Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = hot-electron injection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 9470 KB  
Article
Effect of Kombucha Exposure on Corrosion Resistance of MIM Orthodontic Brackets: Geometry–Electrochemistry Coupling and Oral Health Implications (MIM-316L vs. Commercial)
by Anna Ziębowicz, Wiktoria Groelich, Klaudiusz Gołombek and Karolina Wilk
Materials 2026, 19(2), 400; https://doi.org/10.3390/ma19020400 - 19 Jan 2026
Viewed by 245
Abstract
Metal Injection Molding (MIM) enables complex orthodontic-bracket geometries but can introduce surface and geometric discontinuities that act as initiation sites for crevice and pitting corrosion. The effect of acidic, kombucha-like exposure on corrosion and repassivation was assessed for MIM-316L brackets relative to a [...] Read more.
Metal Injection Molding (MIM) enables complex orthodontic-bracket geometries but can introduce surface and geometric discontinuities that act as initiation sites for crevice and pitting corrosion. The effect of acidic, kombucha-like exposure on corrosion and repassivation was assessed for MIM-316L brackets relative to a commercial comparator, and the coupling between surface quality (roughness and wettability) and localized damage at scanning electron microscopy (SEM)-identified hot-spots was examined. Kombucha was characterized by pH and titratable acidity. Surfaces were characterized by SEM, areal roughness metrics (R_a, S_a, S_z, and A2), and wettability by sessile-drop goniometry. Electrochemical behavior in artificial saliva was measured using open-circuit potential and cyclic potentiodynamic polarization (ASTM F2129/G59), and a qualitative magnetic check was included as a pragmatic quality-assurance screen. Exposure in kombucha reduced breakdown and repassivation potentials and increased passive current density, with the strongest effects co-localizing geometric discontinuities. Commercial brackets exhibited markedly poorer surface quality (notably higher S_z), amplifying acidity-driven susceptibility. These findings indicate that, under acidic challenges, surface/geometry quality dominates corrosion behavior; non-magnetic-phase compliance and simple chairside screening (e.g., magnet test), alongside tighter manufacturing controls on roughness and edge finish, should be incorporated into clinical and industrial quality assurance (QA). Full article
(This article belongs to the Special Issue Orthodontic Materials: Properties and Effectiveness of Use)
Show Figures

Graphical abstract

16 pages, 3351 KB  
Article
Intermediate Bandgap (IB) Cu3VSxSe4−x Nanocrystals as a New Class of Light Absorbing Semiconductors
by Jose J. Sanchez Rodriguez, Soubantika Palchoudhury, Jingsong Huang, Daniel Speed, Elizaveta Tiukalova, Godwin Mante, Jordan Hachtel and Arunava Gupta
Nanomaterials 2026, 16(2), 82; https://doi.org/10.3390/nano16020082 - 7 Jan 2026
Viewed by 291
Abstract
A new family of highly uniform, cubic-shaped Cu3VSxSe4−x (CVSSe; 0 ≤ x ≤ 4) nanocrystals based on earth-abundant materials with intermediate bandgaps (IB) in the visible range is reported, synthesized via a hot-injection method. The IB transitions and [...] Read more.
A new family of highly uniform, cubic-shaped Cu3VSxSe4−x (CVSSe; 0 ≤ x ≤ 4) nanocrystals based on earth-abundant materials with intermediate bandgaps (IB) in the visible range is reported, synthesized via a hot-injection method. The IB transitions and optical band gap of the novel CVSSe nanocrystals are investigated using ultraviolet-visible spectroscopy, revealing tunable band gaps that span the visible and near-infrared regimes. The composition-dependent relationships among the crystal phase, optical band gap, and photoluminescence properties of the novel IB semiconductors with progressive substitution of Se by S are examined in detail. High-resolution transmission electron microscopy and scanning electron microscopy characterization confirm the high crystallinity and uniform size (~19.7 nm × 17.2 nm for Cu3VS4) of the cubic-shaped nanocrystals. Density functional theory (DFT) calculations based on virtual crystal approximation support the experimental findings, showing good agreement in lattice parameters and band gaps across the CVSSe series and lending confidence that the targeted phases and compositions have been successfully realized. A current conversion efficiency, i.e., incident photon-to-current efficiency, of 14.7% was achieved with the p-type IB semiconductor Cu3VS4. These novel p-type IB semiconductor nanocrystals hold promise for enabling thin film solar cells with efficiencies beyond the Shockley–Queisser limit by allowing sub-band-gap photon absorption through intermediate-band transitions, in addition to the conventional direct-band-gap transition. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

14 pages, 1834 KB  
Article
Tunable Luminescence in Sb3+-Doped Cs3LnCl6 Perovskites for Wide-Coverage Emission and Anti-Counterfeiting Applications
by Lianao Zhang, Le Chen, Sai Xu, Yongze Cao, Xizhen Zhang, Hongquan Yu, Yuefeng Gao and Baojiu Chen
Nanomaterials 2025, 15(23), 1790; https://doi.org/10.3390/nano15231790 - 27 Nov 2025
Viewed by 485
Abstract
Zero-dimensional (0D) rare-earth-based metal halides show great potential in photonic and optoelectronic applications owing to their high stability, strong exciton confinement, and tunable energy levels. However, the weak absorption and narrow 4f-4f transitions of rare-earth ions limit their performance. To address this, a [...] Read more.
Zero-dimensional (0D) rare-earth-based metal halides show great potential in photonic and optoelectronic applications owing to their high stability, strong exciton confinement, and tunable energy levels. However, the weak absorption and narrow 4f-4f transitions of rare-earth ions limit their performance. To address this, a series of Sb3+-doped Cs3LnCl6 (Ln: Yb, La, Eu, Ho, Ce, Er, Tb, Sm, Y) nanocrystals were synthesized via a hot-injection method to study the role of Sb3+ doping. Sb3+ incorporation induces strong broadband self-trapped exciton (STE) emission from Jahn–Teller-distorted [SbCl6]3− units and enables efficient energy transfer from STEs to rare-earth ions. As a result, the photoluminescence intensity and spectral tunability are improved, accompanied by bandgap narrowing and enhanced light absorption. Different lanthanide hosts exhibit distinct luminescence behaviors: La-based materials show dominant STE emission, while Tb-, Er-, Yb-, Ho-, and Sm-based systems display STE-mediated energy transfer and enhanced f-f emission. In Eu- and Ce-based hosts, unique mechanisms involving Eu2+/Eu3+ conversion and Ce3+ → STE energy transfer are observed. Moreover, composition-dependent emissions in Sb3+-doped Cs3Tb/EuCl6 enable a dual-mode color and spectral encoding strategy for optical anti-counterfeiting. This study highlights the versatile role of Sb3+ in tuning electronic structures and energy transfer, offering new insights for designing high-performance rare-earth halide materials for advanced optoelectronic applications. Full article
Show Figures

Figure 1

16 pages, 4838 KB  
Article
Exploring Accelerated Aging Stress for Physical Unclonable Function Self-Corruption
by Eric Hunt-Schroeder and Tian Xia
Chips 2025, 4(4), 48; https://doi.org/10.3390/chips4040048 - 11 Nov 2025
Viewed by 422
Abstract
Silicon-Based Physical Unclonable Functions (PUFs) exploit inherent manufacturing variations to produce a unique, random, and ideally unclonable secret key. As electronic devices are decommissioned and sent for End of Life (EOL) recycling, the encrypted critical program information remains within the device. However, conventional [...] Read more.
Silicon-Based Physical Unclonable Functions (PUFs) exploit inherent manufacturing variations to produce a unique, random, and ideally unclonable secret key. As electronic devices are decommissioned and sent for End of Life (EOL) recycling, the encrypted critical program information remains within the device. However, conventional PUFs remain vulnerable to invasive attacks and reverse engineering that with sufficient time, resources, and effort can enable an adversary to bypass the security enclave of the system and extract this secret data. Recent research has started to explore techniques to respond to tamper attempts using electromigration (EM) and time-dependent dielectric breakdown (TDDB) to the PUF entropy source, preventing future authentication attempts with well-known semiconductor reliability failure mechanisms. This work presents a Pre-Amplifier Physical Unclonable Function (Pre-Amp PUF) with a self-corruption function designed and manufactured in a 3 nm FinFET technology. This PUF can perform a destructive read operation as an EOL anti-counterfeit measure against recycled and reused electronics. The destructive read utilizes an accelerated aging technique that exploits both Hot Carrier Injection (HCI) and Bias Temperature Instability (BTI) degradations directly at the PUF entropy source bitcell data. This work demonstrates a silicon proven ability to irreversibly corrupt the encryption key, invalidating the PUF key, and blocking future authentication attempts. By utilizing HCI and BTI aging effects rather than physical damage a PUF that can self-corrupt its own key without being detectable with imaging techniques is demonstrated for the first time. A feedback loop enables corruption of up to ~30% of the PUF entropy source, which is approximately 3× more data corruption than the prior state of the art self-corrupting PUF. Our technique reuses on-chip stable (repeatable) PUF bitcells identifying circuitry and thereby minimizes the area overhead to support this differentiated feature. Full article
(This article belongs to the Special Issue Emerging Issues in Hardware and IC System Security)
Show Figures

Figure 1

22 pages, 3176 KB  
Article
Maresin 2, a Specialized Pro-Resolution Lipid Mediator, Reduces Pain and Inflammation Induced by Bothrops jararaca Venom in Mice
by Kassyo L. S. Dantas, Beatriz H. S. Bianchini, Matheus D. V. da Silva, Maiara Piva, Joice M. da Cunha, Janaina M. Zanoveli, Fernanda C. Cardoso, Fabiana T. M. C. Vicentini, Camila R. Ferraz, Patricia B. Clissa, Rubia Casagrande and Waldiceu A. Verri
Toxins 2025, 17(8), 367; https://doi.org/10.3390/toxins17080367 - 25 Jul 2025
Cited by 3 | Viewed by 1401
Abstract
The venom of Bothrops jararaca (BjV) induces intense and prolonged pain, which is not alleviated by antivenom, along with hemorrhage and inflammation. In this study, we investigated the effects of the specialized pro-resolving lipid mediator (SPM) maresin 2 (MaR2) in a murine model [...] Read more.
The venom of Bothrops jararaca (BjV) induces intense and prolonged pain, which is not alleviated by antivenom, along with hemorrhage and inflammation. In this study, we investigated the effects of the specialized pro-resolving lipid mediator (SPM) maresin 2 (MaR2) in a murine model of BjV-evoked pain and inflammation. Mice received a single intraperitoneal (i.p.) injection of MaR2 30 min before the intraplantar BjV injection. MaR2 treatment significantly attenuated mechanical (electronic aesthesiometer) and thermal (hot plate) hyperalgesia in a dose-dependent manner. Additionally, MaR2 restored the balance for the hind-paw static weight distribution. When BjV (0.01, 0.1, and 1 μg) stimulus was administered intraperitoneally, pre-treatment with MaR2 (0.3, 1, or 3 ng) ameliorated mechanical and thermal hyperalgesia in a dose-dependent manner. Moreover, MaR2 (3 ng) effectively reduced the levels of myeloperoxidase activity and cytokines (TNF-α, IL-1β, and IL-6) and superoxide anion (O2•−) production induced by intraplantar injection of BjV while enhancing total antioxidant levels (ABTS scavenging). For the peritonitis model induced by BjV, MaR2 pretreatment decreased leukocyte recruitment, hemorrhage, nitric oxide (NO), and O2•− generation and gp91phox and inducible nitric oxide synthase (iNOS) mRNA expression. In conclusion, this study presents the first evidence that MaR2 effectively mitigated BjV-induced pain, hemorrhage, and inflammation. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

13 pages, 1876 KB  
Article
Total Ionizing Dose Effects on Lifetime of NMOSFETs Due to Hot Carrier-Induced Stress
by Yujuan He, Rui Gao, Teng Ma, Xiaowen Zhang, Xianyu Zhang and Yintang Yang
Electronics 2025, 14(13), 2563; https://doi.org/10.3390/electronics14132563 - 25 Jun 2025
Cited by 1 | Viewed by 1286
Abstract
This study systematically investigates the mechanism by which total ionizing dose (TID) affects the lifetime degradation of NMOS devices induced by hot-carrier injection (HCI). Experiments involved Cobalt-60 (Co-60) gamma-ray irradiation to a cumulative dose of 500 krad (Si), followed by 168 h annealing [...] Read more.
This study systematically investigates the mechanism by which total ionizing dose (TID) affects the lifetime degradation of NMOS devices induced by hot-carrier injection (HCI). Experiments involved Cobalt-60 (Co-60) gamma-ray irradiation to a cumulative dose of 500 krad (Si), followed by 168 h annealing at 100 °C to simulate long-term stability. However, under HCI stress conditions (VD = 2.7 V, VG = 1.8 V), irradiated devices show a 6.93% increase in threshold voltage shift (ΔVth) compared to non-irradiated counterparts. According to the IEC 62416 standard, the lifetime degradation of irradiated devices induced by HCI stress is only 65% of that of non-irradiated devices. Conversely, when the saturation drain current (IDsat) degrades by 10%, the lifetime doubles compared to non-irradiated counterparts. Mechanistic analysis demonstrates that partial neutralization of E’ center positive charges at the gate oxide interface by hot electrons weakens the electric field shielding effect, accelerating ΔVth drift, while interface trap charges contribute minimally to degradation due to annealing-induced self-healing. The saturation drain current shift degradation primarily correlates with electron mobility variations. This work elucidates the multi-physics mechanisms through which TID impacts device reliability and provides critical insights for radiation-hardened design optimization. Full article
Show Figures

Figure 1

24 pages, 7153 KB  
Article
A Comparative Study on the Compatibilization of Thermoplastic Starch/Polybutylene Succinate Blends by Chain Extender and Epoxidized Linseed Oil
by Ke Gong, Yinshi Lu, Alexandre Portela, Soheil Farshbaf Taghinezhad, David Lawlor, Shane Connolly, Mengli Hu, Yuanyuan Chen and Maurice N. Collins
Macromol 2025, 5(2), 24; https://doi.org/10.3390/macromol5020024 - 12 May 2025
Cited by 3 | Viewed by 2351
Abstract
The immiscibility of thermoplastic starch (TPS) and polybutylene succinate (PBS) complicates the thermal processing of these materials. This study provides the first comparative assessment of two compatibilizers with differing reaction mechanisms, Joncryl® ADR 4468 and epoxidized linseed oil (ELO), for the optimization [...] Read more.
The immiscibility of thermoplastic starch (TPS) and polybutylene succinate (PBS) complicates the thermal processing of these materials. This study provides the first comparative assessment of two compatibilizers with differing reaction mechanisms, Joncryl® ADR 4468 and epoxidized linseed oil (ELO), for the optimization of biobased TPS/PBS blends. A total of 13 batches, varying in compatibilizer and blend composition, were processed via hot melt extrusion and injection molding to produce pellets. Blends were analyzed using tensile and impact testing, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), rheology, and scanning electron microscopy (SEM). The findings suggest that both compatibilizers can improve the compatibility of these blends, as evidenced by higher glass transition temperatures (Tg) compared to the reference batch (100-0-N/A). Joncryl® ADR 4468 batches exhibit superior tensile strength and Young’s moduli, while ELO batches demonstrate greater elongation at break. The enhanced processability observed in Joncryl® ADR 4468 is attributed to the increased polymer chain entanglement and molecular weight, whereas ELO facilitates greater chain mobility due to its plasticizing effect. These differences arise from the distinct mechanisms of action: Joncryl® ADR 4468 promotes chain extension and crosslinking, whereas ELO mainly enhances flexibility through plasticization. Overall, this study provides a comparative assessment of these compatibilizers in TPS/PBS blends, laying the groundwork for future investigations into optimizing compatibilizer concentration and blend composition. Full article
(This article belongs to the Collection Advances in Biodegradable Polymers)
Show Figures

Figure 1

12 pages, 2245 KB  
Article
Analysis of Fatigue Life After Application of Compressive Microstresses on the Surface of Components Manufactured by Metal Injection Molding
by Jorge Luis Braz Medeiros, Luciano Volcanoglo Biehl and Ismael Cristofer Baierle
Surfaces 2025, 8(1), 19; https://doi.org/10.3390/surfaces8010019 - 14 Mar 2025
Cited by 1 | Viewed by 1147
Abstract
The metal injection molding (MIM) manufacturing process has made relevant advances for applications in components with complex geometries, small dimensions, and high production volumes. New technologies such as hot isostatic pressing (HIP), uniform polymer extraction, and sintering with reduced temperature variations improve metallurgical [...] Read more.
The metal injection molding (MIM) manufacturing process has made relevant advances for applications in components with complex geometries, small dimensions, and high production volumes. New technologies such as hot isostatic pressing (HIP), uniform polymer extraction, and sintering with reduced temperature variations improve metallurgical and mechanical properties. However, there are still knowledge gaps in understanding these technologies and the behavior of catalytic low-alloy steels obtained by the MIM process and cyclic applications. This study aims to analyze the behavior of Catamold 100Cr6 steel subjected to quenching and tempering heat treatment in different microhardness ranges and the effect of compressive stresses on the samples obtained by polishing using ceramic microchips. The samples were characterized using optical microscopy, scanning electron microscopy, an EDS microprobe, and X-ray diffraction and subjected to elastic return cycling and an experimental device developed to apply a 19° bending angle. The findings show a significant increase in fatigue life due to the compressive stresses (up to—430 MPa) generated by the reduction in retained austenite and surface plastic microdeformation, indicating the effectiveness of 100Cr6 Catamold steel in cyclic applications. Full article
Show Figures

Figure 1

13 pages, 4193 KB  
Article
Synthesis and Molecular Structure of Iron(III) Diaryl-Dithiocarbamate Complexes, [Fe(S2CNAr2)3], and a Preliminary Study Exploring Their Potential as Single-Source Precursors for Nanoscale Iron Sulfides
by Jagodish C. Sarker, Tannith-Jade Cole, Xiang Xu, Firoz Alam, Paul D. McNaughter, Jeremy K. Cockcroft, David J. Lewis and Graeme Hogarth
Inorganics 2025, 13(3), 70; https://doi.org/10.3390/inorganics13030070 - 26 Feb 2025
Viewed by 1528
Abstract
Diaryldithiocarbamate complexes, [Fe(S2CNAr2)3], have been prepared and their structure, reactivity, and thermal degradation to afford iron sulfide nanomaterials have been investigated. The addition of three equivalents of LiS2CNAr2 to FeCl2·4H2O [...] Read more.
Diaryldithiocarbamate complexes, [Fe(S2CNAr2)3], have been prepared and their structure, reactivity, and thermal degradation to afford iron sulfide nanomaterials have been investigated. The addition of three equivalents of LiS2CNAr2 to FeCl2·4H2O in water-air affords dark red [Fe(S2CNAr2)3] in high yields. All show magnetic measurements consistent with a predominantly high-spin electronic arrangement at room temperature. The molecular structure of [Fe{S2C(N-p-MeOC6H4)2}3] reveals the expected distorted octahedral geometry, but Fe-S distances are more consistent with a low-spin electronic configuration, likely a result of the low temperature (120 K) of the data collection. The thermal stability of [Fe{S2C(N-p-MeC6H4)2}3] has been investigated. TGA shows that it begins to decompose at a significantly lower temperature (ca. 160 °C) than previously observed for [Fe(S2CNEt2)3], and this is further lowered (to ca. 100 °C) in oleylamine. The decomposition of [Fe{S2C(N-p-MeC6H4)2}3] in oleylamine, via either a heat-up or hot injection process, affords nanoparticles of Fe3S4 (greigite), while in contrast, dry heating at 450 °C affords FeS (troilite) as large agglomerates. Full article
Show Figures

Graphical abstract

22 pages, 17261 KB  
Article
The Role of Chemical Treatments on Curaua Fibers on Mechanical and Thermal Behavior of Biodegradable Composites
by Janaíne M. de Oliveira, Vitor M. Z. Sousa, Linconl A. Teixeira, Rosineide M. Leão, Rita C. M. Sales-Contini, Volker F. Steier and Sandra M. da Luz
Appl. Sci. 2024, 14(22), 10621; https://doi.org/10.3390/app142210621 - 18 Nov 2024
Cited by 7 | Viewed by 1694
Abstract
Biodegradable composites combining thermoplastic polymers and natural fibers could originate materials with synergetic mechanical and thermal properties, keeping their biodegradability. This paper describes biodegradable polymers’ mechanical and thermal properties, such as polylactic acid (PLA) and polyhydroxybutyrate (PHB) reinforced with curaua fibers. To improve [...] Read more.
Biodegradable composites combining thermoplastic polymers and natural fibers could originate materials with synergetic mechanical and thermal properties, keeping their biodegradability. This paper describes biodegradable polymers’ mechanical and thermal properties, such as polylactic acid (PLA) and polyhydroxybutyrate (PHB) reinforced with curaua fibers. To improve the interface between matrix and reinforcement, the curaua fibers were treated by two routes: (1) treatment with hot water and subsequent mercerization with NaOH; (2) treatment with chlorite and subsequent mercerization with NaOH. The composites of PLA and PHB reinforced with natural or modified fibers (10 and 20 wt%) were obtained by extrusion and injection molding. The influence of fiber content and treatment on composite properties was studied by tensile and flexural tests, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results showed the removal of hemicellulose and lignin from the fibers, increasing their crystallinity and slightly decreasing their thermal stability after chemical treatments. Also, the DSC technique showed that the insertion of the curaua fibers increased the crystallinity index of all composites/PLA. The mercerized-curaua (20 wt%)/PLA composite showed the best result in the mechanical behavior, both in tensile and bending tests. The PHB composite, reinforced with curaua fibers and treated with hot water and mercerization (20 wt%), showed the best result regarding mechanic performance. To conclude, all composites improved mechanical properties compared to pure polymers. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

18 pages, 2719 KB  
Article
A Buffered Local Anesthetic Without Epinephrine: Development, Characterization, and In Vivo Efficacy and Toxicity Analysis
by Daniel Uzbelger Feldman, Billy B. Laun, Chirag Patel, Sonal V. Pande and Sai H. S. Boddu
Pharmaceutics 2024, 16(8), 1058; https://doi.org/10.3390/pharmaceutics16081058 - 12 Aug 2024
Cited by 1 | Viewed by 4638
Abstract
Lidocaine hydrochloride (HCl) 2% with 1:100,000 epinephrine (LW/E) is widely used to prevent pain during dental procedures and has been associated with injection sting, jittering effects, slow onset, and a bitter aftertaste. Since LW/E’s introduction in 1948, no significant modifications have been proposed. [...] Read more.
Lidocaine hydrochloride (HCl) 2% with 1:100,000 epinephrine (LW/E) is widely used to prevent pain during dental procedures and has been associated with injection sting, jittering effects, slow onset, and a bitter aftertaste. Since LW/E’s introduction in 1948, no significant modifications have been proposed. This study aims to design and characterize an improved dental lidocaine HCl injectable formulation without epinephrine (LW/O/E) via buffers, sweeteners, and amino acids. LW/O/E injections were prepared with pH and osmolality values of 6.5–7.0 and 590–610 mOsm/kg. Using the electronic tongue (ETongue), the LW/O/E injectable formulations were characterized for viscosity, injectability, and taste analysis. The results were compared with the LW/E control. In vivo efficacy and anesthetic duration of the samples were measured through radiant heat tail-flick latency (RHTFL) and hot plate (HP) tests and local toxicity was assessed after a single intra-oral injection in Sprague Dawley rats (SDR). The viscosity and injectability values of the LW/O/E samples were found to be comparable to the LW/E injection. ETongue taste analysis showed an improvement in bitterness reduction of the LW/O/E samples compared to the LW/E formulation. Toxicity studies of samples in SDR showed minor and transient signs of erythema/eschar and edema. Anesthetic duration via RHTFL and HP paw withdrawal latency time in SDR were found to be comparable for the LW/O/E Sample 3A and the LW/E injection (p < 0.05). In conclusion, the buffered, higher osmolality and reduced bitterness developed LW/O/E formulation (Sample 3A) could be considered a promising alternative to the LW/E formulation for dental use. Full article
Show Figures

Graphical abstract

18 pages, 5479 KB  
Article
Degradation Induced by Total Ionizing Dose and Hot Carrier Injection in SOI FinFET Devices
by Hao Yu, Wei Zhou, Hongxia Liu, Shulong Wang, Shupeng Chen and Chang Liu
Micromachines 2024, 15(8), 1026; https://doi.org/10.3390/mi15081026 - 11 Aug 2024
Cited by 3 | Viewed by 1933
Abstract
The working environment of electronic devices in the aerospace field is harsh. In order to ensure the reliable application of the SOI FinFET, the total ionizing dose (TID) and hot carrier injecting (HCI) reliability of an SOI FinFET were investigated in this study. [...] Read more.
The working environment of electronic devices in the aerospace field is harsh. In order to ensure the reliable application of the SOI FinFET, the total ionizing dose (TID) and hot carrier injecting (HCI) reliability of an SOI FinFET were investigated in this study. First, the influence of TID on the device was simulated. The results show that TID causes the threshold voltage to decrease and the off-state current and subthreshold swing to increase. TID causes more damage to the device at high temperature and also reduces the saturation drain current of the device. HCI causes the device threshold voltage to increase and the saturation drain current to decrease. The HCI is more severe at high temperatures. Finally, the coupling effects of the two were simulated, and the results show that the two effects cancel each other out, and the degradation of various electrical characteristic parameters is different under different coupling modes. Full article
Show Figures

Figure 1

12 pages, 2094 KB  
Article
Synthesis and Properties of Size-Adjustable CsPbBr3 Nanosheets for Potential Photocatalysis
by Qi Liu, Hang Li, Xiaoqian Wang, Jiazhen He, Xuemin Luo, Mingwei Wang, Jinfeng Liu and Yong Liu
Materials 2024, 17(11), 2563; https://doi.org/10.3390/ma17112563 - 27 May 2024
Cited by 4 | Viewed by 3487
Abstract
Amidst the rapid advancements in the fields of photovoltaics and optoelectronic devices, CsPbBr3 nanosheets (NSs) have emerged as a focal point of research due to their exceptional optical and electronic properties. This work explores the application potential of CsPbBr3 NSs in [...] Read more.
Amidst the rapid advancements in the fields of photovoltaics and optoelectronic devices, CsPbBr3 nanosheets (NSs) have emerged as a focal point of research due to their exceptional optical and electronic properties. This work explores the application potential of CsPbBr3 NSs in photonic and catalytic domains. Utilizing an optimized hot-injection method and a ZnBr2-assisted in situ passivation strategy, we successfully synthesized CsPbBr3 NSs with controlled dimensions and optical characteristics. Comprehensive characterization revealed that the nucleation environment and thickness significantly influenced the structure and optical performance of the materials. The results indicate that the optimized synthesis method enables control over the lateral dimensions of the nanoparticles, ranging from 9.1 ± 0.06 nm to 334.5 ± 4.40 nm, facilitating the tuning of the excitation wavelength from 460 nm (blue) to 510 nm (green). Further analyses involving photoresponse and electrochemical impedance spectroscopy demonstrated the substantial potential of these NSs in applications such as photocatalysis and energy conversion. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for (Opto-)electronic Devices)
Show Figures

Figure 1

9 pages, 3023 KB  
Communication
Stable Near-Infrared Photoluminescence of Hexagonal-Shaped PbS Nanoparticles with 1-Dodecanethiol Ligands
by Tsair-Chun Liang, Hsin-Yu Su, Kasimayan Uma, Sih-An Chen, Zhi-Chi Deng, Tzung-Ta Kao, Chun-Cheng Lin and Lung-Chien Chen
Materials 2024, 17(10), 2380; https://doi.org/10.3390/ma17102380 - 16 May 2024
Cited by 1 | Viewed by 1670
Abstract
In this study, lead(II) sulphide (PbS) nanoparticles of varying particle sizes were synthesized using the hot injection method, employing 1-octadecene (ODE) as a coordinating ligand in conjunction with oleylamine (OAm). This synthesis approach was compared with the preparation of hexagonal-shaped nanoparticles through the [...] Read more.
In this study, lead(II) sulphide (PbS) nanoparticles of varying particle sizes were synthesized using the hot injection method, employing 1-octadecene (ODE) as a coordinating ligand in conjunction with oleylamine (OAm). This synthesis approach was compared with the preparation of hexagonal-shaped nanoparticles through the ligand of 1-Dodecanethiol (DT), resulting in DT-capped PbS nanoparticles. The prepared nanoparticles were characterized using multiple techniques including photoluminescence (PL), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). The condensation reaction of DT ligands led to various nanoparticles within the range of 34.87 nm to 35.87 nm across different synthesis temperatures (120 °C, 150 °C, 180 °C, 210 °C, and 240 °C). The PbS with DT ligands exhibited a highly crystalline and superhydrophilic structure. Interestingly, near-infrared (NIR)-PL analysis revealed peaks at 1100 nm, representing the lowest-energy excitonic absorption peak of PbS nanoparticles for both ligands. This suggests their potential utility in various applications, including IR photoreactors, as well as in the development of non-toxic nanoparticles for potential applications in in vivo bioimaging. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

18 pages, 4425 KB  
Review
Research Progress of Heavy-Metal-Free Quantum Dot Light-Emitting Diodes
by Ruiqiang Xu, Shi Lai, Youwei Zhang and Xiaoli Zhang
Nanomaterials 2024, 14(10), 832; https://doi.org/10.3390/nano14100832 - 9 May 2024
Cited by 10 | Viewed by 4164
Abstract
At present, heavy-metal-free quantum dot light-emitting diodes (QLEDs) have shown great potential as a research hotspot in the field of optoelectronic devices. This article reviews the research on heavy-metal-free quantum dot (QD) materials and light-emitting diode (LED) devices. In the first section, we [...] Read more.
At present, heavy-metal-free quantum dot light-emitting diodes (QLEDs) have shown great potential as a research hotspot in the field of optoelectronic devices. This article reviews the research on heavy-metal-free quantum dot (QD) materials and light-emitting diode (LED) devices. In the first section, we discussed the hazards of heavy-metal-containing quantum dots (QDs), such as environmental pollution and human health risks. Next, the main representatives of heavy-metal-free QDs were introduced, such as InP, ZnE (E=S, Se and Te), CuInS2, Ag2S, and so on. In the next section, we discussed the synthesis methods of heavy-metal-free QDs, including the hot injection (HI) method, the heat up (HU) method, the cation exchange (CE) method, the successful ionic layer adsorption and reaction (SILAR) method, and so on. Finally, important progress in the development of heavy-metal-free QLEDs was summarized in three aspects (QD emitter layer, hole transport layer, and electron transport layer). Full article
Show Figures

Figure 1

Back to TopTop