Analysis of Fatigue Life After Application of Compressive Microstresses on the Surface of Components Manufactured by Metal Injection Molding
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Chemical Analysis
3.2. Microstructural Analysis
3.3. Vickers Microhardness Behavior
3.4. Residual Stresses
3.5. Cyclic Tests
4. Conclusions
- Components produced with MIM Catamold 100Cr6 technology demonstrated the ability to withstand cyclic stresses below the yield limit in quenched and tempered conditions. The applied tempering range presents a relevant factor for cyclic applications with elastic return applied.
- The rotopolishing surface finish with ceramic microchips significantly increased the cyclic fatigue life below the yield point. Compressive residual stresses significantly increased the samples’ behavior in experimental springback applications.
- Samples subjected to T3R conditions showed greater surface microhardness, higher compressive stress levels, and the ability to withstand cycles below the yield limit up to five times greater than T1R and T2R conditions.
- The effects of surface plastic deformation have a favorable application in quenched and tempered Catamold 100Cr6 steel.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hwang, I.S.; So, T.Y.; Lee, D.H.; Shin, C.S. Characterization of Mechanical Properties and Grain Size of Stainless Steel 316L via Metal Powder Injection Molding. Materials 2023, 16, 2144. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Li, D.; Changhai, D.; Wan, Z.; Zhou, Y.; Shu, C.; Luo, F.; Li, Y. Near-spherical micron-porous NiTi alloys with high performances fabricated via metal injection molding. Mater. Sci. Eng. A 2024, 892, 146114. [Google Scholar] [CrossRef]
- Kuo, C.C.; Pan, X.Y. Development of a Rapid Tool for Metal Injection Molding Using Aluminum-Filled Epoxy Resins. Polymers 2023, 15, 3513. [Google Scholar] [CrossRef] [PubMed]
- Enneti, H.K.; Onbattuvelli, V.P.; Gulsoy, O.; Kate, K.H.; Atre, S.V. Powder-binder formulation and compound manufacture in metal injection molding (MIM). In Handbook of Metal Injection Molding; Woodhead Publishing: Cambridge, UK, 2019; pp. 57–88. [Google Scholar]
- Heaney, D. Powders for metal injection molding (MIM). In Handbook of Metal Injection Molding MIM; Series in Metals and Surface Engineering; Woodhead Publishing: Cambridge, UK, 2019; pp. 45–56. [Google Scholar]
- Scheneider, T.H.; Biehl, L.V.; Medeiros, J.L.B.; Souza, D.S. Method for the Determination of Parameters in the Sintering Pross of Mixtures of the Elemental Powders Fe-Cr and Fe-Cr-Ni. Methods X 2019, 6, 1919–1924. [Google Scholar]
- Tochetto, R.; Tochetto, R.; Biehl, L.V.; Medeiros, J.L.B.; Souza, D.S. Evaluation of the Space Holders Technique Applied in Powder Metallurgy Process in the Use of Titanium as Biomaterial. Lat. Am. Appl. Res. 2019, 49, 261–268. [Google Scholar] [CrossRef]
- Da Motta, C.A.O.; De Souza, J.; Martins, V.; Shaeffer, L.; Rossini, E.G.; Biehl, L.V.; Pacheco DA, D.J.; Martins, C.O.D.; Medeiros, J.L.B. Enhancing composite materials through fly ash reinforcement in powder metallurgy. Mater. Chem. Phys. 2023, 307, 128124–128132. [Google Scholar] [CrossRef]
- Suwanpreecha, C.; Manonukul, A. A Review on Material Extrusion Additive Manufacturing of Metal and How It Compares with Metal Injection Moulding. Metals 2022, 12, 429. [Google Scholar] [CrossRef]
- You, H.; Yang, M.; Zhang, Y.; Sisson, R.D., Jr. Austempering and Bainitic Transformation Kinetics of AISI 52100. J. Mater. Eng. Perform. 2024, 33, 4325–4334. [Google Scholar] [CrossRef]
- Kumar, S.; Sigh, S.B. Evolution of microstructure during the “quenching and partitioning (Q&P)” treatment. Materialia 2021, 18, 101135. [Google Scholar]
- Oliveira, M.U.; Biehl, L.V.; Medeiros, J.L.B.; Avellaneda, C.A.O.; Martins, C.O.D.; Souza, J.D.; Sporket, F. Manufacturing Against Corrosion: Increasing Materials Performance by the Combination of Cold Work and Heat Treatment for 6063 Aluminium Alloy. Mater. Sci.-Medzg. 2019, 26, 30–33. [Google Scholar] [CrossRef]
- Erissir, E.; Rarat, O.; Bilir, O.G. Enhancing Wear Resistance of 100Cr6 Bearing Steels by New Heat Treatment Method. Metall. Mater. Trans. A 2022, 53, 850–860. [Google Scholar] [CrossRef]
- Ostermayer, P.; Blinn, B.; Krupp, U.; Beck, T. VHCF behavior and defect tolerance of modified bainitic 100Cr6 with a high retained austenite content. Int. J. Fatigue 2024, 185, 108378. [Google Scholar] [CrossRef]
- Totten, G.E. Steel Heat Treatment: Metallurgy and Technologies; CRC Press: New York, NY, USA, 2006. [Google Scholar]
- Su, Y.; Miao, L.J.; Yu, X.F.; Liu, T.M.; Liu, L.; Liu, J.L. Effect of Isothermal Quenching on Microstructure and Hardness of GCr15 Steel. J. Mark. Res. 2021, 15, 2820–2827. [Google Scholar] [CrossRef]
- ASTM E112; Standard Test Methods for Determining Average Grain Size. ASTM: West Conshohocken, PA, USA, 2021.
- Bevilaqua, L.; Epp, J.; Rocha, A.D.S.; Roelofs, H. Explaining the Abnormal Dilatation Behavior During the Austenite Formation in a Microstructure of a Low-Carbon Low-Alloy Steel Containing Retained Austenite. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2023, 54, 3349–3357. [Google Scholar] [CrossRef]
- Ivaniski, T.M.; Castro, P.J.D.; Rodrigues, D.; Épp, J.; Nunes, R.M.; Rocha, A.D.S. Numerical and Experimental Study of an Industrial Case for Grain Size Evolution in Bainitic Steel in Controlled Hot Forging and its Influence on Mechanical Performance. Mater. Res. 2022, 25, e20210598. [Google Scholar] [CrossRef]
- Marciszko-Wiąckowska, M.; Oponowicz, A.; Baczmański, A.; Braham, C.; Wątroba, M.; Wróbel, M.; Klaus, M.; Genzel, C. A novel approach for nondestructive depth-resolved analysis of residual stress and grain interaction in the near-surface zone applied to an austenitic stainless steel sample subjected to mechanical polishing. Measurement 2022, 194, 111016. [Google Scholar] [CrossRef]
- Gan, W.; Babu, S.S.; Kapustka, N.; Wagoner, R.H. Microstructural Effects on the Springback of Advanced High-Strength Steel. Metall. Mater. Trans. A 2006, 37, 3221–3231. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, E.; Mo, W.; Lv, Y.; Ma, R.; Ye, S.; Wang, X.; Yu, P. On the Microstructures and Fatigue Behaviors of 316L Stainless Steel Metal Injection Molded with Gas- and Water-Atomized Powders. Metals 2018, 8, 893. [Google Scholar] [CrossRef]
- Zavadiuk, S.V.; Loboda, P.I.; Soloviova, T.O.; Trosnicova, I.I.; Karassevska, O.P. Fracture Features of Low-Alloy Steel Produced by Metal Injection Molding. Powder Metall. Met. Ceram. 2021, 59, 11–12. [Google Scholar] [CrossRef]
- Zhang, H.; Ouyang, Z.; Li, L.; Ma, W.; Liu, Y.; Chen, F.; Xiao, X. Numerical Study on Welding Residual Stress Distribution of Corrugated Steel Webs. Metals 2022, 12, 1831. [Google Scholar] [CrossRef]
- Wei, Y.H.; Yu, X.F.; Su, Y.; Shen, X.Y.; Xia, Y.Z.; Yang, W.W. Effect of residual stress and microstructure evolution on size stability of M50 bearing steel. J. Mater. Res. Technol. 2021, 10, 651–661. [Google Scholar] [CrossRef]
- Kumagai, M.; Curd, M.D.; Soyama, H.; Ungár, T.; Ribárik, G.; Withers, P.J. Depth-profiling of residual stress and microstructure for austenitic stainless steel surface treated by cavitation, shot and laser peening. Mater. Sci. Eng. A 2021, 813, 141037. [Google Scholar] [CrossRef]
- Torkamani, H.; Vrček, A.; Larsson, R.; Antti, M.L. Micro-pitting and wear damage characterization of through hardened 100Cr6 and surface induction hardened C56E2 bearing steels. Wear 2022, 492, 204218. [Google Scholar] [CrossRef]
Sample | %C | %Si | %Mn | %P | %S | %Cr | %Al | %Cu |
---|---|---|---|---|---|---|---|---|
1 | 0.98 | 0.25 | 0.40 | 0.03 | 0.03 | 1.4 | 0.001 | 0.01 |
2 | 0.97 | 0.25 | 0.41 | 0.03 | 0.03 | 1.4 | 0.001 | 0.01 |
3 | 0.99 | 0.25 | 0.39 | 0.03 | 0.03 | 1.4 | 0.001 | 0.01 |
Average | 0.98 | 0.25 | 0.40 | 0.03 | 0.03 | 1.4 | 0.001 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medeiros, J.L.B.; Biehl, L.V.; Baierle, I.C. Analysis of Fatigue Life After Application of Compressive Microstresses on the Surface of Components Manufactured by Metal Injection Molding. Surfaces 2025, 8, 19. https://doi.org/10.3390/surfaces8010019
Medeiros JLB, Biehl LV, Baierle IC. Analysis of Fatigue Life After Application of Compressive Microstresses on the Surface of Components Manufactured by Metal Injection Molding. Surfaces. 2025; 8(1):19. https://doi.org/10.3390/surfaces8010019
Chicago/Turabian StyleMedeiros, Jorge Luis Braz, Luciano Volcanoglo Biehl, and Ismael Cristofer Baierle. 2025. "Analysis of Fatigue Life After Application of Compressive Microstresses on the Surface of Components Manufactured by Metal Injection Molding" Surfaces 8, no. 1: 19. https://doi.org/10.3390/surfaces8010019
APA StyleMedeiros, J. L. B., Biehl, L. V., & Baierle, I. C. (2025). Analysis of Fatigue Life After Application of Compressive Microstresses on the Surface of Components Manufactured by Metal Injection Molding. Surfaces, 8(1), 19. https://doi.org/10.3390/surfaces8010019