Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,091)

Search Parameters:
Keywords = home use

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 665 KiB  
Article
Optimization of Delay Time in ZigBee Sensor Networks for Smart Home Systems Using a Smart-Adaptive Communication Distribution Algorithm
by Igor Medenica, Miloš Jovanović, Jelena Vasiljević, Nikola Radulović and Dragan Lazić
Electronics 2025, 14(15), 3127; https://doi.org/10.3390/electronics14153127 - 6 Aug 2025
Abstract
As smart homes and Internet of Things (IoT) ecosystems continue to expand, the need for energy-efficient and low-latency communication has become increasingly critical. One of the key challenges in these systems is minimizing delay time while ensuring reliable and efficient communication between devices. [...] Read more.
As smart homes and Internet of Things (IoT) ecosystems continue to expand, the need for energy-efficient and low-latency communication has become increasingly critical. One of the key challenges in these systems is minimizing delay time while ensuring reliable and efficient communication between devices. This study focuses on optimizing delay time in ZigBee sensor networks used in smart-home systems. A Smart–Adaptive Communication Distribution Algorithm is proposed, which dynamically adjusts the communication between network nodes based on real-time network conditions. Experimental measurements were conducted under various scenarios to evaluate the performance of the proposed algorithm, with a particular focus on reducing delay and enhancing overall network efficiency. The results demonstrate that the proposed algorithm significantly reduces delay times compared to traditional methods, making it a promising solution for delay-sensitive IoT applications. Furthermore, the findings highlight the importance of adaptive communication strategies in improving the performance of ZigBee-based sensor networks. Full article
(This article belongs to the Special Issue Energy-Efficient Wireless Sensor Networks for IoT Applications)
Show Figures

Figure 1

10 pages, 1248 KiB  
Brief Report
From Nest to Nest: High-Precision GPS-GSM Tracking Reveals Full Natal Dispersal Process in a First-Year Female Montagu’s Harrier Circus pygargus
by Giampiero Sammuri, Guido Alari Esposito, Marta De Paulis, Francesco Pezzo, Andrea Sforzi and Flavio Monti
Birds 2025, 6(3), 40; https://doi.org/10.3390/birds6030040 - 6 Aug 2025
Abstract
This report presents the first complete natal dispersal trajectory of a female Montagu’s Harrier Circus pygargus, tracked in real time from fledging to first breeding using high-resolution continuous Global Positioning System (GPS) telemetry. The bird’s first flight occurred on 26 July 2024, [...] Read more.
This report presents the first complete natal dispersal trajectory of a female Montagu’s Harrier Circus pygargus, tracked in real time from fledging to first breeding using high-resolution continuous Global Positioning System (GPS) telemetry. The bird’s first flight occurred on 26 July 2024, initiating a 31-day post-fledging dependence phase (PFDP), followed by a 23-day pre-migratory phase (PMP), during which it explored areas up to 280.8 km from the nest and eventually settled ca. 190 km away in the Sirente-Velino Regional Park. From there, autumn migration began on 18 September 2024. The bird reached its first wintering site in Mali by 15 October. It used four wintering areas over 178 days, with a winter home range of 37,615.02 km2. Spring migration started on 11 April 2025 and lasted 21 days, ending with arrival in the Gran Sasso e Monti della Laga National Park (Central Italy) on 2 May. The bird used two main sites during the pre-breeding phase (PRBP) before laying eggs on 2 June 2025. The natal dispersal distance, from birthplace to nest site, was 151.28 km. Over 311 days, it covered a total of 14,522.23 km. These findings highlight the value of advanced telemetry in revealing early-life movement ecology and are useful for understanding species-specific patterns of survival, reproduction, and space use and can inform conservation actions. Full article
(This article belongs to the Special Issue Unveiling the Breeding Biology and Life History Evolution in Birds)
Show Figures

Figure 1

23 pages, 2394 KiB  
Article
Functional, Antioxidant, and Antimicrobial Profile of Medicinal Leaves from the Amazon
by Gabriela Méndez, Elena Coyago-Cruz, Paola Lomas, Marco Cerna and Jorge Heredia-Moya
Antioxidants 2025, 14(8), 965; https://doi.org/10.3390/antiox14080965 (registering DOI) - 5 Aug 2025
Abstract
The Amazon region is home to a remarkable diversity of plant species that are used in traditional medicine and cuisine. This study aimed to evaluate the functional, antioxidant, and antimicrobial properties of the leaves of Allium schoenoprasum, Brugmansia candida (white and pink), [...] Read more.
The Amazon region is home to a remarkable diversity of plant species that are used in traditional medicine and cuisine. This study aimed to evaluate the functional, antioxidant, and antimicrobial properties of the leaves of Allium schoenoprasum, Brugmansia candida (white and pink), and Cyclanthemum bipartitum. Bioactive compounds (L-ascorbic acid, organic acids, carotenoids, phenolic compounds, and chlorophylls) were quantified using liquid chromatography. The ABTS and DPPH methods were used to assess the antioxidant capacity. Additionally, the antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus mutans, Candida albicans, and Candida tropicalis was evaluated. The results revealed a high content of L-ascorbic acid (7.6 mg/100 g dry weight) and total carotenoids (509.0 mg/100 g dry weight), as well as high antioxidant capacity (4.5 mmol TE/100 g dry weight) and broad antimicrobial activity in Brugmansia candida ‘pink’. The White variety had the highest concentration of total chlorophylls (1742.8 mg/100 g DW), Cyclanthemum bipartitum had the highest total organic acid content (2814.5 mg/100 g DW), and Allium schoenoprasum had the highest concentration of total phenolic compounds (11,351.6 mg/100 g DW). These results constitute a starting point for future research, emphasizing the potential health risks that certain species may pose. Full article
(This article belongs to the Special Issue Plant Materials and Their Antioxidant Potential, 2nd Edition)
Show Figures

Figure 1

16 pages, 825 KiB  
Article
Geographic Scale Matters in Analyzing the Effects of the Built Environment on Choice of Travel Modes: A Case Study of Grocery Shopping Trips in Salt Lake County, USA
by Ensheng Dong, Felix Haifeng Liao and Hejun Kang
Urban Sci. 2025, 9(8), 307; https://doi.org/10.3390/urbansci9080307 - 5 Aug 2025
Abstract
Compared to commuting, grocery shopping trips, despite their profound implications for mixed land use and transportation planning, have received limited attention in travel behavior research. Drawing upon a travel diary survey conducted in a fast-growing metropolitan region of the United States, i.e., Salt [...] Read more.
Compared to commuting, grocery shopping trips, despite their profound implications for mixed land use and transportation planning, have received limited attention in travel behavior research. Drawing upon a travel diary survey conducted in a fast-growing metropolitan region of the United States, i.e., Salt Lake County, UT, this research investigated a variety of influential factors affecting mode choices associated with grocery shopping. We analyze how built environment (BE) characteristics, measured at seven spatial scales or different ways of aggregating spatial data—including straight-line buffers, network buffers, and census units—affect travel mode decisions. Key predictors of choosing walking, biking, or transit over driving include age, household size, vehicle ownership, income, land use mix, street density, and distance to the central business district (CBD). Notably, the influence of BE factors on mode choice is sensitive to different spatial aggregation methods and locations of origins and destinations. The straight-line buffer was a good indicator for the influence of store sales amount on mode choices; the network buffer was more suitable for the household built environment factors, whereas the measurement at the census block and block group levels was more effective for store-area characteristics. These findings underscore the importance of considering both the spatial analysis method and the location (home vs. store) when modeling non-work travel. A multi-scalar approach can enhance the accuracy of travel demand models and inform more effective land use and transportation planning strategies. Full article
Show Figures

Figure 1

10 pages, 373 KiB  
Proceeding Paper
Integrating Sustainable Development Goals into Renewable Energy Monopoly: A Generative AI Approach to Sustainable Development Education
by Hung-Cheng Chen
Eng. Proc. 2025, 103(1), 4; https://doi.org/10.3390/engproc2025103004 - 5 Aug 2025
Abstract
This research aims to develop an educational board game, “Sustainable Home: Energy Challenge,” based on Monopoly by integrating sustainable development goals and renewable energy to use ChatGPT in human–computer collaboration. ChatGPT was used for game conceptualization, rule development, board creation, card design, and [...] Read more.
This research aims to develop an educational board game, “Sustainable Home: Energy Challenge,” based on Monopoly by integrating sustainable development goals and renewable energy to use ChatGPT in human–computer collaboration. ChatGPT was used for game conceptualization, rule development, board creation, card design, and simulation in an iterative design. The developed board game demonstrated ChatGPT’s efficiency in educational game design and the benefits of human–computer collaboration. Game simulations validated the board game’s potential as a simulation tool to enhance diversity, cooperation, and strategic depth. The game effectively promoted SDG engagement and sustainable development education in gamified learning. Full article
Show Figures

Figure 1

14 pages, 9504 KiB  
Article
Evaluating Habitat Conditions for the Ringlet Butterfly (Erebia pronoe glottis) in a Multi-Use Mountain Landscape in the French Pyrenees
by Martin Wendt and Thomas Schmitt
Diversity 2025, 17(8), 554; https://doi.org/10.3390/d17080554 - 5 Aug 2025
Abstract
We conducted a mark–release–recapture study of the ringlet butterfly, Erebia pronoe glottis, in the Pyrenees to study population density, flight activity, dispersal, and nectar plant preferences. We found differences between both sexes in population density (males: 48/ha; females: 23/ha), sex ratio (2.1), [...] Read more.
We conducted a mark–release–recapture study of the ringlet butterfly, Erebia pronoe glottis, in the Pyrenees to study population density, flight activity, dispersal, and nectar plant preferences. We found differences between both sexes in population density (males: 48/ha; females: 23/ha), sex ratio (2.1), and behaviour (75.4 vs. 20.5% flying). Both sexes used a wide range of nectar plants (Asteraceae, 40.6%; Apiaceae, 34.4%; Caprifoliaceae, 18.8%). However, local abundance appeared to be limited by the availability of nectar plants. Compared to a population of an extensively used pasture in the Alps, a significant increase in flight activity, but not in range, was observed. Movement patterns showed the establishment of home ranges, which significantly limited the dispersal potential, being low for both sexes (mean fight distances-males: 101 m ± 73 SD; females: 68 m ± 80 SD). A sedentary taxon such as E. pronoe glottis does not seem to be able to avoid the pressure of resource shortage by dispersal. As a late-flying pollinator, Erebia pronoe competes seasonally for scarce resources. These are further reduced by grazing pressure and are exploited by honey bees as a superior competitor, resulting in low habitat quality and, consequently, in comparatively low abundance of E. pronoe glottis. Full article
(This article belongs to the Special Issue Biodiversity, Ecology and Conservation of Lepidoptera)
Show Figures

Figure 1

14 pages, 288 KiB  
Article
Cross-Regional Students’ Engagement and Teacher Relationships Across Online and In-School Learning
by Huiqi Hu, Yijun Wang and Wolfgang Jacquet
Educ. Sci. 2025, 15(8), 993; https://doi.org/10.3390/educsci15080993 (registering DOI) - 5 Aug 2025
Abstract
This study examines how teacher–student relationships and school engagement change across online and in-school learning, based on the experiences of 105 cross-regional secondary vocational students in China. Using questionnaire surveys, the study explores students’ perceptions and learning needs in both settings. The findings [...] Read more.
This study examines how teacher–student relationships and school engagement change across online and in-school learning, based on the experiences of 105 cross-regional secondary vocational students in China. Using questionnaire surveys, the study explores students’ perceptions and learning needs in both settings. The findings confirm that teachers play a consistently positive role in promoting student engagement across both online and in-school learning modalities. While affective engagement was higher during online learning, driven by stronger teacher responsiveness and improved student–teacher relationships, students reported increased pride in their schools after returning home, reflecting a renewed appreciation. In-school learning was associated with higher behavioral engagement and greater motivation, despite tensions over intensified academic tasks. Online learning facilitated cognitive engagement through easier vocabulary searches; nevertheless, poor home environments reduced motivation. Enhancing engagement may require offering students autonomy, valuing their input, and clarifying the relevance of the learning content. Full article
17 pages, 1203 KiB  
Communication
Efficacy of a Novel Lactiplantibacillus plantarum Strain (LP815TM) in Reducing Canine Aggression and Anxiety: A Randomized Placebo-Controlled Trial with Qualitative and Quantitative Assessment
by Emmanuel M. M. Bijaoui and Noah P. Zimmerman
Animals 2025, 15(15), 2280; https://doi.org/10.3390/ani15152280 - 4 Aug 2025
Abstract
Behavioral issues in domestic dogs represent a significant welfare concern affecting both canines and their caregivers, with prevalence rates reported to range from 34 to 86% across the population. Current treatment options, including selective serotonin reuptake inhibitors (SSRIs) like fluoxetine, often present limitations [...] Read more.
Behavioral issues in domestic dogs represent a significant welfare concern affecting both canines and their caregivers, with prevalence rates reported to range from 34 to 86% across the population. Current treatment options, including selective serotonin reuptake inhibitors (SSRIs) like fluoxetine, often present limitations including adverse effects and delayed efficacy. This randomized, placebo-controlled (maltodextrin) study investigated the effects of a novel Lactiplantibacillus plantarum strain (LP815TM) on canine behavioral concerns through gut–brain axis modulation. Home-based dogs (n = 40) received either LP815TM (n = 28) or placebo (n = 12) daily for 4 weeks, with behavioral changes assessed using the comprehensive Canine Behavioral Assessment & Research Questionnaire (C-BARQ) and continuous activity monitoring. After the intervention period, dogs receiving LP815TM showed significant improvements in aggression (p = 0.0047) and anxiety (p = 0.0005) compared to placebo controls. These findings were corroborated by objective activity data, which demonstrated faster post-departure settling, reduced daytime sleep, and improved sleep consistency in the treatment group. Throughout >1120 administered doses, no significant adverse events were reported, contrasting favorably with pharmaceutical alternatives. The concordance between our findings and previous research using different L. plantarum strains suggests a consistent biological mechanism, potentially involving GABA production and vagal nerve stimulation. These results indicate that LP815TM represents a promising, safe alternative for addressing common canine behavioral concerns with potential implications for improving both canine welfare and the human–animal bond. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Graphical abstract

12 pages, 688 KiB  
Article
Matrix Modeling of the Selection of Electric Generators for Home Use Based on the Analytical Hierarchical Process (AHP) Algorithm in War Conditions in Ukraine
by Barbara Dybek, Igor Ilge, Serhiy Zaporozhtsev, Adam Koniuszy and Grzegorz Wałowski
Energies 2025, 18(15), 4130; https://doi.org/10.3390/en18154130 - 4 Aug 2025
Abstract
The problem of choosing an electric generator in order to increase the reliability and continuity of energy supply to households in Ukraine was considered. It was shown that this choice is made under conditions of uncertainty. The methods of choosing alternatives to technical [...] Read more.
The problem of choosing an electric generator in order to increase the reliability and continuity of energy supply to households in Ukraine was considered. It was shown that this choice is made under conditions of uncertainty. The methods of choosing alternatives to technical systems under conditions of uncertainty, based on axiomatic, heuristic and verbal decision-making methods described in the sources, were analyzed, and the Analytical Hierarchical Process (AHP) was selected to develop a model for choosing an electric generator. The technical, economic, operational and ergonomic criteria for choosing an electric generator were justified. The novelty of the article lies in the use of the developed structural hierarchical model for choosing an electric generator for a household, and the selection of the appropriate generator option for a household was carried out using the AHP. The selected F3001 generator model is characterized by the highest value of the generalized weighting factor due to the impact of estimates based on economic and operational criteria. The use of the cogeneration unit in an agricultural biogas plant was also indicated—as an alternative to household energy supply. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

24 pages, 4441 KiB  
Article
Simulation of Trip Chains in a Metropolitan Area to Evaluate the Energy Needs of Electric Vehicles and Charging Demand
by Pietro Antonio Centrone, Giuseppe Brancaccio and Francesco Deflorio
World Electr. Veh. J. 2025, 16(8), 435; https://doi.org/10.3390/wevj16080435 - 4 Aug 2025
Viewed by 48
Abstract
The typical ranges available for electric vehicles (EVs) may be considered by users to be inadequate when compared to long, real-life trips, and charging operations may need to be planned along journeys. To evaluate the compatibility between vehicle features and charging options for [...] Read more.
The typical ranges available for electric vehicles (EVs) may be considered by users to be inadequate when compared to long, real-life trips, and charging operations may need to be planned along journeys. To evaluate the compatibility between vehicle features and charging options for realistic journeys performed by car, a simulation approach is proposed here, using travel data collected from real vehicles to obtain trip chains for multiple consecutive days. Car travel activities, including stops with the option of charging, were simulated by applying an agent-based approach. Charging operations can be integrated into trip chains for user activities, assuming that they remain unchanged in the event that vehicles switch to electric. The energy consumption of the analyzed trips, disaggregated by vehicle type, was estimated using the average travel speed, which is useful for capturing the main route features (ranging from urban to motorways). Data were recorded for approximately 25,000 vehicles in the Turin Metropolitan Area for six consecutive days. Market segmentation of the vehicles was introduced to take into consideration different energy consumption rates and charging times, given that the electric power, battery size, and consumption rate can be related to the vehicle category. Charging activities carried out using public infrastructure during idle time between consecutive trips, as well as those carried out at home or work, were identified in order to model different needs. Full article
Show Figures

Figure 1

14 pages, 3361 KiB  
Article
Bacteremia Caused by a Putative Novel Species in the Genus Erwinia: A Case Report and Genomic Analysis
by Jiwoo Lee, Taek Soo Kim, Hyunwoong Park and Jae Hyeon Park
Life 2025, 15(8), 1227; https://doi.org/10.3390/life15081227 - 3 Aug 2025
Viewed by 167
Abstract
We report a case of catheter-associated bloodstream infection caused by a putative novel species in the genus Erwinia, identified using whole-genome sequencing (WGS). A female adolescent receiving long-term home parenteral nutrition via a central venous catheter (CVC) presented with a fever. Gram-negative [...] Read more.
We report a case of catheter-associated bloodstream infection caused by a putative novel species in the genus Erwinia, identified using whole-genome sequencing (WGS). A female adolescent receiving long-term home parenteral nutrition via a central venous catheter (CVC) presented with a fever. Gram-negative rods were isolated from two CVC-derived blood culture sets, while peripheral cultures remained negative. Conventional identification methods, including VITEK 2, Phoenix M50, MALDI-TOF MS, and 16S rRNA and rpoB gene sequencing, failed to achieve species-level identification. WGS was performed on the isolate using Illumina MiSeq. Genomic analysis revealed a genome size of 5.39 Mb with 56.8% GC content and high assembly completeness. The highest average nucleotide identity (ANI) was 90.3% with Pantoea coffeiphila, and ≤85% with known Erwinia species, suggesting that it represents a distinct taxon. Phylogenetic analyses placed the isolate within the Erwinia clade but separate from any known species. Antimicrobial susceptibility testing showed broad susceptibility. This case highlights the utility of WGS for the identification of rare or novel organisms not captured by conventional methods and expands the clinical spectrum of Erwinia species. While the criteria for species delineation were met, the phenotypic characterization remains insufficient to formally propose a new species. Full article
Show Figures

Figure 1

20 pages, 12851 KiB  
Article
Evaluation of a Vision-Guided Shared-Control Robotic Arm System with Power Wheelchair Users
by Breelyn Kane Styler, Wei Deng, Cheng-Shiu Chung and Dan Ding
Sensors 2025, 25(15), 4768; https://doi.org/10.3390/s25154768 - 2 Aug 2025
Viewed by 189
Abstract
Wheelchair-mounted assistive robotic manipulators can provide reach and grasp functions for power wheelchair users. This in-lab study evaluated a vision-guided shared control (VGS) system with twelve users completing two multi-step kitchen tasks: a drinking task and a popcorn making task. Using a mixed [...] Read more.
Wheelchair-mounted assistive robotic manipulators can provide reach and grasp functions for power wheelchair users. This in-lab study evaluated a vision-guided shared control (VGS) system with twelve users completing two multi-step kitchen tasks: a drinking task and a popcorn making task. Using a mixed methods approach participants compared VGS and manual joystick control, providing performance metrics, qualitative insights, and lessons learned. Data collection included demographic questionnaires, the System Usability Scale (SUS), NASA Task Load Index (NASA-TLX), and exit interviews. No significant SUS differences were found between control modes, but NASA-TLX scores revealed VGS control significantly reduced workload during the drinking task and the popcorn task. VGS control reduced operation time and improved task success but was not universally preferred. Six participants preferred VGS, five preferred manual, and one had no preference. In addition, participants expressed interest in robotic arms for daily tasks and described two main operation challenges: distinguishing wrist orientation from rotation modes and managing depth perception. They also shared perspectives on how a personal robotic arm could complement caregiver support in their home. Full article
(This article belongs to the Special Issue Intelligent Sensors and Robots for Ambient Assisted Living)
Show Figures

Figure 1

10 pages, 3612 KiB  
Communication
Comparison of Habitat Selection Models Between Habitat Utilization Intensity and Presence–Absence Data: A Case Study of the Chinese Pangolin
by Hongliang Dou, Ruiqi Gao, Fei Wu and Haiyang Gao
Biology 2025, 14(8), 976; https://doi.org/10.3390/biology14080976 (registering DOI) - 1 Aug 2025
Viewed by 126
Abstract
Identifying habitat characteristics is essential for conserving critically endangered species. When quantifying species habitat characteristics, ignoring data types may lead to misunderstandings about species’ specific habitat requirements. This study focused on the critically endangered Chinese pangolin in Guangdong Province, China, and divided the [...] Read more.
Identifying habitat characteristics is essential for conserving critically endangered species. When quantifying species habitat characteristics, ignoring data types may lead to misunderstandings about species’ specific habitat requirements. This study focused on the critically endangered Chinese pangolin in Guangdong Province, China, and divided the study area into 600 m × 600 m grids based on its average home range. The burrow number within each grid was obtained through line transect surveys, with burrow numbers/line transect lengths used as direct indicators of habitat utilization intensity. The relationships with sixteen environmental variables, which could be divided into three categories, including topographic, human disturbance and land cover composition, were quantified using the GAM method. We also converted continuous data into binary data (0, 1), constructed GAMs and compared them with habitat utilization intensity models. Our results indicate that the habitat utilization intensity model identified profile curvature and slope as primary factors, showing a nonlinear response to profile curvature (Edf = 5.610, p = 0.014) and a positive relationship with slope (Edf = 1.000, p = 0.006). The presence–absence model emphasized distance to water (Edf = 1.000, p = 0.014), slope (Edf = 1.709, p = 0.043) and aspect (Edf = 2.000, p = 0.026). The intensity model explained significantly more deviance, captured complex nonlinear relationships and supported higher model complexity without overfitting. This study demonstrates that habitat utilization intensity data provides a more ecologically informative basis for in situ conservation (e.g., identifying core habitats), and the process from habitat selection to habitat utilization should be integrated to reveal species’ habitat characteristics. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 - 1 Aug 2025
Viewed by 207
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

14 pages, 400 KiB  
Article
Assessing Functional Independence and Associated Factors in Older Populations of Kazakhstan: Implications for Long-Term Care
by Gulzhainar Yeskazina, Ainur Yeshmanova, Gulnara Temirova, Elmira Myrzakhmet, Maya Alibekova, Aigul Tazhiyeva, Shynar Ryspekova, Akmaral Abdykulova, Ainur Nuftieva, Tamara Abdirova, Zhanar Mombiyeva and Indira Omarova
Healthcare 2025, 13(15), 1878; https://doi.org/10.3390/healthcare13151878 - 31 Jul 2025
Viewed by 219
Abstract
Background/Objectives: Accurately assessing the independence level of older adults using useful assessment tools is an important step toward providing them with the necessary care while preserving their dignity. These tools allow older adults to receive effective, personalized home care, which improves their [...] Read more.
Background/Objectives: Accurately assessing the independence level of older adults using useful assessment tools is an important step toward providing them with the necessary care while preserving their dignity. These tools allow older adults to receive effective, personalized home care, which improves their quality of life. This study aimed to clarify the current prevalence of severe and complete functional dependence and associated factors among Kazakhstan’s older adults aged >60 years. Methods: This cross-sectional study was conducted in several polyclinics and geriatric service care centers in two cities of Kazakhstan from March to May 2024. Functional status was assessed by the Barthel Index. We combined the selection into two categories: total dependency and severe dependency in the category “dependent”, and moderate dependency, slight dependency, and total independence in the category “active patients”. Results: Among the 642 older people in this study, 43.3% were dependent patients, and 56.7% were active patients. The odds of severe and total functional dependence are significantly higher for frail participants (adjusted odds ratio (AOR) = 2.96, 95% confidence interval (CI) [1.70, 5.16], p < 0.001) compared to those that are not frail; eleven times higher for those at home (AOR =11.90, 95% CI [5.77, 24.55], p < 0.001) than those in nursing homes; two times higher for participants with sarcopenia (AOR =2.61, 95% CI [1.49, 4.55], p < 0.001) compared to those with no sarcopenia; and three times higher for participants with high risk of fracture (AOR =3.30, 95% CI [1.94, 5.61], p < 0.001) compared to those with low risk. The odds of having severe and total functional dependence are significantly higher for participants with low dynamometry (AOR =1.05, 95% CI [1.03, 1.07], p < 0.001) compared to those with normal dynamometry. Conclusions: Old age, low dynamometry (for men ≤ 29 kg, for women ≤ 17 kg), frailty, being at home, high risk of fracture and osteoporosis, and sarcopenia were associated with increased risk of severe and total functional dependence. Full article
Show Figures

Figure 1

Back to TopTop