate these relationships further and inform targeted therapeutic strategies for pwMS. Full article
(This article belongs to the Special Issue Multiple Sclerosis: Diagnosis, Treatment and Clinical Management)
Show Figures

Figure 1

41 pages, 4809 KiB  
Review
Neurocomputational Mechanisms of Sense of Agency: Literature Review for Integrating Predictive Coding and Adaptive Control in Human–Machine Interfaces
by Anirban Dutta
Brain Sci. 2025, 15(4), 396; https://doi.org/10.3390/brainsci15040396 - 14 Apr 2025
Cited by 1 | Viewed by 1614
Abstract
Background: The sense of agency (SoA)—the subjective experience of controlling one’s own actions and their consequences—is a fundamental aspect of human cognition, volition, and motor control. Understanding how the SoA arises and is disrupted in neuropsychiatric disorders has significant implications for human–machine interface [...] Read more.
Background: The sense of agency (SoA)—the subjective experience of controlling one’s own actions and their consequences—is a fundamental aspect of human cognition, volition, and motor control. Understanding how the SoA arises and is disrupted in neuropsychiatric disorders has significant implications for human–machine interface (HMI) design for neurorehabilitation. Traditional cognitive models of agency often fail to capture its full complexity, especially in dynamic and uncertain environments. Objective: This review synthesizes computational models—particularly predictive coding, Bayesian inference, and optimal control theories—to provide a unified framework for understanding the SoA in both healthy and dysfunctional brains. It aims to demonstrate how these models can inform the design of adaptive HMIs and therapeutic tools by aligning with the brain’s own inference and control mechanisms. Methods: I reviewed the foundational and contemporary literature on predictive coding, Kalman filtering, the Linear–Quadratic–Gaussian (LQG) control framework, and active inference. I explored their integration with neurophysiological mechanisms, focusing on the somato-cognitive action network (SCAN) and its role in sensorimotor integration, intention encoding, and the judgment of agency. Case studies, simulations, and XR-based rehabilitation paradigms using robotic haptics were used to illustrate theoretical concepts. Results: The SoA emerges from hierarchical inference processes that combine top–down motor intentions with bottom–up sensory feedback. Predictive coding frameworks, especially when implemented via Kalman filters and LQG control, provide a mechanistic basis for modeling motor learning, error correction, and adaptive control. Disruptions in these inference processes underlie symptoms in disorders such as functional movement disorder. XR-based interventions using robotic interfaces can restore the SoA by modulating sensory precision and motor predictions through adaptive feedback and suggestion. Computer simulations demonstrate how internal models, and hypnotic suggestions influence state estimation, motor execution, and the recovery of agency. Conclusions: Predictive coding and active inference offer a powerful computational framework for understanding and enhancing the SoA in health and disease. The SCAN system serves as a neural hub for integrating motor plans with cognitive and affective processes. Future work should explore the real-time modulation of agency via biofeedback, simulation, and SCAN-targeted non-invasive brain stimulation. Full article
(This article belongs to the Special Issue New Insights into Movement Generation: Sensorimotor Processes)
Show Figures

Figure 1

21 pages, 5316 KiB  
Article
A Model Predictive Control Strategy with Minimum Model Error Kalman Filter Observer for HMEV-AS
by Ying Zhou, Chenlai Liu, Zhongxing Li and Yi Yu
Energies 2025, 18(6), 1557; https://doi.org/10.3390/en18061557 - 20 Mar 2025
Cited by 1 | Viewed by 353
Abstract
In hub-motor electric vehicles (HMEVs), performance is adversely affected by the mechanical-electromagnetic coupling effect arising from deformations of the air gap in the Permanent Magnet Brushless Direct Current Motor (PM BLDC), which are exacerbated by varying road conditions. In this paper, a Model [...] Read more.
In hub-motor electric vehicles (HMEVs), performance is adversely affected by the mechanical-electromagnetic coupling effect arising from deformations of the air gap in the Permanent Magnet Brushless Direct Current Motor (PM BLDC), which are exacerbated by varying road conditions. In this paper, a Model Predictive Control (MPC) strategy for HMEVs equipped with air suspension (AS) is introduced to enhance ride comfort. Firstly, an 18-degree of freedom (DOF) full-vehicle model incorporating unbalanced electromagnetic forces (UEMFs) induced by motor eccentricities is developed and experimentally validated. Additionally, a Minimum Model Error Extended Kalman Filter (MME-EKF) observer is designed to estimate unmeasurable state variables and account for errors resulting from sprung mass variations. To further improve vehicle performance, the MPC optimization objective is formulated by considering the suspension damping force and dynamic displacement constraints, solving for the optimal suspension force within a rolling time domain. Simulation results demonstrate that the proposed MPC approach significantly improves ride comfort, effectively mitigates coupling effects in hub driving motors, and ensures that suspension dynamic stroke adheres to safety criteria. Comparative analyses indicate that the MPC controller outperforms conventional PID control, achieving substantial reductions of approximately 41.59% in sprung mass vertical acceleration, 14.29% in motor eccentricity, 1.78% in tire dynamic load, 17.65% in roll angular acceleration, and 16.67% in pitch angular acceleration. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

19 pages, 6663 KiB  
Article
The Fault-Tolerant Control Strategy for the Steering System Failure of Four-Wheel Independent By-Wire Steering Electric Vehicles
by Qianlong Han, Chengye Liu, Jingbo Zhao and Haimei Liu
World Electr. Veh. J. 2025, 16(3), 183; https://doi.org/10.3390/wevj16030183 - 18 Mar 2025
Viewed by 705
Abstract
The drive torque of each wheel hub motor of a four-wheel independent wire-controlled steering electric vehicle is independently controllable, representing a typical over-actuated system. Through optimizing the distribution of the drive torque of each wheel, fault-tolerant control can be realized. In this paper, [...] Read more.
The drive torque of each wheel hub motor of a four-wheel independent wire-controlled steering electric vehicle is independently controllable, representing a typical over-actuated system. Through optimizing the distribution of the drive torque of each wheel, fault-tolerant control can be realized. In this paper, the four-wheel independent wire-controlled steering electric vehicle is taken as the research object, aiming at the collaborative control problem of trajectory tracking and yaw stability when the actuator of the by-wire steering system fails, a fault-tolerant control method based on the synergy of differential steering and direct yaw moment is proposed. This approach adopts a hierarchical control system. The front wheel controller predicts the necessary steering angle in accordance with a linear model and addresses the requirements of the front wheels and additional torque. Subsequently, considering the uncertainties in the drive control system and the complexities of the road obstacle model, the differential steering torque is computed via the sliding mode control method; the lower-level controller implements the torque optimization distribution strategy based on the quadratic programming algorithm. Finally, the validity of this approach under multiple working conditions was verified via CarSim 2019 and MATLAB R2023b/Simulink simulation experiments. Full article
Show Figures

Figure 1

17 pages, 2145 KiB  
Project Report
Instrumentation of an Electronic–Mechanical Differential for Electric Vehicles with Hub Motors
by Abisai Jaime Reséndiz Barrón, Yolanda Jiménez Flores, Francisco Javier García-Rodríguez, Abraham Medina and Daniel Armando Serrano Huerta
World Electr. Veh. J. 2025, 16(3), 179; https://doi.org/10.3390/wevj16030179 - 17 Mar 2025
Viewed by 775
Abstract
This article presents the instrumentation of an electronic–mechanical differential prototype, consisting of an arrangement of three throttles to operate two hub motors on the rear wheels of an electric vehicle. Each motor is connected to its respective throttle, while a third throttle is [...] Read more.
This article presents the instrumentation of an electronic–mechanical differential prototype, consisting of an arrangement of three throttles to operate two hub motors on the rear wheels of an electric vehicle. Each motor is connected to its respective throttle, while a third throttle is connected in series with the other two. This configuration allows for speed control during both rectilinear and curvilinear motion, following Ackermann differential geometry, in a simple manner and without the need for complex electronic systems that make the electronic differential more expensive. The differential throttles are strategically positioned on the mass bars connected to the steering system, ensuring that the rear wheels maintain the appropriate differential ratio. For this reason, it is referred to as an “electronic–mechanical differential”. Additionally, this method can be extended to a four-wheel differential system. Full article
Show Figures

Figure 1

26 pages, 3217 KiB  
Article
Fault-Tolerant Collaborative Control of Four-Wheel-Drive Electric Vehicle for One or More In-Wheel Motors’ Faults
by Han Feng, Yukun Tao, Jianbo Feng, Yule Zhang, Hongtao Xue, Tiansi Wang, Xing Xu and Peng Chen
Sensors 2025, 25(5), 1540; https://doi.org/10.3390/s25051540 - 1 Mar 2025
Cited by 6 | Viewed by 1248
Abstract
A fault-tolerant collaborative control strategy for four-wheel-drive electric vehicles is proposed to address hidden safety issues caused by one or more in-wheel motor faults; the basic design scheme is that the control system is divided into two layers of motion tracking and torque [...] Read more.
A fault-tolerant collaborative control strategy for four-wheel-drive electric vehicles is proposed to address hidden safety issues caused by one or more in-wheel motor faults; the basic design scheme is that the control system is divided into two layers of motion tracking and torque distribution, and three systems, including driving, braking, and front-wheel steering are controlled collaboratively for four-wheel torque distribution. In the layer of motion tracking, a vehicle model with two-degree-of-freedom is employed to predict the control reference values of the longitudinal force and additional yaw moment required; four types of sensors, such as wheel speed, acceleration, gyroscope, and steering wheel angle, are used to calculate the actual values. At the torque distribution layer, SSOD and MSCD distribution schemes are designed to cope with two operating conditions, namely sufficient and insufficient output capacity after local hub motor failure, respectively, focusing on the objective function, constraints, and control variables of the MSCD control strategy. Finally, two operating environments, a straight-line track, and a DLC track, are set up to verify the effectiveness of the proposed control method. The results indicate that, compared with traditional methods, the average errors of the center of mass sideslip angle and yaw rate are reduced by at least 12.9% and 5.88%, respectively, in the straight-line track environment. In the DLC track environment, the average errors of the center of mass sideslip angle and yaw rate are reduced by at least 6% and 4.5%, respectively. The proposed fault-tolerant controller ensures that the four-wheel-drive electric vehicle meets the requirements of handling stability and safety under one or more hub motor failure conditions. Full article
(This article belongs to the Special Issue Intelligent Maintenance and Fault Diagnosis of Mobility Equipment)
Show Figures

Figure 1

21 pages, 3294 KiB  
Article
Role of Sex in Shaping Brain Network Organization During Reading in Developmental Dyslexia
by Tihomir Taskov and Juliana Dushanova
Children 2025, 12(2), 207; https://doi.org/10.3390/children12020207 - 10 Feb 2025
Viewed by 714
Abstract
Background/Methods: The influence of sex on brain organization was investigated in functional reading networks in 8-year-old children, in those typically developing and those with developmental dyslexia (DD), utilizing the minimum spanning tree model. Results: The word reading task revealed subtle sex differences in [...] Read more.
Background/Methods: The influence of sex on brain organization was investigated in functional reading networks in 8-year-old children, in those typically developing and those with developmental dyslexia (DD), utilizing the minimum spanning tree model. Results: The word reading task revealed subtle sex differences in brain connectivity and highlighted even small individual variations in functional connectivity characteristics, particularly among boys with DD. In girls, significantly stronger connections and core hubs were identified within and between motor, parietal, and visual networks in posterior brain regions in both hemispheres, particularly in the θ (dyslexics) and δ (normolexics) frequency bands. In contrast, boys showed a more diffuse connectivity pattern, predominantly in the left hemisphere, encompassing anterior heteromodal and sensorimotor networks. Girls exhibited greater network complexity (bigger leaf fraction, kappa, and tree hierarchy), particularly in the θ and δ frequency bands, while boys with DD showed increased network efficiency, except for in the γ2 band (smaller diameter and bigger leaf fraction). Therefore, gender-specific differences in brain network organization may affect reading development and dyslexia. While sex may influence brain network development, its impact on the sensorimotor and frontoparietal networks of 8-year-old children is relatively limited. Significant sex differences were observed in only a small subset of children, primarily in higher (β2-γ2) frequency bands. Conclusions: Interindividual variations were evident only in boys with DD, impacting both sensorimotor and association networks. Different rates of cortical network maturation between sexes with DD during childhood may contribute to variations associated with disruptions in brain network development, even within fundamental networks like the sensorimotor network. Full article
(This article belongs to the Section Pediatric Neurology & Neurodevelopmental Disorders)
Show Figures

Graphical abstract

Back to TopTop