Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (173)

Search Parameters:
Keywords = honey physicochemical properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1633 KiB  
Article
Multifactorial Evaluation of Honey from Pakistan: Essential Minerals, Antioxidant Potential, and Toxic Metal Contamination with Relevance to Human Health Risk
by Sana, Waqar Ahmad, Farooq Anwar, Hammad Ismail, Mujahid Farid, Muhammad Adnan Ayub, Sajjad Hussain Sumrra, Chijioke Emenike, Małgorzata Starowicz and Muhammad Zubair
Foods 2025, 14(14), 2493; https://doi.org/10.3390/foods14142493 - 16 Jul 2025
Viewed by 379
Abstract
Honey is prized for its nutritional and healing properties, but its quality can be affected by contamination with toxic elements. This study evaluates the nutritional value and health risks of fifteen honey samples from different agro-climatic regions of Pakistan. Physicochemical properties such as [...] Read more.
Honey is prized for its nutritional and healing properties, but its quality can be affected by contamination with toxic elements. This study evaluates the nutritional value and health risks of fifteen honey samples from different agro-climatic regions of Pakistan. Physicochemical properties such as color, pH, electrical conductivity, moisture, ash, and solids content were within acceptable ranges. ICP-OES analysis was used to assess six essential minerals and ten toxic metals. Except for slightly elevated boron levels (up to 0.18 mg/kg), all elements were within safe limits, with potassium reaching up to 1018 mg/kg. Human health risk assessments—including Average Daily Dose of Ingestion, Total Hazard Quotient, and Carcinogenic Risk—indicated no carcinogenic threats for adults or children, despite some elevated metal levels. Antioxidant activity, measured through total phenolic content (TPC) and DPPH radical scavenging assays, showed that darker honeys had stronger antioxidant properties. While the overall quality of honey samples was satisfactory, significant variations (p ≤ 0.05) were observed across different regions. These differences are attributed to diverse agro-climatic conditions and production sources. The findings highlight the need for continued monitoring to ensure honey safety and nutritional quality. Full article
Show Figures

Figure 1

24 pages, 10538 KiB  
Article
Effects of Refrigerated Storage on the Physicochemical, Color and Rheological Properties of Selected Honey
by Joanna Piepiórka-Stepuk, Monika Sterczyńska, Marta Stachnik and Piotr Pawłowski
Agriculture 2025, 15(14), 1476; https://doi.org/10.3390/agriculture15141476 - 10 Jul 2025
Viewed by 395
Abstract
The paper presents a study of changes in selected physicochemical properties of honeys during their refrigerated storage at 8 ± 1 °C for 24 weeks. On the basis of the study of primary pollen, the botanical identification of the variety of honeys was [...] Read more.
The paper presents a study of changes in selected physicochemical properties of honeys during their refrigerated storage at 8 ± 1 °C for 24 weeks. On the basis of the study of primary pollen, the botanical identification of the variety of honeys was made—rapeseed, multiflower and buckwheat honey. The samples were stored for 24 weeks in dark, hermetically sealed glass containers in a refrigerated chamber (8 ± 1 °C, 73 ± 2% relative humidity). The comprehensive suite of analyses comprised sugar profiling (ion chromatography), moisture content determination (refractometry), pH and acidity measurement (titration), electrical conductivity, color assessment in the CIELab system (ΔE and BI indices), texture parameters (penetration testing), rheological properties (rheometry), and microscopic evaluation of crystal morphology; all data were subjected to statistical treatment (ANOVA, Tukey’s test, Pearson correlations). The changes in these parameters were examined at 1, 2, 3, 6, 12, and 24 weeks of storage. A slight but significant increase in moisture content was observed (most pronounced in rapeseed honey), while all parameters remained within the prescribed limits and showed no signs of fermentation. The honeys’ color became markedly lighter. Already in the first weeks of storage, an increase in the L* value and elevated ΔE indices were recorded. The crystallization process proceeded in two distinct phases—initial nucleation (occurring fastest in rapeseed honey) followed by the formation of crystal agglomerates—which resulted in rising hardness and cohesion up to weeks 6–12, after which these metrics gradually declined; simultaneously, a rheological shift was noted, with viscosity increasing and the flow behavior changing from Newtonian to pseudoplastic, especially in rapeseed honey. Studies show that refrigerated storage accelerates honey crystallization, as lower temperatures promote the formation of glucose crystals. This accelerated crystallization may have practical applications in the production of creamed honey, where controlled crystal formation is essential for achieving a smooth, spreadable texture. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Graphical abstract

24 pages, 1871 KiB  
Article
Data Analyses and Chemometric Modeling for Rapid Quality Assessment of Enriched Honey
by Jasenka Gajdoš Kljusurić, Vesna Knights, Berat Durmishi, Smajl Rizani, Vezirka Jankuloska, Valentina Velkovski, Ana Jurinjak Tušek, Maja Benković, Davor Valinger and Tamara Jurina
Chemosensors 2025, 13(7), 246; https://doi.org/10.3390/chemosensors13070246 - 9 Jul 2025
Viewed by 327
Abstract
The quality and authenticity of honey are of crucial importance for food safety and consumer confidence. Given the increasing interest in enriched honey and potential fraud, rapid and non-destructive analytical methods for quality assessment, such as Near-Infrared Spectroscopy (NIRS), are needed. Therefore, the [...] Read more.
The quality and authenticity of honey are of crucial importance for food safety and consumer confidence. Given the increasing interest in enriched honey and potential fraud, rapid and non-destructive analytical methods for quality assessment, such as Near-Infrared Spectroscopy (NIRS), are needed. Therefore, the aim of this work was to investigate the applicability of NIR spectroscopy coupled with chemometric methods to assess the quality change in honey from three different countries, after addition of five different aromatic plants (lavender, rosemary, oregano, sage, and white pine oil) in three different concentrations (0.5%, 0.8% and 1%). Measurements of basic physicochemical properties, color, antioxidant activity, and NIR spectra were performed for all samples (pure honey and honey with added aromatic plants). Chemometric models, such as Principal Component Analysis (PCA) and Partial Least Squares (PLS) regression, were applied to analyze spectral data, correlate spectra with physicochemical properties, color and antioxidant activity measurements, and develop classification and prediction models. Spectral changes in the NIR region, as expected, showed the ability to distinguish samples depending on the type and concentration of added aromatic plants. Chemometric models enabled efficient discrimination between pure and enriched honey samples, as well as assessment of the influence of different additives on antioxidant activity and color. The results highlight the potential of NIRS as a rapid, non-destructive and environmentally friendly method for quality monitoring and detection of specific additives in honey, offering technical support for quality control and food safety regulation. Full article
(This article belongs to the Special Issue Chemometrics for Food, Environmental and Biological Analysis)
Show Figures

Figure 1

21 pages, 1507 KiB  
Article
Physicochemical Properties, Antioxidant and Antibacterial Activities and Anti-Hepatocarcinogenic Effect and Potential Mechanism of Schefflera oleifera Honey Against HepG2 Cells
by Jingjing Li, Jie Wang, Yicong Wang and Wenchao Yang
Foods 2025, 14(13), 2376; https://doi.org/10.3390/foods14132376 - 4 Jul 2025
Viewed by 478
Abstract
Schefflera oleifera honey (SH) is produced from the nectar of S. Oleifera by worker bees. Due to its unique properties and potential biological activities, this winter honey has attracted much attention. In this study, the physicochemical characteristics, antioxidant and antibacterial activities, antitumor effect [...] Read more.
Schefflera oleifera honey (SH) is produced from the nectar of S. Oleifera by worker bees. Due to its unique properties and potential biological activities, this winter honey has attracted much attention. In this study, the physicochemical characteristics, antioxidant and antibacterial activities, antitumor effect against HepG2 cells, and its potential mechanisms of SH were systematically evaluated. The results showed that different SH samples differed significantly in their physicochemical characteristics. The 910 chemical components, including 52 kinds of phenols, phenolic acids, and flavonoids, were detected in the methanol extract of SH using UHPLC-MS/MS by non-targeted metabolomics. Based on our limited knowledge, solanine and soyasaponin I are the first determined components in honey, and they may be used as characteristic substances of SH for identification and adulteration. SH had a weaker inhibitory effect against Salmonella typhimurium and Staphylococcus aureus than MH (UMF 10+), analyzed by MBC and MIC assays. Network pharmacology analysis showed that 95 overlapping targets were found between the active ingredients of SH and liver cancer cells (HepG2), which were enriched in KEGG of the PI3K-Akt pathway, Lipid and atherosclerosis, Proteoglycans in cancer, etc. The IC50 of SH against HepG2 cells was 5.07% (dw/v), which is lower than the glucose, fructose, and sucrose contents in SH on HepG2 cells, of 16.24%, 9.60% dw/v, and 9.94% dw/v, respectively. SH significantly down-regulated the expression of EGFR, AKT1, and SRC in HepG2 cells (p < 0.05), determined by an enzyme-linked immunosorbent assay kit, and induced cell cycle arrest and apoptosis by multiple pathways. These results provide a theoretical basis for its potential application in developing functional foods and additives. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

24 pages, 3140 KiB  
Article
Physicochemical and Sensory Evaluation of Romanian Monofloral Honeys from Different Supply Chains
by Elena Daniela Bratosin, Delia Mirela Tit, Manuela Bianca Pasca, Anamaria Lavinia Purza, Gabriela Bungau, Ruxandra Cristina Marin, Andrei Flavius Radu and Daniela Gitea
Foods 2025, 14(13), 2372; https://doi.org/10.3390/foods14132372 - 4 Jul 2025
Viewed by 398
Abstract
Honey quality and authenticity are influenced by floral origin, processing, and storage, with implications for composition and sensory appeal. This study offers a comparative assessment of eight monofloral honey samples, representing five botanical varieties: acacia, linden, rapeseed, lavender, and thyme. For acacia, linden, [...] Read more.
Honey quality and authenticity are influenced by floral origin, processing, and storage, with implications for composition and sensory appeal. This study offers a comparative assessment of eight monofloral honey samples, representing five botanical varieties: acacia, linden, rapeseed, lavender, and thyme. For acacia, linden, and rapeseed, both producer-sourced and commercial honeys were analyzed, while lavender and thyme samples were available only from local beekeepers. The botanical origin of each sample was confirmed using morphological markers of pollen grains. Physicochemical characterization included acidity, pH, moisture content, refractive index, hydroxymethyl furfural (HMF), proline concentration, and carbohydrate profiling by HPLC-RID. Acacia honey exhibited the lowest acidity and HMF levels, alongside the highest fructose/glucose (F/G) ratios, indicating superior freshness, lower crystallization risk, and a sweeter flavor profile. In contrast, rapeseed honey showed elevated glucose levels and the lowest F/G ratio, confirming its tendency to crystallize rapidly. All samples recorded proline concentrations well above the quality threshold (180 mg/kg), supporting their authenticity and proper maturation. The estimated glycemic index (eGI) varied between 43.91 and 62.68 and was strongly inversely correlated with the F/G ratio (r = −0.98, p < 0.001). Sensory evaluation highlighted acacia honey from producers as the most appreciated across visual, tactile, and flavor attributes. Correlation analyses further revealed consistent links between sugar composition and both physical and sensory properties. Overall, the findings reinforce the value of integrated analytical and sensory profiling in assessing honey quality and authenticity. Full article
Show Figures

Graphical abstract

24 pages, 1894 KiB  
Article
Honey as a Bioindicator: Pollution’s Effects on Its Quality in Mining vs. Protected Sites
by Mirel Glevitzky, Mihai-Teopent Corcheş, Maria Popa and Mihaela Laura Vică
Appl. Sci. 2025, 15(13), 7297; https://doi.org/10.3390/app15137297 - 28 Jun 2025
Viewed by 351
Abstract
Heavy metal toxicity is an ecological concern in regions affected by processes like mining. This study underscores the potential of honey as a natural bioindicator for monitoring and assessing the levels of environmental contamination in mining-impacted areas. The study evaluated the physico-chemical characteristics, [...] Read more.
Heavy metal toxicity is an ecological concern in regions affected by processes like mining. This study underscores the potential of honey as a natural bioindicator for monitoring and assessing the levels of environmental contamination in mining-impacted areas. The study evaluated the physico-chemical characteristics, heavy metal content, and antimicrobial activity of honey samples collected from areas adjacent to former mining sites, as well as from protected areas within the same county in Romania. The results revealed significant differences between the two categories of locations. The samples from the protected areas showed higher levels of bioactive compounds (phenols and flavonoids) and exhibited stronger antibacterial activity. The heavy metal analysis indicated significantly higher concentrations of lead, cadmium, and iron in the honey samples from former mining areas compared to those from protected zones, suggesting pronounced industrial-origin contamination. The maximum recorded values were for Pb (0.607 mg/kg), Cd (0.02 mg/kg), Fe (12.131 mg/kg), Cu (0.545 mg/kg), and Zn (6.170 mg/kg). Their antimicrobial activity was tested against several bacterial and fungal strains, including Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Listeria monocytogenes, Candida albicans, Aspergillus niger, Aspergillus flavus, Penicillium chrysogenum, Rhizopus stolonifer, Fusarium oxysporum, and Alternaria alternata. The antibacterial and antifungal activity were more pronounced in the honey samples from the protected areas. These findings support the use of honey as a bioindicator of environmental quality and highlight the influence of its geographical origin on its therapeutic and chemical properties. Full article
(This article belongs to the Special Issue Advances in Honeybee and Their Biological and Environmental Threats)
Show Figures

Figure 1

16 pages, 2561 KiB  
Article
Microbial Contamination in Commercial Honey: Insights for Food Safety and Quality Control
by Felipe Bruxel, Ana Maria Geller, Andrei Giacchetto Felice, Jeferson Aloísio Ströher, Anderson Santos de Freitas, Angela Balen, Maria Beatriz Prior Pinto Oliveira and Wemerson de Castro Oliveira
Microbiol. Res. 2025, 16(6), 128; https://doi.org/10.3390/microbiolres16060128 - 13 Jun 2025
Viewed by 527
Abstract
Honey is a sugar-rich product produced by Apis mellifera bees, with significant variability in properties due to the influence of geographic and climatic conditions and the predominant flora in the production region. Economically, beekeeping is an activity that generates profit and fulfills environmental [...] Read more.
Honey is a sugar-rich product produced by Apis mellifera bees, with significant variability in properties due to the influence of geographic and climatic conditions and the predominant flora in the production region. Economically, beekeeping is an activity that generates profit and fulfills environmental and social functions, reinforcing the pillars of sustainability. This study aimed to characterize samples of honey sold in southern Brazil, including physicochemical analyses, the detection of microbiological contaminants with potential impact on human health, and the detailed identification of bacterial composition through the Next-Generation Sequencing (NGS). The present study was divided into five main stages: (1) sample collection; (2) sample fractionation; (3) physicochemical analysis; (4) microbiological analysis; (5) 16S metataxonomy analysis. The physicochemical analyses agreed with the regulated values, indicating the good quality of the honey and the absence of adulteration. The microbiological analyses indicated the absence of Salmonella spp., in addition to a low count of total coliforms. The limits for molds and yeasts were exceeded in three samples, indicating non-compliance with current MERCOSUR legislation. Metabarcoding analysis identified a total of 15,736 OTUs divided into three different genera: Bacillus (41.54%), Lysinnibacillus, and Rossellomorea, all belonging to the Bacillaceae family. Some pathogenic species were identified, namely the Bacillus cereus group and Bacillus pumilus. Our results point to an increased need for surveillance, as honey contamination can lead to public health problems, requiring improvements in legislation and control parameters. Full article
Show Figures

Figure 1

14 pages, 577 KiB  
Article
Physicochemical and Antioxidant Properties of Selected Polish and Slovak Honeys
by Stanisław Kowalski, Zuzana Ciesarová, Kristína Kukurová, Blanka Tobolková, Martin Polovka, Łukasz Skoczylas, Małgorzata Tabaszewska, Karolina Mikulec, Anna Mikulec and Krzysztof Buksa
Appl. Sci. 2025, 15(11), 5810; https://doi.org/10.3390/app15115810 - 22 May 2025
Viewed by 407
Abstract
In this study, the physicochemical and antioxidant properties of 19 honey samples from Poland and Slovakia were assessed and models describing the relationship between antioxidant activity and the determined physicochemical features were developed. All tested honeys met the regulatory criteria of EU standards [...] Read more.
In this study, the physicochemical and antioxidant properties of 19 honey samples from Poland and Slovakia were assessed and models describing the relationship between antioxidant activity and the determined physicochemical features were developed. All tested honeys met the regulatory criteria of EU standards for the content of water, hydroxymethylfurfural, and diastase activity. Honey samples from Poland and Slovakia had similar glucose-to-fructose ratios, but differences were observed in diastase activity, electrical conductivity, and antioxidant potential. Polish forest honey samples showed the highest antioxidant activity, and Polish rapeseed honey showed higher antioxidant potential than the Slovak honey. Color analysis showed a strong correlation (R2 = 0.849) between the browning index and antioxidant capacity. Cluster analysis effectively distinguished honey types based on their chemical composition, although some sample overlap was attributed to environmental influences. Regression models identified key predictors of antioxidant potential, and polyphenol content evidenced by color parameters (a*, b*). This study provides valuable information on honey characteristics and demonstrates the feasibility of using statistical models to predict antioxidant properties. Full article
(This article belongs to the Special Issue Functional Foods for Human Health—Product Development and Analysis)
Show Figures

Figure 1

26 pages, 1597 KiB  
Article
Physicochemical and Rheological Characteristics of Monofloral Honeys—Kinetics of Creaming–Crystallization
by Kerasia Polatidou, Chrysanthi Nouska, Chrysoula Tananaki, Costas G. Biliaderis and Athina Lazaridou
Foods 2025, 14(10), 1835; https://doi.org/10.3390/foods14101835 - 21 May 2025
Cited by 1 | Viewed by 763
Abstract
The quality and stability of honeys are strongly influenced by their chemical composition and physicochemical properties, which vary with botanical origin. This study examined the physicochemical and compositional properties of cotton, heather, orange, thyme, Christ’s thorn, and chestnut monofloral honey samples, as well [...] Read more.
The quality and stability of honeys are strongly influenced by their chemical composition and physicochemical properties, which vary with botanical origin. This study examined the physicochemical and compositional properties of cotton, heather, orange, thyme, Christ’s thorn, and chestnut monofloral honey samples, as well as the kinetics of the creaming–crystallization process by monitoring rheological and color parameters. All samples had moisture content lower than the legislation limit (<20%) and aw ≤ 0.60. Chestnut and heather honeys exhibited the highest electrical conductivity and darkest color. Fructose was the predominant sugar in all samples, with thyme having the highest content. Viscosity decreased exponentially with increasing moisture, with thyme honey being the most viscous. Principal component analysis showed distinct clustering of samples based on their compositional–physicochemical characteristics. Calorimetry revealed the water’s plasticization effect on honey solids, lowering their glass transition temperature, with the data fitting well to the Gordon–Taylor model. Rheometry indicated a Newtonian-like behavior for liquid honeys, evolving towards a pseudoplastic response upon creaming–crystallization. Cotton honey crystallized rapidly, thyme honey showed moderate crystallization propensity, while samples of heather honey gave a diverse response depending on composition. Overall, high glucose content and/or low fructose/glucose ratio promoted honey crystallization, leading to the formation of highly viscous-creamed honey preparations. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

22 pages, 3673 KiB  
Article
Integrated Chemical and Biological Evaluation of Linden Honeydew Honey from Bosnia and Herzegovina: Composition and Cellular Effects
by Ana Barbarić, Lara Saftić Martinović, Zvonimir Marijanović, Lea Juretić, Andreja Jurič, Danijela Petrović, Violeta Šoljić and Ivana Gobin
Foods 2025, 14(10), 1668; https://doi.org/10.3390/foods14101668 - 8 May 2025
Viewed by 712
Abstract
Honeydew honey (HH) is a distinctive type of honey known for its dark colour, high mineral and polyphenol content, and pronounced biological activity. This study continues previous research on beech and chestnut honeydew honeys by presenting a comprehensive analysis of linden honeydew honey [...] Read more.
Honeydew honey (HH) is a distinctive type of honey known for its dark colour, high mineral and polyphenol content, and pronounced biological activity. This study continues previous research on beech and chestnut honeydew honeys by presenting a comprehensive analysis of linden honeydew honey (LHH) from Bosnia and Herzegovina—a variety that, until now, has not been characterised in detail. Physicochemical parameters confirmed its classification as HH, with high electrical conductivity (1.21 mS/cm) and low moisture (15.1%). GC-MS analysis revealed a unique volatile profile dominated by α-terpinolene (17.4%), distinguishing LHH from other HH types. The sample exhibited high total phenolic content (816.38 mg GAE/kg) and moderate antioxidant capacity (1.11 mmol TE/kg). Antimicrobial testing demonstrated strong activity against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA), with lower efficacy against Gram-negative bacteria. No cytotoxic effects were observed in HaCaT keratinocytes at concentrations up to 60 mg/mL, and wound healing assays showed improved scratch closure reaching approximately 30% after 24 h and 41% after 48 h compared to the control. These results indicate that LHH possesses promising bioactive properties and potential for dermatological application. Further studies with broader sample sets are needed to explore variability and confirm the therapeutic relevance of LHH in comparison to other honeydew types. Full article
Show Figures

Figure 1

11 pages, 236 KiB  
Article
Physicochemical Properties of Traditionally Produced Mead
by Kristina Habschied, Blanka Bilić Rajs, Lorena Dozan, Vinko Krstanović and Krešimir Mastanjević
Beverages 2025, 11(3), 61; https://doi.org/10.3390/beverages11030061 - 28 Apr 2025
Viewed by 569
Abstract
Mead is described as a traditional alcoholic drink produced by fermentation from a solution of honey and water. It has been produced as a refreshing drink. However, in the past, it was more expensive than wine, which led to a decrease in demand. [...] Read more.
Mead is described as a traditional alcoholic drink produced by fermentation from a solution of honey and water. It has been produced as a refreshing drink. However, in the past, it was more expensive than wine, which led to a decrease in demand. Due to the simple method of production, the mead industry is growing again. The quality and physicochemical properties of mead depend on the type of honey used. The goal of this study is to produce mead from two kinds of honey of different floral origins, chestnut and sunflower, in order to determine the differences using sensory and physicochemical analyses. The fermentation process was monitored until the extract values were consecutively the same. The results obtained in this research indicate that chestnut honey mead took a longer time to ferment, 2 months, while sunflower honey mead took 1.5 months to ferment. The alcohol content in chestnut honey mead was 7.2% v/v, and sunflower honey mead contained 8.6% v/v. Sensory-wise, the chestnut mead was more acceptable to consumers due to a more pronounced color and thus received a one-point higher score (15) than sunflower honey mead (14). Full article
21 pages, 89808 KiB  
Article
Toward Natural Wound Healing Therapy: Honey and Calendula officinalis Loaded κ-Carrageenan Films with Promising Hemostatic Potential
by Jovana S. Vuković, Srđan Perišić, Anja Nikolić, Ivan Milošević, Milorad Mirilović, Bogomir Bolka Prokić and Tijana Lužajić Božinovski
Pharmaceutics 2025, 17(5), 578; https://doi.org/10.3390/pharmaceutics17050578 - 28 Apr 2025
Cited by 1 | Viewed by 812
Abstract
Background/Objectives: Efficient wound treatment embraces the management of four overlapping phases, starting with hemostasis, an immediate physiological response aimed at stopping bleeding from damaged blood vessels caused by skin injury. This paper proposes an innovative, nature-based hemostatic biomaterial designed to assist natural [...] Read more.
Background/Objectives: Efficient wound treatment embraces the management of four overlapping phases, starting with hemostasis, an immediate physiological response aimed at stopping bleeding from damaged blood vessels caused by skin injury. This paper proposes an innovative, nature-based hemostatic biomaterial designed to assist natural self-healing regenerative mechanisms. Methods: Light, transparent, and skin-adhesive films based on κ-carrageenan, meadow polyfloral honey, and Calendula officinalis flower extract were fabricated via solution casting. Comprehensive characterization revealed the physicochemical, structural, swelling, and barrier properties and the influence of each bioactive compound utilized for film preparation. Results: The samples subcutaneously implanted in Wistar rats induced vascularization, deposition of collagen, and orientation of collagen fibers while being fully phagocytosed and gradually biodegraded. The rat tail-cut model demonstrated that the films significantly reduced blood loss (0.1875 ± 0.0732 g) compared to the control (0.7837 ± 0.3319 g), and hemostasis was achieved notably faster (355.75 ± 71.42 s) than in the control group (704.25 ± 85.29 s). The rat liver punch biopsy model confirmed reduced blood loss (2.8025 ± 1.5174 g) and shorter time to hemostasis (303.25 ± 77.90 s) compared to the control (3.1475 ± 1.5413 g, 383.00 ± 36.53 s). Conclusions: The results indicate the great potential of the fabricated films as hemostatic wound dressings. Full article
Show Figures

Figure 1

15 pages, 2088 KiB  
Article
Antimicrobial and Anti-Biofilm Activities of Medicinal Plant-Derived Honey Against ESKAPE Pathogens: Insights into β-Lactamase Inhibition via Metabolomics and Molecular Modeling Studies
by Hanan Aati, Nadia M. Lithy, Sultan Y. Aati, Mohammad A. Khanfar, Hossam M. Hassan and Hebatallah S. Bahr
Processes 2025, 13(5), 1294; https://doi.org/10.3390/pr13051294 - 24 Apr 2025
Viewed by 709
Abstract
The emergence of multidrug-resistant bacterial infections is a major global public health concern. Human health is in danger from microorganisms that have developed resistance to currently used drugs. Honey is well known for its significant activity against antibiotic-resistant bacteria. In this study, the [...] Read more.
The emergence of multidrug-resistant bacterial infections is a major global public health concern. Human health is in danger from microorganisms that have developed resistance to currently used drugs. Honey is well known for its significant activity against antibiotic-resistant bacteria. In this study, the antibacterial properties of honey from various botanical sources in Saudi Arabia against seven significant nosocomial and foodborne pathogens were investigated. The physicochemical properties of four Saudi honey samples—aloe honey (HO1) (Aloe vera L.), anise honey (HO2) (Pimpinella anisum L.), moringa honey (HO4) (Moringa oleifera Lam.), and acacia honey (HO5) (Acacia sp.)—were examined. In addition, they were screened for antibacterial activity against ESKAPE pathogens (Enterobacter faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella Typhimurium, Escherichia coli, and Enterobacter sp.) and anti-biofilm activity against four pathogenic bacteria strains: S. aureus, P. aeruginosa, S. typhimurium, and E. coli. 1H NMR profiling and multivariate analysis (PCA and PLS-DA) were performed. Aloe honey (HO1) was the most distinct sample based on MVDA and its antibacterial activity, and it exhibited anti-biofilm activity against most biofilm-forming microorganisms. Its metabolic profile was deduced using LC-MS, and the resulting annotated compounds were docked against several β-lactamase enzyme classes. The results reveal the potential of honey-derived compounds to inhibit β-lactamases due to the presence of gallic acid hexoside and rosmarinic acid, suggesting their potential as competitive inhibitors. Our findings suggest that further honey antibacterial compounds could offer a novel approach to overcoming antibiotic resistance by targeting and inhibiting β-lactamase enzymes. Full article
(This article belongs to the Special Issue Microbial Biofilms: Latest Advances and Prospects)
Show Figures

Figure 1

11 pages, 1291 KiB  
Article
Chemical and Functional Characteristics of Strawberry Tree (Arbutus unedo L.) Honey from Western Greece
by Chrysoula Tananaki, Dimitrios Kanelis, Vasilios Liolios, Maria Anna Rodopoulou and Fotini Papadopoulou
Foods 2025, 14(9), 1473; https://doi.org/10.3390/foods14091473 - 23 Apr 2025
Viewed by 1432
Abstract
Strawberry tree honey (Arbutus unedo L.) is a rare monofloral honey type with unique characteristics, mainly produced in the Mediterranean region. Despite its distinct qualities, limited research on its physicochemical and biological properties, coupled with the absence of specific legislative standards, hinder [...] Read more.
Strawberry tree honey (Arbutus unedo L.) is a rare monofloral honey type with unique characteristics, mainly produced in the Mediterranean region. Despite its distinct qualities, limited research on its physicochemical and biological properties, coupled with the absence of specific legislative standards, hinder its market potential. For this reason, in the present study, we analyzed strawberry tree honey samples collected from beekeepers in Western Greece, focusing on physicochemical properties (moisture, electrical conductivity, HMF, diastase activity, color, pH, acidity), total phenolic content, antioxidant activity, carbohydrate composition, and phenolic compounds profile. The results revealed high moisture content (19.2 ± 1.9%) and electrical conductivity (0.784 ± 0.132 mS cm−1), low diastase activity (9.6 ± 3.8 DN), and a strong crystallization tendency (1.01). Additionally, the honey exhibited elevated levels of total phenolic content (1169.9 ± 323.8 mg GAE kg−1 honey) and total antioxidant activity (10.98 ± 2.42 mmol Fe2+ kg−1 honey), compared to other blossom honeys, with homogentisic acid emerging as the dominant phenolic compound. These findings highlight the potential of strawberry tree honey as a high-value product, contributing to its enhanced market promotion. Full article
(This article belongs to the Special Issue Quality Evaluation of Bee Products—Volume II)
Show Figures

Graphical abstract

26 pages, 5204 KiB  
Article
Physicochemical Characterization of Injectable Genipin-Crosslinked Gelatin–Kelulut Honey Hydrogels for Future Cutaneous Tissue Loss
by Raniya Razif, Nur Izzah Md Fadilah, Manira Maarof, Daniel Looi Qi Hao, Adzim Poh Yuen Wen and Mh Busra Fauzi
Polymers 2025, 17(9), 1129; https://doi.org/10.3390/polym17091129 - 22 Apr 2025
Viewed by 1323
Abstract
Chronic wounds, particularly those associated with conditions like diabetes, present significant challenges in healthcare due to prolonged healing and high susceptibility to infections. This study investigates the development of injectable hydrogels composed of genipin-crosslinked gelatin and Kelulut honey (KH) as novel biomaterials for [...] Read more.
Chronic wounds, particularly those associated with conditions like diabetes, present significant challenges in healthcare due to prolonged healing and high susceptibility to infections. This study investigates the development of injectable hydrogels composed of genipin-crosslinked gelatin and Kelulut honey (KH) as novel biomaterials for wound healing applications. Hydrogels were prepared with varying concentrations (w/v) of gelatin (9% and 10%) and KH (0.1% and 0.5%), with genipin (0.1%) acting as a crosslinker. The physicochemical properties were extensively evaluated, including the swelling ratio, water vapor transmission rate (WVTR), contact angle, porosity, enzymatic degradation, and surface roughness. The results showed that KH incorporation significantly enhanced the swelling properties of the hydrogels, with the 9GE_0.1KH formulation demonstrating a swelling ratio of 742.07 ± 89.61% compared to 500% for the control 9GE formulation. The WVTR values for KH-incorporated hydrogels ranged from 1670.60 ± 236.87 g/m2h to 2438.92 ± 190.90 g/m2h, which were within the ideal range (1500–2500 g/m2h) for wound healing. Contact angle measurements indicated improved hydrophilicity, with 9GE_0.1KH showing a contact angle of 42.14° ± 7.52° compared to 60° ± 11.66° for the 10GE formulation. Biodegradation rates were slightly higher for KH-modified hydrogels (0.079 ± 0.006 mg/h for 9GE_0.1KH), but all remained within acceptable limits. These findings suggest that genipin-crosslinked gelatin-KH hydrogels offer a promising scaffold for enhanced wound healing and potential applications in tissue engineering and three-dimensional (3D) bioprinting technologies. Full article
(This article belongs to the Special Issue Polymer Hydrogels: Synthesis, Properties and Applications)
Show Figures

Figure 1

Back to TopTop