Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = host lifespan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2645 KB  
Article
Physicochemical and Functional Characterization of Pearl Millet-Based Probiotic Beverage for Antiaging Potential in Caenorhabditis elegans
by Nova Henna Jemimah Kaila, Prakash M. Halami, Chethana Ramakrishna, Mamatha Singanahalli Shivaramu and Muthukumar Serva Peddha
Foods 2025, 14(20), 3460; https://doi.org/10.3390/foods14203460 (registering DOI) - 10 Oct 2025
Viewed by 118
Abstract
Probiotics like Lactobacillus sp. are extensively studied for their beneficial host interactions, including the gut–brain axis, anti-inflammatory effects, immune system interactions, restoration of gut dysbiosis, and anti-aging effects. In the current study, pearl millet was fermented with Lactobacillus plantarum strains DHCU 70 and [...] Read more.
Probiotics like Lactobacillus sp. are extensively studied for their beneficial host interactions, including the gut–brain axis, anti-inflammatory effects, immune system interactions, restoration of gut dysbiosis, and anti-aging effects. In the current study, pearl millet was fermented with Lactobacillus plantarum strains DHCU 70 and MCC 5231, which enhanced the nutritional, bioactive, and functional properties of derived probiotic beverages. Compared to unfermented controls, fermented beverages exhibited increased protein content and vitamins B1, B2, and B3, with decreased carbohydrate and dietary fiber levels. The probiotics have maintained viability exceeding 12 log CFU/mL and showed resistance to harsh gastrointestinal conditions. Fermentation increased total phenolic content from 13.38 ± 0.40 mg GAE/100 g to 42.10 ± 2.65 mg GAE/100 g (LPDB) and 47.76 ± 1.37 mg GAE/100 g (LPMB) and total flavonoid content from 13.01 ± 1.18 mg QE/100 g to 23.12 ± 2.73 mg QE/100 g and 24.21 ± 0.98 mg QE/100 g, respectively. Antioxidant assays showed DPPH radical scavenging improved by 37%, ferrous ion chelation rose from 71.69 ± 0.09 mg TE/100 g to 91.45 ± 0.006 mg TE/100 g, ABTS scavenging increased from 71.62 mg TE/100 g to 82.51 ± 0.04 mg TE/100 g (LPDB) and 89.74 ± 0.04 mg TE/100 g (LPMB) and superoxide radical inhibition rose from 51.40 ± 0.98% to 81.77 ± 0.03% (LPDB) and 79.92 ± 0.02% (LPMB). In the in vivo model, Caenorhabditis elegans, fermented beverage treatments significantly improved health-span parameters like head-swing frequency (13.51% increase), body bend frequency (8.41% increase), pharyngeal pumping (8.15% increase) with reduced lipofuscin accumulation and intracellular reactive oxygen species while median lifespan extended beyond 24 days versus 14–16 days in controls (p < 0.05). Gompertz mortality modeling revealed a significant decrease in the aging rate parameter, indicating systemic mitigation of stress-induced physiological decline. These combined nutritional, bioactive, and in vivo longevity results underscore the potential of L. plantarum-fermented pearl millet beverages as functional nutraceuticals that target oxidative stress and promote healthy aging. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

24 pages, 5465 KB  
Review
The Application of Carbon-Based Materials in Cathodes for High-Performance K-Se Batteries: A Review
by Jingyang Wang, Yanfang Liang, Dongqi Gu, Can Li, Zening Sui, Xibo Tang, Xiaobin Sun and Yong Liu
Coatings 2025, 15(10), 1183; https://doi.org/10.3390/coatings15101183 - 9 Oct 2025
Viewed by 237
Abstract
Potassium–selenium (K-Se) batteries have emerged as a promising energy storage system in view of their high theoretical energy density and low cost. However, their practical application is restricted due to challenges such as polyselenide shuttling, low redox activity, and significant cathode volume expansion [...] Read more.
Potassium–selenium (K-Se) batteries have emerged as a promising energy storage system in view of their high theoretical energy density and low cost. However, their practical application is restricted due to challenges such as polyselenide shuttling, low redox activity, and significant cathode volume expansion during cycling, leading to inferior Coulombic efficiency and a short cycling lifespan. Carbon-based materials, with their superior electronic conductivity, adjustable pore structures, and robust chemical stability, have been extensively studied and employed as cathode materials in K-Se batteries, demonstrating remarkable potential in addressing the above-mentioned issues. Considering the rapidly growing research interest in this topic in recent years, herein, we comprehensively summarize recent advances in the application of carbon-based materials as cathodes in K-Se batteries. First, we introduce the properties, key challenges, and optimization strategies of K-Se batteries, including encapsulating Se within carbon materials, engineering chemisorptive hosts, and electrocatalyzing redox reactions. Furthermore, we discuss the relationship between fabrication strategies, micro/nanostructures, and electrochemical performances. Finally, we propose future prospects for the rational design and application of carbon-based cathodes in K-Se batteries and other alkaline metal–chalcogen batteries. Full article
Show Figures

Figure 1

25 pages, 2183 KB  
Systematic Review
Skin Microbiome, Nanotoxicology, and Regulatory Gaps: Chronic Cosmetic Exposure and Skin Barrier Dysfunction—A Systematic Review
by Loredana-Elena Pîrvulescu, Sorana-Cristiana Popescu, Roman Popescu, Vlad-Mihai Voiculescu and Carolina Negrei
Pharmaceutics 2025, 17(10), 1246; https://doi.org/10.3390/pharmaceutics17101246 - 24 Sep 2025
Viewed by 879
Abstract
Background: Engineered nanoparticles (NPs)—titanium dioxide, silver, zinc oxide and silica—are widely used in cosmetics for UV protection, antimicrobial activity and texturising effects. Chronic consumer-level exposure may impair skin-barrier integrity, disturb microbiome composition and dysregulate immune signalling via the gut–skin axis. Current regulatory frameworks [...] Read more.
Background: Engineered nanoparticles (NPs)—titanium dioxide, silver, zinc oxide and silica—are widely used in cosmetics for UV protection, antimicrobial activity and texturising effects. Chronic consumer-level exposure may impair skin-barrier integrity, disturb microbiome composition and dysregulate immune signalling via the gut–skin axis. Current regulatory frameworks typically omit chronic- or microbiome-focused safety assessments, leaving potential gaps. Objectives: This study aimed to evaluate the long-term effects of cosmetic-relevant NPs (titanium dioxide, silver, zinc oxide, silica) on skin and gut microbiota, epithelial-barrier integrity and immune signalling—including telocyte- and exosome-mediated pathways—and to identify regulatory shortcomings, particularly the absence of microbiome endpoints, validated chronic models and consideration of vulnerable populations. Methods: Following PRISMA 2020, PubMed, Scopus and Web of Science were searched for English-language in vivo animal or human studies (December 2014–April 2025) meeting chronic-exposure criteria (≥90 days in rodents or >10% of lifespan in other species; for humans, prolonged, repetitive application over months to years consistent with cosmetic use). Although not registered in PROSPERO, the review adhered to a pre-specified protocol. Two independent reviewers screened studies; risk of bias was assessed using a modified SYRCLE tool (animal) or adapted NIH guidance (zebrafish). Owing to heterogeneity, findings were synthesised narratively. Results: Of 600 records, 450 unique articles were screened, 50 full texts were assessed and 12 studies were included. Oral exposure predominated and was associated with dysbiosis, barrier impairment, immune modulation and metabolic effects. Dermal models showed outcomes from minimal change to pronounced immune activation, contingent on host susceptibility. Comparative human–animal findings are summarised; telocyte and exosome pathways were largely unexplored. Regulatory reviews (EU SCCS, US FDA and selected Asian frameworks) revealed no requirements for chronic microbiome endpoints. Limitations: Evidence is limited by the small number of eligible studies, heterogeneity in NP characteristics and exposure routes, predominance of animal models and a scarcity of longitudinal human data. Conclusions: Cosmetic nanoparticles may disrupt the microbiome, compromise barrier integrity and trigger immune dysregulation—risks amplified in vulnerable users. Existing regulations lack requirements for chronic exposure, microbiome endpoints and testing in vulnerable groups, and neglect mechanistic pathways involving telocytes and exosomes. Long-term, real-world exposure studies integrating gut–skin microbiome and immune outcomes, and harmonised global nanomaterial-safety standards, are needed to ensure safer cosmetic innovation. Full article
(This article belongs to the Special Issue Skin Care Products for Healthy and Diseased Skin)
Show Figures

Graphical abstract

23 pages, 5028 KB  
Article
Lifetime Changes in Gut Microbiota and Metabolite Composition in High-Fat Diet-Induced Obesity in Apolipoprotein A-IV Gene Knockout Mice
by Natalia Zeber-Lubecka, Maria Kulecka, Aneta Balabas, Pawel Czarnowski, Kazimiera Pyśniak, Michalina Dąbrowska, Jerzy Ostrowski and Ewa E. Hennig
Biology 2025, 14(9), 1278; https://doi.org/10.3390/biology14091278 - 17 Sep 2025
Viewed by 504
Abstract
Apolipoprotein A-IV (ApoA-IV) has been implicated in modulating the gut microbiota. However, chronic high-fat diet (HFD) consumption impairs ApoA-IV signaling and disrupts gut microbial balance, contributing to obesity and insulin resistance. This study aimed to investigate the role of ApoA-IV in shaping the [...] Read more.
Apolipoprotein A-IV (ApoA-IV) has been implicated in modulating the gut microbiota. However, chronic high-fat diet (HFD) consumption impairs ApoA-IV signaling and disrupts gut microbial balance, contributing to obesity and insulin resistance. This study aimed to investigate the role of ApoA-IV in shaping the gut microbiota and associated metabolic profiles throughout the lifespan of mice exposed to an HFD. Fecal samples were collected from ApoA-IV knockout (KO) and wild-type mice at five time points for microbiota and metabolite profiling using 16S rRNA gene sequencing and gas chromatography–mass spectrometry, respectively. Lifespan was longest in ApoA-IV-KO mice on a normal diet, while the HFD reduced survival across genotypes. Microbiota analysis revealed diet- and age-dependent shifts, including an elevated Firmicutes/Bacteroidota ratio, altered abundance of Akkermansia and reduced Monoglobus in ApoA-IV-KO mice on the HFD. Metabolic profiling showed a stronger impact of diet than genotype, with early and persistent increases in branched-chain amino acids and reductions in short-chain fatty acids (SCFAs). ApoA-IV deficiency modulated lifespan microbial and metabolic changes and shaped distinct responses to dietary stress. Despite age-related convergence in microbiota structure, genotype-specific differences in metabolite profiles and SCFA-producing bacteria correlations persisted into old age, demonstrating the lasting impact of ApoA-IV on host metabolic adaptation. Full article
Show Figures

Graphical abstract

45 pages, 2358 KB  
Review
A Comprehensive Review of the Triangular Relationship Among Diet, Gut Microbiota, and Aging
by Chapa Ramasinghe, Matteo Bordiga and Baojun Xu
Int. J. Mol. Sci. 2025, 26(18), 8785; https://doi.org/10.3390/ijms26188785 - 9 Sep 2025
Viewed by 1269
Abstract
Aging is a complex biological process influenced by internal and external factors, with diet and gut microbiota emerging as pivotal, interconnected modulators. This review explores their triangular relationship, emphasizing how they dynamically interact to shape health across the lifespan. Aging involves notable shifts [...] Read more.
Aging is a complex biological process influenced by internal and external factors, with diet and gut microbiota emerging as pivotal, interconnected modulators. This review explores their triangular relationship, emphasizing how they dynamically interact to shape health across the lifespan. Aging involves notable shifts in gut microbiota, including reduced diversity, increased pro-inflammatory taxa, and impaired production of key metabolites, like short-chain fatty acids. These changes contribute to systemic inflammation, immune-senescence, and age-related conditions, such as cognitive decline and metabolic disorders. Diet, particularly Mediterranean and plant-based patterns, plays a critical role in modulating gut microbiota by enhancing beneficial microbes and their metabolic functions. In contrast, Western-style diets rich in saturated fats and processed foods promote dysbiosis and accelerate aging. The review synthesizes evidence from human studies, animal models, and interventions to show how microbiota mediates diet-driven effects on aging. It also explores the role of specific nutrients, fiber, omega-3 fatty acids, and polyphenols in influencing microbial and host aging biology. Emerging therapies, including probiotics, prebiotics, and precision nutrition, show promise for promoting healthy aging by restoring microbial balance. However, gaps remain, including the need for long-term, age-specific studies, standardized microbiome protocols, and integrated omics approaches to support targeted longevity strategies. Full article
Show Figures

Figure 1

11 pages, 7078 KB  
Article
Proteasome Subunits Regulate Reproduction in Nilaparvata lugens and the Transovarial Transmission of Its Yeast-like Symbionts
by Xin Lv, Jia-Yu Tu, Qian Liu, Zhi-Qiang Wu, Chen Lin, Tao Zhou, Xiao-Ping Yu and Yi-Peng Xu
Insects 2025, 16(9), 895; https://doi.org/10.3390/insects16090895 - 27 Aug 2025
Viewed by 675
Abstract
The brown planthopper, Nilaparvata lugens, a major rice pest, harbors yeast-like symbionts (YLSs) that form mutualistic relationships with the host, significantly influencing its development and reproduction. As proteasome subunits play major roles in the assembly and functional maintenance of the proteasome, but [...] Read more.
The brown planthopper, Nilaparvata lugens, a major rice pest, harbors yeast-like symbionts (YLSs) that form mutualistic relationships with the host, significantly influencing its development and reproduction. As proteasome subunits play major roles in the assembly and functional maintenance of the proteasome, but their regulation on the YLSs in N. lugens are unclear. In this study, we analyzed the spatiotemporal and temporal expression patterns of five N. lugens proteasome subunits (NlPSMA2, NlPSMB5, NlPSMC4, NlPSMD10, NlPSMD13), and further verified their functions on the transovarial transmission of YLSs, in addition to the reproduction of N. lugens, based on RNA interference (RNAi). The results showed that NlPSMA2, NlPSMB5, NlPSMC4, NlPSMD10, and NlPSMD13 were highly expressed in ovarian follicular cells of N. lugens upon sexual maturation. After suppressing the expression of these genes by RNAi, N. lugens exhibited a shortened lifespan, abnormal pear-shaped follicles, and impaired oviposition capacity, but the number of YLSs in the whole body and the oocyte of N. lugens were significantly increased. These results indicate that the proteasome subunits play crucial roles in the reproduction of N. lugens and the transovarial transmission of its YLSs. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

18 pages, 2263 KB  
Review
Inflammatory Joint Pathologies and the Oral–Gut Microbiota: A Reason for Origin
by Mario Salazar-Páramo, Fabiola de Santos Ávila, Genaro E. Ortiz-Velázquez, Ian Ramirez-Jaramillo, Daniela L. C. Delgado-Lara, Erandis Dheni Torres-Sánchez and Genaro Gabriel Ortiz
Healthcare 2025, 13(16), 1942; https://doi.org/10.3390/healthcare13161942 - 8 Aug 2025
Cited by 1 | Viewed by 874
Abstract
The human gut microbiota, which can weigh as much as 2 kg and harbor 100 trillion bacteria, is specific to each individual. In healthy adults, a balanced microbiota—a state known as eubiosis—can be altered by various factors such as diet and lifestyle. Microbiota [...] Read more.
The human gut microbiota, which can weigh as much as 2 kg and harbor 100 trillion bacteria, is specific to each individual. In healthy adults, a balanced microbiota—a state known as eubiosis—can be altered by various factors such as diet and lifestyle. Microbiota imbalance—or dysbiosis—can have consequences for host health. Given that 80% of the human immune system is located in the gut, studies have investigated the role of the microbiota in immune system diseases, including joint and inflammatory pathologies such as rheumatoid arthritis. A better understanding of this pathology might enable the development of new treatments in the future. The microbiota includes all unicellular organisms in the digestive tract, including bacteria, viruses, fungi, and archaea. This complex ecosystem is unique to each individual. Associations between the human body and the microorganisms that it hosts can be considered mutualistic, symbiotic, or parasitic. These microorganisms are responsible for essential functions in maintaining health; the microbiota can even be considered another organ of the body. Microbiota composition varies considerably between early life and older age but remains relatively stable for most of a lifespan. Full article
Show Figures

Figure 1

23 pages, 8883 KB  
Article
Venom IMP-L2 from the Ectoparasitoid Scleroderma guani Regulates the IIS/TOR Pathway in Tenebrio molitor
by Wenxiu Wang, Zhiquan Zhang, Xuemin Ren, Chaoyan Wu and Jiaying Zhu
Insects 2025, 16(8), 763; https://doi.org/10.3390/insects16080763 - 24 Jul 2025
Viewed by 669
Abstract
Parasitoid venom significantly influences host physiology and development. Our previous research identified high levels of insulin-binding protein IMP-L2 in the venom of Scleroderma guani. IMP-L2 may inhibit the insulin/insulin-like growth factor signaling (IIS) cascade by competitively binding insulin-like peptides (ILPs) with insulin [...] Read more.
Parasitoid venom significantly influences host physiology and development. Our previous research identified high levels of insulin-binding protein IMP-L2 in the venom of Scleroderma guani. IMP-L2 may inhibit the insulin/insulin-like growth factor signaling (IIS) cascade by competitively binding insulin-like peptides (ILPs) with insulin receptor (InR). However, how to regulate IIS transduction is unclear. We speculate that venom-derived IMP-L2 may bind ILPs to inhibit IIS transduction. Consequently, we investigated the regulation of the IIS/TOR pathway by venom-derived IMP-L2. An expression analysis of IIS/TOR pathway genes across various developmental stages of Tenebrio molitor demonstrated that this pathway governs the entire developmental process. By examining gene expression before and after parasitism, we determined that S. guani predominantly inhibits TOR pathway signaling in T. molitor post-parasitism. Bioinformatics and expression analyses revealed that IMP-L2 is critically involved in Hymenoptera insects, exhibiting high expression in the venom apparatus, and is upregulated in response to S. guani parasitism factors. Additionally, recombinant IMP-L2 was produced via eukaryotic expression. Finally, the recombinant IMP-L2 was found to inhibit the TOR and IIS/TOR signaling pathways at early (6 h) and late (24 h) stages post-injection. Knockdown of IMP-L2 in S. guani parasitized T. molitor pupae, resulting in accelerated death of T. molitor. During parasitism, S. guani may suppress host growth and development by modulating the IIS/TOR signaling pathway through venom-derived IMP-L2, potentially affecting host lifespan. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

18 pages, 1069 KB  
Article
Performance of the Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), over Three Generations on Four Maize Cultivars
by Bo Zhang, Jing Yi, Yan Yan, Yirui Wang, Yana Xue, Haiwang Yan, Meifeng Ren, Daqi Li, Guoping Li and Junjiao Lu
Insects 2025, 16(7), 719; https://doi.org/10.3390/insects16070719 - 12 Jul 2025
Cited by 1 | Viewed by 1043
Abstract
The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is a highly destructive pest that poses serious threats and causes significant losses to the production of maize in China. This study evaluated the feeding and oviposition preferences of S. frugiperda when reared on four [...] Read more.
The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is a highly destructive pest that poses serious threats and causes significant losses to the production of maize in China. This study evaluated the feeding and oviposition preferences of S. frugiperda when reared on four maize cultivars—sweet, waxy, common, and silage—across three consecutive generations. It also compared population adaptability among these cultivars and analyzed population parameters between the F1 and F3 generations. The findings revealed that all four F1 generation populations showed a preference for feeding and oviposition on sweet maize. However, over time, S. frugiperda exhibited a stronger preference, in terms of feeding and oviposition behaviors, for the natal host plant across three consecutive generations of rearing. The fall armyworm completed its life cycle and oviposited on all four maize varieties over three generations. The sweet cultivar population had the highest intrinsic rate of increase, finite rate of increase, net reproductive rate, larval survival rate, pupation rate, eclosion rate, fecundity, and pupal weight, while the silage cultivar population had the shortest larval stage, pre-adult stage, and adult lifespan and the pupal weight and the fecundity were the lowest. Overall, the population fitness was the highest on the sweet cultivar, and the lowest on the silage cultivar. Compared with F1, the F3 generation of the FAW had a significantly shorter developmental duration in four maize cultivars. Except for the waxy maize cultivars, the fecundity of the other three cultivars did not differ significantly between F1 and F3. This study provides fundamental information on the trend of fall armyworm population changes in maize fields and serves as a reference for rational maize cultivar planting decisions. Full article
(This article belongs to the Special Issue Corn Insect Pests: From Biology to Control Technology)
Show Figures

Figure 1

14 pages, 3131 KB  
Article
A Bxtlp Gene Affects the Pathogenicity of Bursaphelenchus xylophilus
by Shuisong Liu, Qunqun Guo, Ziyun Huang, Wentao Feng, Yingying Zhang, Wenying Zhao, Ronggui Li and Guicai Du
Forests 2025, 16(7), 1122; https://doi.org/10.3390/f16071122 - 7 Jul 2025
Viewed by 454
Abstract
Pine wilt disease (PWD), a destructive pine forest disease caused by pine wood nematode (PWN), Bursaphelenchus xylophilus, has led to huge economic losses and ecological environment damage. Thaumatin-like proteins (TLPs) are the products of a complex gene family involved in host defense [...] Read more.
Pine wilt disease (PWD), a destructive pine forest disease caused by pine wood nematode (PWN), Bursaphelenchus xylophilus, has led to huge economic losses and ecological environment damage. Thaumatin-like proteins (TLPs) are the products of a complex gene family involved in host defense and a wide range of developmental processes in fungi, plants, and animals. In this study, a tlp gene of B. xylophilus (Bxtlp) (GenBank: OQ863020.1) was amplified via PCR and cloned into the expression vector pET-15b to construct the recombinant vector PET-15b-Bxtlp, which was then transformed into Escherichia coli BL-21(DE3). The recombinant protein was successfully purified using Ni-NTA affinity chromatography. The effect of the Bxtlp gene on the vitality and pathogenicity of PWNs was elucidated through RNA interference (RNAi) and overexpression. Bxtlp dsRNA significantly reduced the feeding, motility, spawning, and reproduction abilities of PWN; shortened its lifespan; and increased the female–male ratio. In contrast, the recombinant BxTLP markedly enhanced the reproductive ability of PWN. In addition, Bxtlp dsRNA increased reactive oxygen species (ROS) content in nematodes, while the recombinant BxTLP was confirmed to have antioxidant capacity in vitro. Furthermore, the bioassays on Pinus thunbergii saplings demonstrated that Bxtlp could significantly influence PWN pathogenicity. Overall, we speculate that Bxtlp affects the pathogenicity of PWNs mainly via regulating ROS levels, the motility, and hatching of PWN. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

10 pages, 447 KB  
Article
Predicted Drought Tolerance of Poplars and Aspens for Use in Resilient Landscapes
by Brandon M. Miller
Int. J. Plant Biol. 2025, 16(2), 61; https://doi.org/10.3390/ijpb16020061 - 2 Jun 2025
Viewed by 630
Abstract
Poplars and aspens (Populus L. spp.) are undervalued options for use in managed landscapes. The genus comprises a multitude of taxa often negatively associated with disease susceptibility and short lifespans; however, it also hosts a diverse range of abiotic stress tolerances. The [...] Read more.
Poplars and aspens (Populus L. spp.) are undervalued options for use in managed landscapes. The genus comprises a multitude of taxa often negatively associated with disease susceptibility and short lifespans; however, it also hosts a diverse range of abiotic stress tolerances. The objective of this study was to generate a relative scale of the predicted drought tolerance of Populus spp. to inform site and taxon selection in managed settings. Utilizing vapor pressure osmometry, this study examined seasonal osmotic adjustment and predicted leaf water potential at the turgor loss point (Ψpo) among several Populus taxa. All evaluated taxa demonstrated the ability to osmotically adjust (ΔΨπ100) throughout the growing season. Bigtooth aspen (P. grandidentata Michx.) exhibited the most osmotic adjustment (−1.1 MPa), whereas black cottonwood (P. trichocarpa Torr. & A. Gray ex Hook.) exhibited the least (−0.44 MPa). Across the taxa, the estimated mean Ψpo values in spring and summer were −1.8 MPa and −2.8 MPa, respectively. Chinese aspen (P. cathayana Rehder) exhibited the lowest Ψpo (−3.32 MPa), whereas black cottonwood exhibited the highest (−2.47 MPa). The results indicate that drought tolerance varies widely among these ten Populus species and hybrids; bigtooth aspen and Chinese aspen are the best suited to tolerating drought in managed landscapes. Full article
(This article belongs to the Section Plant Physiology)
Show Figures

Figure 1

22 pages, 4558 KB  
Article
Exploring the Effects of Changes in Dietary Protein Content on Naturally Aging Mice Based on Comprehensive Quantitative Scoring and Metabolomic Analysis
by Xiaohua Zheng, Fan Zhou, Qinren Zhang, Wenxuan Zheng, Fengcui Shi, Ruiding Li, Jingwen Lv and Quanyang Li
Nutrients 2025, 17(9), 1542; https://doi.org/10.3390/nu17091542 - 30 Apr 2025
Viewed by 825
Abstract
Background: During aging, protein nutrition has a bidirectional role in regulating healthy lifespan by modulating body metabolism and neurological function. However, the current “low-high” hypothesis on the dynamics of protein requirements is mainly based on male animal models, and its applicability to female [...] Read more.
Background: During aging, protein nutrition has a bidirectional role in regulating healthy lifespan by modulating body metabolism and neurological function. However, the current “low-high” hypothesis on the dynamics of protein requirements is mainly based on male animal models, and its applicability to female physiology (e.g., estrogen fluctuations) is unclear. The present study aims to fill the gap in the study of protein demand dynamics in female naturally aging mice and to investigate the effects of different protein levels on the health status of female C57BL/6J mice at different stages of aging. Methods: In this study, four dietary interventions (high protein, HP; low protein, LP; model test, MT; and control, C) were evaluated by constructing a C57BL/6J female mouse model at three ages, 9 M (9 months), 16 M (16 months), and 20 M (20 months), which are approximately equivalent to 34, 65, and 78 years of age in humans, respectively, to determine the effects on naturally aging mice. The effects of the interventions were quantitatively described by behavioral, neuropathological, oxidative, and inflammatory indices and NMR metabolomics using Principal Component Analysis to construct a comprehensive quantitative scoring method. Results: The comprehensive quantitative scores Fsum was highest in the HP group, lowest in the LP group, and in between in the MT group. The HP intervention showed the most significant improvement in the aged group (20 M) mice, with a 35.2% reduction in avoidance latency (p < 0.01) and a 32.9% increase in pyramidal cell density in the hippocampal CA1 region (p < 0.05), while the LP intervention led to a cognitive decline in the mice, with an avoidance latency that was prolonged by 15.2% (p < 0.05). Metabolomics analysis revealed that mouse samples of all ages showed age-dependent metabolic re-adaptation: the 9 M group may reflect gut microbial metabolism rather than direct host TCA cycle activity, suggesting an indirect association with energy metabolism; an enhanced degradation of branched-chain amino acids (BCAAs) was seen in the middle-aged group (16 M); and amino acid biosynthesis was predominant in the old group (20 M). Conclusions: Female mice have sustained neuromotor benefits to high-protein diets at different aging stages, and the dynamics of their protein requirements differ significantly from those of males. The study reveals the critical role of gender factors in protein nutritional strategies and provides an experimental basis for precise protein supplementation in older women. Full article
(This article belongs to the Special Issue Dietary Factors and Interventions for Cognitive Neuroscience)
Show Figures

Figure 1

20 pages, 60510 KB  
Article
Genome Sequencing of the Antibiotic-Resistant Leucobacter sp. HNU-1 and Its Developmental Toxicity in Caenorhabditis elegans
by Jiaming Ju, Xinhe Lu, Ziqing Gao, Hongyan Yin, Shunqing Xu and Hanzeng Li
Int. J. Mol. Sci. 2025, 26(8), 3673; https://doi.org/10.3390/ijms26083673 - 13 Apr 2025
Viewed by 1059
Abstract
To date, Leucobacter species have been identified from diverse sources with various ecological and functional roles. However, the genomic features and pathogenic potential of antibiotic-resistant Leucobacter strains remain understudied. Here, we isolated the Leucobacter sp. HNU-1 from tropical Hainan Province, China, and found [...] Read more.
To date, Leucobacter species have been identified from diverse sources with various ecological and functional roles. However, the genomic features and pathogenic potential of antibiotic-resistant Leucobacter strains remain understudied. Here, we isolated the Leucobacter sp. HNU-1 from tropical Hainan Province, China, and found it can induce diapause in Caenorhabditis elegans following ingestion, while exhibiting no significant effects on the nematode’s lifespan, survival rate, locomotion, and intestinal epithelial cells. This bacterium demonstrates resistance to multiple antibiotics, including kanamycin, streptomycin, sulfonamides, and vancomycin. On LB medium, Leucobacter sp. HNU-1 forms yellow, opaque colonies with a smooth, moist surface, regular edges, a convex center, and no surrounding halo, with diameters ranging from 2 to 3 mm. Furthermore, we performed whole-genome sequencing using third-generation high-throughput sequencing technology. De novo assembly revealed a genome size of 3,375,033 bp, with a GC content of 70.37%. A total of 3270 functional genes, accounting for 88.98% of the genome, were annotated, along with six potential CRISPR sequences and other genetic elements. Genomic and bioinformatic analyses further identified antibiotics-related genes. This research provides a theoretical foundation for investigating antibiotic-resistant environmental bacteria in tropical environments and offers new insights into potential therapeutic strategies for microbial infections and host–microbe interactions. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

14 pages, 4119 KB  
Article
Abundance of the Dominant Endosymbiont Rickettsia and Fitness of the Stored-Product Pest Liposcelis bostrychophila (Psocoptera: Liposcelididae)
by Chunqi Bai, Yiwen Duan, Chao Zhao, Lei Yan, Duangsamorn Suthisut, Jianhua Lü, Yueliang Bai, Fangfang Zeng and Meng Zhang
Insects 2025, 16(4), 349; https://doi.org/10.3390/insects16040349 - 27 Mar 2025
Viewed by 683
Abstract
Endosymbiotic bacteria are key factors that regulate the biological traits of Liposcelis bostrychophila. This study employed metagenomic methods to analyze the dominant species of symbiotic microorganisms associated with L. bostrychophila. By controlling the environmental temperature, we were able to manipulate the [...] Read more.
Endosymbiotic bacteria are key factors that regulate the biological traits of Liposcelis bostrychophila. This study employed metagenomic methods to analyze the dominant species of symbiotic microorganisms associated with L. bostrychophila. By controlling the environmental temperature, we were able to manipulate the abundance of endosymbionts and establish populations with high, medium, and low levels of these bacteria. This allowed us to examine the fitness parameters of L. bostrychophila under different levels of endosymbiont abundance. The experimental results revealed that L. bostrychophila hosts 51 genera of symbiotic microorganisms, with Rickettsia being the dominant genus, accounting for 84.11% to 98.16% of the total share. Environmental temperature significantly affected the abundance of Rickettsia, with notable differences observed during the adult stage of L. bostrychophila. A temperature gradient of 28 °C, 35 °C, and 37 °C was established, allowing for the classification of populations based on Rickettsia abundance into three categories: high-abundance populations (LBhp), medium-abundance populations (LBmp), and low-abundance populations (LBlp). The abundance of Rickettsia had a significant impact on the fitness of L. bostrychophila. Specifically, a high abundance of Rickettsia contributed positively to population fitness by increasing egg production, prolonging egg hatching time, enhancing lifespan, and improving both survival and reproductive rates. Therefore, the endosymbiont Rickettsia plays a crucial role in the growth and development of L. bostrychophila. In the future, our research will help further uncover the interactions between Rickettsia and its host, providing new perspectives for pest control and offering a better understanding of insect biology and ecology. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 5317 KB  
Article
Metabolomics Provides New Insights into the Mechanisms of Wolbachia-Induced Plant Defense in Cotton Mites
by Xinlei Wang, Sha Wang, Ali Basit, Qianchen Wei, Kedi Zhao, Feng Liu and Yiying Zhao
Microorganisms 2025, 13(3), 608; https://doi.org/10.3390/microorganisms13030608 - 6 Mar 2025
Cited by 1 | Viewed by 857
Abstract
Endosymbiotic bacteria play a significant role in the co-evolution of insects and plants. However, whether they induce or inhibit host plant defense responses remains unclear. In this study, non-targeted metabolomic sequencing was performed on cotton leaves fed with Wolbachia-infected and uninfected spider [...] Read more.
Endosymbiotic bacteria play a significant role in the co-evolution of insects and plants. However, whether they induce or inhibit host plant defense responses remains unclear. In this study, non-targeted metabolomic sequencing was performed on cotton leaves fed with Wolbachia-infected and uninfected spider mites using parthenogenetic backcrossing and antibiotic treatment methods. A total of 55 differential metabolites were identified, which involved lipids, phenylpropanoids, and polyketides. KEGG pathway enrichment analysis revealed seven significantly enriched metabolic pathways. Among them, flavonoid and flavonol biosynthesis, glycerophospholipid metabolism, and ether lipid metabolism showed extremely significant differences. In Wolbachia-infected cotton leaves, the flavonoid biosynthesis pathway was significantly up-regulated, including quercetin and myricetin, suggesting that the plant produces more secondary metabolites to enhance its defense capability. Glycerophosphocholine (GPC) and sn-glycerol-3-phosphoethanolamine (PE) were significantly down-regulated, suggesting that Wolbachia may impair the integrity and function of plant cell membranes. The downregulation of lysine and the upregulation of L-malic acid indicated that Wolbachia infection may shorten the lifespan of spider mites. At various developmental stages of the spider mites, Wolbachia infection increased the expression of detoxification metabolism-related genes, including gene families such as cytochrome P450, glutathione S-transferase, carboxylesterase, and ABC transporters, thereby enhancing the detoxification capability of the host spider mites. This study provides a theoretical basis for further elucidating the mechanisms by which endosymbiotic bacteria induce plant defense responses and expands the theoretical framework of insect–plant co-evolution. Full article
(This article belongs to the Special Issue Plant-Microbe Interaction State-of-the-Art Research in China)
Show Figures

Figure 1

Back to TopTop