Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,555)

Search Parameters:
Keywords = host cell protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1669 KiB  
Article
Guinea Pig X Virus Is a Gammaherpesvirus
by Vy Ngoc Yen Truong, Robert Ellis and Brent A. Stanfield
Viruses 2025, 17(8), 1084; https://doi.org/10.3390/v17081084 - 5 Aug 2025
Abstract
The Guinea Pig X Virus (GPXV), a newly identified gammaherpesvirus, provides an opportunity to study viral evolution and host–virus dynamics. This study characterizes the GPXV genome and investigates its phylogenetic relationships and divergence from related viruses through comparative genomic and phylogenetic analyses. Virus [...] Read more.
The Guinea Pig X Virus (GPXV), a newly identified gammaherpesvirus, provides an opportunity to study viral evolution and host–virus dynamics. This study characterizes the GPXV genome and investigates its phylogenetic relationships and divergence from related viruses through comparative genomic and phylogenetic analyses. Virus propagation was conducted in Vero cells, followed by genomic DNA extraction and pan-herpesvirus nested PCR. Sanger sequencing filled gaps in the initial genome assembly, and whole-genome sequencing was performed using the Illumina MiSeq platform. Phylogenetic analyses focused on ORF8 (glycoprotein B), ORF9 (DNA polymerase catalytic subunit), ORF50 (RTA: replication and transcription activator), and ORF73 (LANA: latency-associated nuclear antigen). Results showed that GPXV ORFs showed variable evolutionary relationships with other gammaherpesviruses, including divergence from primate-associated viruses and clustering with bovine and rodent viruses. In addition to phylogenetics, a comprehensive comparative analysis of protein-coding genes between GPXV and the previously described Guinea Pig Herpes-Like Virus (GPHLV) revealed divergence. Twenty-four non-ORF genomic features were unique to GPXV, while 62 shared ORFs exhibited low to high sequence divergence. These findings highlight GPXV’s distinct evolutionary trajectory and its potential role as a model for studying host-specific adaptations and gammaherpesvirus diversity. Full article
(This article belongs to the Special Issue Animal Herpesvirus 2025)
Show Figures

Graphical abstract

18 pages, 3120 KiB  
Article
Měnglà Virus VP40 Localizes to the Nucleus and Impedes the RIG-I Signaling Pathway
by Joyce Sweeney Gibbons, Naveen Thakur, Emma Komers, Olivia A. Vogel, Poushali Chakraborty, JoAnn M. Tufariello and Christopher F. Basler
Viruses 2025, 17(8), 1082; https://doi.org/10.3390/v17081082 - 5 Aug 2025
Abstract
Měnglà virus (MLAV) is a member of the genus Dianlovirus in the family Filoviridae, which also includes Ebola virus (EBOV) and Marburg virus (MARV). Whether MLAV poses a threat to human health is uncertain. However, the MLAV VP35 and VP40 proteins can impair [...] Read more.
Měnglà virus (MLAV) is a member of the genus Dianlovirus in the family Filoviridae, which also includes Ebola virus (EBOV) and Marburg virus (MARV). Whether MLAV poses a threat to human health is uncertain. However, the MLAV VP35 and VP40 proteins can impair IFNα/β gene expression and block IFNα/β-induced Jak-STAT signaling, respectively, suggesting the capacity to counteract human innate immune defenses. In this study, MLAV VP40 is demonstrated to impair the Sendai virus (SeV)-induced activation of the IFNβ promoter. Inhibition is independent of the MLAV VP40 PPPY late-domain motif that interacts with host proteins possessing WW-domains to promote viral budding. Similar IFNβ promoter inhibition was not detected for EBOV or MARV VP40. MLAV VP40 exhibited lesser capacity to inhibit TNFα activation of an NF-κB reporter gene. MLAV VP40 impaired IFNβ promoter activation by an over-expressed, constitutively active form of RIG-I and by the over-expressed IRF3 kinases TBK1 and IKKε. However, MLAV VP40 did not inhibit IFNβ promoter activation by constitutively active IRF3 5D. Consistent with these findings, MLAV VP40 inhibited SeV-induced IRF3 phosphorylation. Although IRF3 phosphorylation occurs in the cytoplasm, MLAV VP40 exhibits substantial nuclear localization, accumulating in foci in HeLa cell nuclei. In contrast, the VP40 of EBOV and MARV exhibited lower degrees of nuclear localization and did not accumulate in foci. MLAV VP40 interacts with importin alpha-1 (IMPα1), suggesting entry via the IMPα/IMPβ nuclear import pathway. Cumulatively, these data identify novel features that distinguish MLAV VP40 from its homologues in EBOV and MARV. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

14 pages, 2266 KiB  
Article
PCV2 Infection Upregulates SOCS3 Expression to Facilitate Viral Replication in PK-15 Cells
by Yiting Li, Hongmei Liu, Yi Wu, Xiaomei Zhang, Juan Geng, Xin Wu, Wengui Li, Zhenxing Zhang, Jianling Song, Yifang Zhang and Jun Chai
Viruses 2025, 17(8), 1081; https://doi.org/10.3390/v17081081 - 5 Aug 2025
Abstract
Porcine circovirus type 2 (PCV2) is a globally prevalent swine pathogen that induces immunosuppression, predisposing pigs to subclinical infections. In intensive farming systems, PCV2 persistently impairs growth performance and vaccine efficacy, leading to substantial economic losses in the swine industry. Emerging evidence suggests [...] Read more.
Porcine circovirus type 2 (PCV2) is a globally prevalent swine pathogen that induces immunosuppression, predisposing pigs to subclinical infections. In intensive farming systems, PCV2 persistently impairs growth performance and vaccine efficacy, leading to substantial economic losses in the swine industry. Emerging evidence suggests that certain viruses exploit Suppressor of Cytokine Signaling 3 (SOCS3), a key immune checkpoint protein, to subvert host innate immunity by suppressing cytokine signaling. While SOCS3 has been implicated in various viral infections, its regulatory role in PCV2 replication remains undefined. This study aims to elucidate the mechanisms underlying the interplay between SOCS3 and PCV2 during viral pathogenesis. Porcine SOCS3 was amplified using RT-PCR and stably overexpressed in PK-15 cells through lentiviral delivery. Bioinformatics analysis facilitated the design of three siRNA candidates targeting SOCS3. We systematically investigated the effects of SOCS3 overexpression and knockdown on PCV2 replication kinetics and host antiviral responses by quantifying the viral DNA load and the mRNA levels of cytokines. PCV2 infection upregulated SOCS3 expression at both transcriptional and translational levels in PK-15 cells. Functional studies revealed that SOCS3 overexpression markedly enhanced viral replication, whereas its knockdown suppressed viral proliferation. Intriguingly, SOCS3-mediated immune modulation exhibited a divergent regulation of antiviral cytokines: PCV2-infected SOCS3-overexpressing cells showed elevated IFN-β but suppressed TNF-α expressions, whereas SOCS3 silencing conversely downregulated IFN-β while amplifying TNF-α responses. This study unveils a dual role of SOCS3 during subclinical porcine circovirus type 2 (PCV2) infection: it functions as a host-derived pro-viral factor that facilitates viral replication while simultaneously reshaping the cytokine milieu to suppress overt inflammatory responses. These findings provide novel insights into the mechanisms underlying PCV2 immune evasion and persistence and establish a theoretical framework for the development of host-targeted control strategies. Although our results identify SOCS3 as a key host determinant of PCV2 persistence, the precise molecular pathways involved require rigorous experimental validation. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

16 pages, 2235 KiB  
Article
Plasma Lysophosphatidylcholine Levels Correlate with Prognosis and Immunotherapy Response in Squamous Cell Carcinoma
by Tomoyuki Iwasaki, Hidekazu Shirota, Eiji Hishinuma, Shinpei Kawaoka, Naomi Matsukawa, Yuki Kasahara, Kota Ouchi, Hiroo Imai, Ken Saijo, Keigo Komine, Masanobu Takahashi, Chikashi Ishioka, Seizo Koshiba and Hisato Kawakami
Int. J. Mol. Sci. 2025, 26(15), 7528; https://doi.org/10.3390/ijms26157528 (registering DOI) - 4 Aug 2025
Abstract
Cancer is a systemic disease rather than a localized pathology and is characterized by widespread effects, including whole-body exhaustion and chronic inflammation. A thorough understanding of cancer pathophysiology requires a systemic approach that accounts for the complex interactions between cancer cells and host [...] Read more.
Cancer is a systemic disease rather than a localized pathology and is characterized by widespread effects, including whole-body exhaustion and chronic inflammation. A thorough understanding of cancer pathophysiology requires a systemic approach that accounts for the complex interactions between cancer cells and host tissues. To explore these dynamics, we employed a comprehensive metabolomic analysis of plasma samples from patients with either esophageal or head and neck squamous cell carcinoma (SCC). Plasma samples from 149 patients were metabolically profiled and correlated with clinical data. Among the metabolites identified, lysophosphatidylcholine (LPC) emerged as the sole biomarker strongly correlated with prognosis. A significant reduction in plasma LPC levels was linked to poorer overall survival. Plasma LPC levels demonstrated minimal correlation with patient-specific factors, such as tumor size and general condition, but showed significant association with the response to immune checkpoint inhibitor therapy. Proteomic and cytokine analyses revealed that low plasma LPC levels reflected systemic chronic inflammation, characterized by high levels of inflammatory proteins, the cytokines interleukin-6 and tumor necrosis factor-α, and coagulation-related proteins. These findings indicate that plasma LPC levels may be used as reliable biomarkers for predicting prognosis and evaluating the efficacy of immunotherapy in patients with SCC. Full article
(This article belongs to the Special Issue Molecular Diagnostics and Genomics of Tumors)
Show Figures

Figure 1

15 pages, 1691 KiB  
Article
tRNA Modifications: A Tale of Two Viruses—SARS-CoV-2 and ZIKV
by Patrick Eldin and Laurence Briant
Int. J. Mol. Sci. 2025, 26(15), 7479; https://doi.org/10.3390/ijms26157479 (registering DOI) - 2 Aug 2025
Viewed by 160
Abstract
tRNA modifications are crucial for efficient protein synthesis, impacting codon recognition, tRNA stability, and translation rates. RNA viruses hijack the host’s translational machinery, including the pool of modified tRNA, to translate their own genomes. However, the mismatch between viral and host codon usage [...] Read more.
tRNA modifications are crucial for efficient protein synthesis, impacting codon recognition, tRNA stability, and translation rates. RNA viruses hijack the host’s translational machinery, including the pool of modified tRNA, to translate their own genomes. However, the mismatch between viral and host codon usage can lead to a limited availability of specific tRNA leading to ribosome stalling, posing a significant challenge for efficient protein translation. While some viruses address this challenge through codon optimization, we show here that SARS-CoV-2 (Coronavirus) and the Zika virus (ZIKV; Flavivirus) adopt a different approach, manipulating the host tRNA epitranscriptome. Analysis of codon bias indices confirmed a substantial divergence between viral and host codon usage, revealing a strong preference in viral genes for codons decoded by tRNAs requiring U34 wobble modification. Monitoring tRNA modification dynamics in infected cells showed that both SARS-CoV2 and ZIKV enhance U34 tRNA modifications during infection. Strikingly, impairing U34 tRNAs profoundly impacted viral replication, underscoring the strict reliance of SARS-CoV-2 and ZIKV on manipulating the host tRNA epitranscriptome to support the efficient translation of their genome. Full article
Show Figures

Figure 1

22 pages, 513 KiB  
Review
Unraveling NETs in Sepsis: From Cellular Mechanisms to Clinical Relevance
by Giulia Pignataro, Stefania Gemma, Martina Petrucci, Fabiana Barone, Andrea Piccioni, Francesco Franceschi and Marcello Candelli
Int. J. Mol. Sci. 2025, 26(15), 7464; https://doi.org/10.3390/ijms26157464 - 1 Aug 2025
Viewed by 126
Abstract
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, frequently resulting in septic shock and multi-organ failure. Emerging evidence highlights the critical role of neutrophil extracellular traps (NETs) in the pathophysiology of sepsis. NETs are extracellular structures composed of [...] Read more.
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, frequently resulting in septic shock and multi-organ failure. Emerging evidence highlights the critical role of neutrophil extracellular traps (NETs) in the pathophysiology of sepsis. NETs are extracellular structures composed of chromatin DNA, histones, and granular proteins released by neutrophils through a specialized form of cell death known as NETosis. While NETs contribute to the containment of pathogens, their excessive or dysregulated production in sepsis is associated with endothelial damage, immunothrombosis, and organ dysfunction. Several NET-associated biomarkers have been identified, including circulating cell-free DNA (cfDNA), histones, MPO-DNA complexes, and neutrophil elastase–DNA complexes, which correlate with the disease severity and prognosis. Therapeutic strategies targeting NETs are currently under investigation. Inhibition of NET formation using PAD4 inhibitors or ROS scavengers has shown protective effects in preclinical models. Conversely, DNase I therapy facilitates the degradation of extracellular DNA, reducing the NET-related cytotoxicity and thrombotic potential. Additionally, heparin and its derivatives have demonstrated the ability to neutralize NET-associated histones and mitigate coagulopathy. Novel approaches include targeting upstream signaling pathways, such as TLR9 and IL-8/CXCR2, offering further therapeutic promise. Full article
(This article belongs to the Collection Advances in Cell and Molecular Biology)
Show Figures

Figure 1

30 pages, 4119 KiB  
Article
Ubiquitination Regulates Reorganization of the Membrane System During Cytomegalovirus Infection
by Barbara Radić, Igor Štimac, Alen Omerović, Ivona Viduka, Marina Marcelić, Gordana Blagojević Zagorac, Pero Lučin and Hana Mahmutefendić Lučin
Life 2025, 15(8), 1212; https://doi.org/10.3390/life15081212 - 31 Jul 2025
Viewed by 244
Abstract
Background: During infection with the cytomegalovirus (CMV), the membrane system of the infected cell is remodelled into a megastructure called the assembly compartment (AC). These extensive changes may involve the manipulation of the host cell proteome by targeting a pleiotropic function of the [...] Read more.
Background: During infection with the cytomegalovirus (CMV), the membrane system of the infected cell is remodelled into a megastructure called the assembly compartment (AC). These extensive changes may involve the manipulation of the host cell proteome by targeting a pleiotropic function of the cell such as ubiquitination (Ub). In this study, we investigate whether the Ub system is required for the establishment and maintenance of the AC in murine CMV (MCMV)-infected cells Methods: NIH3T3 cells were infected with wild-type and recombinant MCMVs and the Ub system was inhibited with PYR-41. The expression of viral and host cell proteins was analyzed by Western blot. AC formation was monitored by immunofluorescence with confocal imaging and long-term live imaging as the dislocation of the Golgi and expansion of Rab10-positive tubular membranes (Rab10 TMs). A cell line with inducible expression of hemagglutinin (HA)-Ub was constructed to monitor ubiquitination. siRNA was used to deplete host cell factors. Infectious virion production was monitored using the plaque assay. Results: The Ub system is required for the establishment of the infection, progression of the replication cycle, viral gene expression and production of infectious virions. The Ub system also regulates the establishment and maintenance of the AC, including the expansion of Rab10 TMs. Increased ubiquitination of WASHC1, which is recruited to the machinery that drives the growth of Rab10 TMs, is consistent with Ub-dependent rheostatic control of membrane tubulation and the continued expansion of Rab10 TMs. Conclusions: The Ub system is intensively utilized at all stages of the MCMV replication cycle, including the reorganization of the membrane system into the AC. Disruption of rheostatic control of the membrane tubulation by ubiquitination and expansion of Rab10 TREs within the AC may contribute to the development of a sufficient amount of tubular membranes for virion envelopment. Full article
(This article belongs to the Section Cell Biology and Tissue Engineering)
Show Figures

Figure 1

14 pages, 2882 KiB  
Article
Babesia bovis Enolase Is Expressed in Intracellular Merozoites and Contains B-Cell Epitopes That Induce Neutralizing Antibodies In Vitro
by Alma Cárdenas-Flores, Minerva Camacho-Nuez, Massaro W. Ueti, Mario Hidalgo-Ruiz, Angelina Rodríguez-Torres, Diego Josimar Hernández-Silva, José Guadalupe Gómez-Soto, Masahito Asada, Shin-ichiro Kawazu, Alma R. Tamayo-Sosa, Rocío Alejandra Ruiz-Manzano and Juan Mosqueda
Vaccines 2025, 13(8), 818; https://doi.org/10.3390/vaccines13080818 (registering DOI) - 31 Jul 2025
Viewed by 198
Abstract
Background: Bovine babesiosis, caused by the tick-borne apicomplexan parasite Babesia spp., is an economically significant disease that threatens the cattle industry worldwide. Babesia bovis is the most pathogenic species, leading to high morbidity and mortality in infected animals. One promising approach to [...] Read more.
Background: Bovine babesiosis, caused by the tick-borne apicomplexan parasite Babesia spp., is an economically significant disease that threatens the cattle industry worldwide. Babesia bovis is the most pathogenic species, leading to high morbidity and mortality in infected animals. One promising approach to vaccination against bovine babesiosis involves the use of multiple protective antigens, offering advantages over traditional live-attenuated vaccines. Tools such as immunobioinformatics and reverse vaccinology have facilitated the identification of novel antigens. Enolase, a “moonlighting” enzyme of the glycolytic pathway with demonstrated vaccine potential in other pathogens, has not yet been studied in B. bovis. Methods: In this study, the enolase gene from two B. bovis isolates was successfully identified and sequenced. The gene, consisting of 1366 base pairs, encodes a predicted protein of 438 amino acids. Its expression in intraerythrocytic parasites was confirmed by RT-PCR. Two peptides containing predicted B-cell epitopes were synthesized and used to immunize rabbits. Hyperimmune sera were then analyzed by ELISA, confocal microscopy, Western blot, and an in vitro neutralization assay. Results: The hyperimmune sera showed high antibody titers, reaching up to 1:256,000. Specific antibodies recognized intraerythrocytic merozoites by confocal microscopy and bound to a ~47 kDa protein in erythrocytic cultures of B. bovis as detected by Western blot. In the neutralization assay, antibodies raised against peptide 1 had no observable effect, whereas those targeting peptide 2 significantly reduced parasitemia by 71.99%. Conclusions: These results suggest that B. bovis enolase contains B-cell epitopes capable of inducing neutralizing antibodies and may play a role in parasite–host interactions. Enolase is therefore a promising candidate for further exploration as a vaccine antigen. Nonetheless, additional experimental studies are needed to fully elucidate its biological function and validate its vaccine potential. Full article
(This article belongs to the Special Issue Vaccines against Arthropods and Arthropod-Borne Pathogens)
Show Figures

Figure 1

21 pages, 4740 KiB  
Article
Mosquito Exosomal Tetraspanin CD151 Facilitates Flaviviral Transmission and Interacts with ZIKV and DENV2 Viral Proteins
by Durga Neupane, Md Bayzid, Girish Neelakanta and Hameeda Sultana
Int. J. Mol. Sci. 2025, 26(15), 7394; https://doi.org/10.3390/ijms26157394 - 31 Jul 2025
Viewed by 206
Abstract
The expanding distribution and geographic range of mosquitoes have potentially contributed to increased flaviviral dissemination and transmission. Despite the growing burden of flaviviral infections, there are no effective antiviral treatments or vaccines, highlighting the need for novel therapeutic targets. Tetraspanins, a superfamily of [...] Read more.
The expanding distribution and geographic range of mosquitoes have potentially contributed to increased flaviviral dissemination and transmission. Despite the growing burden of flaviviral infections, there are no effective antiviral treatments or vaccines, highlighting the need for novel therapeutic targets. Tetraspanins, a superfamily of transmembrane domain glycoproteins involved in cellular organization, signaling, and protein–protein interactions have been recognized as potential mediators of flaviviral infection and transmission. While their roles in vertebrate hosts have been explored, their involvement in flaviviral replication and dissemination within medically important vectors remains poorly understood. In this study, we investigated the role of arthropod tetraspanins in mosquito cells and extracellular vesicles (EVs) derived from cells infected with Zika virus (ZIKV) and dengue virus (serotype 2; DENV2). Among several of the tetraspanins analyzed, only CD151 was significantly upregulated in both mosquito cells and in EVs derived from ZIKV/DENV2-infected cells. RNAi-mediated silencing of CD151 led to a marked reduction in viral burden, suggesting its crucial role in flavivirus replication. Inhibition of EV biogenesis using GW4869 further demonstrated that EV-mediated viral transmission contributes to flavivirus propagation. Additionally, co-immunoprecipitation and immunofluorescence analyses revealed direct interactions between CD151 and ZIKV NS2B and DENV2 capsid proteins. Overall, our findings highlight the functional importance of mosquito CD151 in the replication and transmission of ZIKV and DENV2. This study provides new insights into the molecular mechanisms of flaviviral infection in mosquitoes and suggests that targeting vector tetraspanins may offer a potential approach to controlling mosquito-borne flaviviruses. Full article
(This article belongs to the Special Issue Advanced Perspectives on Virus–Host Interactions)
Show Figures

Figure 1

17 pages, 2387 KiB  
Article
Application of Lactobacillus helveticus KLDS 1.1105 Postbiotics for Resisting Pathogenic Bacteria Infection in the Intestine
by Peng Du, Jiaying Liu, Chengwen Hu, Jianing Zhang, Miao Li, Yu Xin, Libo Liu, Aili Li and Chun Li
Foods 2025, 14(15), 2659; https://doi.org/10.3390/foods14152659 - 29 Jul 2025
Viewed by 291
Abstract
Postbiotics, defined as metabolites produced by probiotics, encompass both bacterial cells and their metabolic byproducts, and offer significant health benefits to the host. However, there are relatively few reports on their effects on intestinal microbiota. In this study, we investigated the components, total [...] Read more.
Postbiotics, defined as metabolites produced by probiotics, encompass both bacterial cells and their metabolic byproducts, and offer significant health benefits to the host. However, there are relatively few reports on their effects on intestinal microbiota. In this study, we investigated the components, total antioxidant capacity of Lactobacillus helveticus postbiotics (LHPs) and their impact on intestinal flora using the Simulator for Human Intestinal Microecology Simulation (SHIME). The results indicate that the primary components of postbiotics include polysaccharides, proteins, and organic acids. Furthermore, LHPs have a strong ability to inhibit the growth of harmful bacteria while promoting the growth of probiotics. Additionally, LHPs significantly increased the total antioxidant capacity in the intestine and regulated the balance of intestinal microbiota. Notably, there was also a significant increase in the content of short-chain fatty acids (SCFAs) in the intestine. Overall, LHPs have the potential to aid in the prevention and treatment of diseases by enhancing gut microbiology. Full article
Show Figures

Graphical abstract

31 pages, 7303 KiB  
Review
Membrane-Targeting Antivirals
by Maxim S. Krasilnikov, Vladislav S. Denisov, Vladimir A. Korshun, Alexey V. Ustinov and Vera A. Alferova
Int. J. Mol. Sci. 2025, 26(15), 7276; https://doi.org/10.3390/ijms26157276 - 28 Jul 2025
Viewed by 251
Abstract
The vast majority of viruses causing human and animal diseases are enveloped—their virions contain an outer lipid bilayer originating from a host cell. Small molecule antivirals targeting the lipid bilayer cover the broadest spectrum of viruses. In this context, we consider the chemical [...] Read more.
The vast majority of viruses causing human and animal diseases are enveloped—their virions contain an outer lipid bilayer originating from a host cell. Small molecule antivirals targeting the lipid bilayer cover the broadest spectrum of viruses. In this context, we consider the chemical nature and mechanisms of action of membrane-targeting antivirals. They can affect virions by (1) physically modulating membrane properties to inhibit fusion of the viral envelope with the cell membrane, (2) physically affecting envelope lipids and proteins leading to membrane damage, pore formation and lysis, (3) causing photochemical damage of unsaturated membrane lipids resulting in integrity loss and fusion arrest. Other membrane-active compounds can target host cell membranes involved in virion’s maturation, coating, and egress (endoplasmic reticulum, Golgi apparatus, and outer membrane) affecting these last stages of viral reproduction. Both virion- and host-targeting membrane-active molecules are promising concepts for broad-spectrum antivirals. A panel of approved antivirals would be a superior weapon to respond to and control emerging disease outbreaks caused by new viral strains and variants. Full article
Show Figures

Figure 1

31 pages, 3024 KiB  
Review
Synthetic and Functional Engineering of Bacteriophages: Approaches for Tailored Bactericidal, Diagnostic, and Delivery Platforms
by Ola Alessa, Yoshifumi Aiba, Mahmoud Arbaah, Yuya Hidaka, Shinya Watanabe, Kazuhiko Miyanaga, Dhammika Leshan Wannigama and Longzhu Cui
Molecules 2025, 30(15), 3132; https://doi.org/10.3390/molecules30153132 - 25 Jul 2025
Viewed by 375
Abstract
Bacteriophages (phages), the most abundant biological entities on Earth, have long served as both model systems and therapeutic tools. Recent advances in synthetic biology and genetic engineering have revolutionized the capacity to tailor phages with enhanced functionality beyond their natural capabilities. This review [...] Read more.
Bacteriophages (phages), the most abundant biological entities on Earth, have long served as both model systems and therapeutic tools. Recent advances in synthetic biology and genetic engineering have revolutionized the capacity to tailor phages with enhanced functionality beyond their natural capabilities. This review outlines the current landscape of synthetic and functional engineering of phages, encompassing both in-vivo and in-vitro strategies. We describe in-vivo approaches such as phage recombineering systems, CRISPR-Cas-assisted editing, and bacterial retron-based methods, as well as synthetic assembly platforms including yeast-based artificial chromosomes, Gibson, Golden Gate, and iPac assemblies. In addition, we explore in-vitro rebooting using TXTL (transcription–translation) systems, which offer a flexible alternative to cell-based rebooting but are less effective for large genomes or structurally complex phages. Special focus is given to the design of customized phages for targeted applications, including host range expansion via receptor-binding protein modifications, delivery of antimicrobial proteins or CRISPR payloads, and the construction of biocontained, non-replicative capsid systems for safe clinical use. Through illustrative examples, we highlight how these technologies enable the transformation of phages into programmable bactericidal agents, precision diagnostic tools, and drug delivery vehicles. Together, these advances establish a powerful foundation for next-generation antimicrobial platforms and synthetic microbiology. Full article
Show Figures

Figure 1

19 pages, 14428 KiB  
Article
Bivalent Oral Vaccine Using Attenuated Salmonella Gallinarum Delivering HA and NA-M2e Confers Dual Protection Against H9N2 Avian Influenza and Fowl Typhoid in Chickens
by Muhammad Bakhsh, Amal Senevirathne, Jamal Riaz, Jun Kwon, Ram Prasad Aganja, Jaime C. Cabarles, Sang-Ik Oh and John Hwa Lee
Vaccines 2025, 13(8), 790; https://doi.org/10.3390/vaccines13080790 - 25 Jul 2025
Viewed by 374
Abstract
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lon [...] Read more.
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lonpagLasd) as a delivery system for H9N2 antigens to induce an immunoprotective response against both H9N2 and FT. To enhance immune protection against H9N2, a prokaryotic and eukaryotic dual expression plasmid, pJHL270, was employed. The hemagglutinin (HA) consensus sequence from South Korean avian influenza A virus (AIV) was cloned under the Ptrc promoter for prokaryotic expression, and the B cell epitope of neuraminidase (NA) linked with matrix protein 2 (M2e) was placed for eukaryotic expression. In vitro and in vivo expressions of the H9N2 antigens were validated by qRT-PCR and Western blot, respectively. Results: Oral immunization with JOL3121 induced a significant increase in SG and H9N2-specific serum IgY and cloacal swab IgA antibodies, confirming humoral and mucosal immune responses. Furthermore, FACS analysis showed increased CD4+ and CD8+ T cell populations. On day 28 post-immunization, there was a substantial rise in the hemagglutination inhibition titer in the immunized birds, demonstrating neutralization capabilities of immunization. Both IFN-γ and IL-4 demonstrated a significant increase, indicating a balance of Th1 and Th2 responses. Intranasal challenge with the H9N2 Y280 strain resulted in minimal to no clinical signs with significantly lower lung viral titer in the JOL3121 group. Upon SG wildtype challenge, the immunized birds in the JOL3121 group yielded 20% mortality, while 80% mortality was recorded in the PBS control group. Additionally, bacterial load in the spleen and liver was significantly lower in the immunized birds. Conclusions: The current vaccine model, designed with a host-specific pathogen, SG, delivers a robust immune boost that could enhance dual protection against FT and H9N2 infection, both being significant diseases in poultry, as well as ensure public health. Full article
(This article belongs to the Special Issue Development of Vaccines Against Bacterial Infections)
Show Figures

Graphical abstract

12 pages, 825 KiB  
Review
Yin Yang 1: Role in Leishmaniasis
by Devki Nandan, Dilraj Kaur Longowal and Neil Reiner
Cells 2025, 14(15), 1149; https://doi.org/10.3390/cells14151149 - 25 Jul 2025
Viewed by 254
Abstract
Leishmaniasis, caused by protozoan parasites of the genus Leishmania, is one of the most neglected human diseases, affecting millions worldwide. A detailed understanding of the molecular mechanisms that govern the outcome of macrophage–Leishmania interactions is crucial for a comprehensive understanding of [...] Read more.
Leishmaniasis, caused by protozoan parasites of the genus Leishmania, is one of the most neglected human diseases, affecting millions worldwide. A detailed understanding of the molecular mechanisms that govern the outcome of macrophage–Leishmania interactions is crucial for a comprehensive understanding of leishmaniasis; however, our current knowledge of these mechanisms remains limited. It is clear that Leishmania has co-evolved to engage several clever strategies to regulate the cell biology of host macrophages to survive and multiply in phagolysosomes of these cells. In this review, we discuss how Leishmania exploits the macrophage Yin-Yang 1 protein as a critical proxy virulence factor to promote its survival. Additionally, we discuss an atlas of YY1-dependent proteins in human macrophages, which could serve as a valuable resource for researchers studying the role of YY1 in macrophage cell biology. Full article
(This article belongs to the Special Issue The Role of Macrophages in Leishmaniasis: Current Perspective)
Show Figures

Figure 1

16 pages, 3054 KiB  
Article
Naringenin Inhibits Enterotoxigenic Escherichia coli-Induced Ferroptosis via Targeting HSP90 in IPEC-J2 Cells
by Pengxin Jiang, Kangping Liu, Yanan Cui, Puyu Liu, Xutao Wang, Zijuan Hou, Jiamei Cui, Ning Chen, Jinghui Fan, Jianguo Li, Yuzhu Zuo and Yan Li
Antioxidants 2025, 14(8), 914; https://doi.org/10.3390/antiox14080914 - 25 Jul 2025
Viewed by 324
Abstract
Enterotoxigenic Escherichia coli (ETEC) leads to severe diarrhea in piglets. Naringenin (Nar), a natural flavonoid compound, is known for its antibacterial and anti-antioxidant properties. However, the protective effects of Nar against ETEC-induced diarrhea have not been reported yet. This study investigated the protective [...] Read more.
Enterotoxigenic Escherichia coli (ETEC) leads to severe diarrhea in piglets. Naringenin (Nar), a natural flavonoid compound, is known for its antibacterial and anti-antioxidant properties. However, the protective effects of Nar against ETEC-induced diarrhea have not been reported yet. This study investigated the protective mechanisms of Nar against ETEC infection in porcine intestinal epithelial cells (IPEC-J2). ETEC infection induced oxidative stress and ferroptosis in IPEC-J2 cells by elevating intracellular iron content and ROS accumulation, increasing MDA levels, downregulating SOD activity and GPX4 expression, and upregulating the transcription of CHAC1 and SLC7A11. In contrast, Nar suppressed ETEC-induced ferroptosis of IPEC-J2 cells by inhibiting the SLC7A11/GPX4 pathway. Specifically, Nar mitigated mitochondrial damage, reduced intracellular iron levels and ROS accumulation, and ultimately reversed the oxidative stress. Network pharmacology and molecular docking identified heat-shock protein 90 (HSP90) as a potential target of Nar. Overexpression and knockdown experiments revealed that ETEC-induced ferroptosis was mediated by upregulation of HSP90, while the protective effects of Nar against ETEC-induced ferroptosis were dependent on the downregulation of HSP90. In conclusion, Nar targets host HSP90 to protect IPEC-J2 cells from ferroptosis caused by ETEC infection. This study demonstrates that Nar is a potent antioxidant natural compound with potential for preventing ETEC-induced intestinal damage. Full article
(This article belongs to the Special Issue Oxidative Stress in Livestock and Poultry—3rd Edition)
Show Figures

Figure 1

Back to TopTop