Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = historical aerial photograph

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 13192 KiB  
Article
Investigating a Large-Scale Creeping Landmass Using Remote Sensing and Geophysical Techniques—The Case of Stropones, Evia, Greece
by John D. Alexopoulos, Ioannis-Konstantinos Giannopoulos, Vasileios Gkosios, Spyridon Dilalos, Nicholas Voulgaris and Serafeim E. Poulos
Geosciences 2025, 15(8), 282; https://doi.org/10.3390/geosciences15080282 - 25 Jul 2025
Viewed by 317
Abstract
The present paper deals with an inhabited, creeping mountainous landmass with profound surface deformation that affects the local community. The scope of the paper is to gather surficial and subsurface information in order to understand the parameters of this creeping mass, which is [...] Read more.
The present paper deals with an inhabited, creeping mountainous landmass with profound surface deformation that affects the local community. The scope of the paper is to gather surficial and subsurface information in order to understand the parameters of this creeping mass, which is usually affected by several parameters, such as its geometry, subsurface water, and shear zone. Therefore, a combined aerial and surface investigation has been conducted. The aerial investigation involves UAV’s LiDAR acquisition for the terrain model and a comparison of historical aerial photographs for land use changes. The multi-technique surface investigation included resistivity (ERT) and seismic (SRT, MASW) measurements and density determination of geological formations. This combination of methods proved to be fruitful since several aspects of the landslide were clarified, such as water flow paths, the internal geological structure of the creeping mass, and its geometrical extent. The depth of the shear zone of the creeping mass is delineated at the first five to ten meters from the surface, especially from the difference in diachronic resistivity change. Full article
Show Figures

Figure 1

24 pages, 15554 KiB  
Article
The Evolution of Plot Morphology and Design Strategies in Built Heritage Renewal in Central Shanghai from the Perspective of Sharing Cities
by Zhenyu Li, Mengxun Liu and Yichen Zhu
Land 2025, 14(5), 959; https://doi.org/10.3390/land14050959 - 29 Apr 2025
Viewed by 795
Abstract
With the rise of the sharing economy and the concept of the sharing city, the field of urban renewal is facing new opportunities and challenges. This paper innovatively explores built heritage renewal in central Shanghai from the perspective of the sharing economy, focusing [...] Read more.
With the rise of the sharing economy and the concept of the sharing city, the field of urban renewal is facing new opportunities and challenges. This paper innovatively explores built heritage renewal in central Shanghai from the perspective of the sharing economy, focusing on the evolution of plot morphology and associated design strategies. Six representative cases, selected within the framework of three urban renewal policies from 1999 to the present, are analyzed using a diachronic method based on the Conzen school and the street frontage index. Combined with historical maps, aerial photographs, and satellite images, the paper analyzes the changes in plot morphology from 1999 to 2024. The paper highlights how the introduction of sharing city principles significantly impacted plot morphology, facilitating the expansion and diversification of space use and driving the restructuring of plot boundaries, including physical, property, and activity boundaries. The study further reveals how the shared city concept has led to the emergence of privately owned public spaces. Additionally, the paper discusses the pursuit of flow, openness, and sharing in urban renewal, noting how these factors have shifted the focus from purely rentable and sellable areas to more efficient space resource allocation, optimizing spatial configurations. Finally, the paper introduces the concept of “sharing by transfer”, proposing that adjustments to plot boundaries under the sharing economy framework can foster more equitable, efficient, and sustainable urban renewal, providing new perspectives and strategic recommendations for built heritage renewal. Full article
Show Figures

Figure 1

25 pages, 34678 KiB  
Article
Historical Coast Snaps: Using Centennial Imagery to Track Shoreline Change
by Fátima Valverde, Rui Taborda, Amy E. East and Cristina Ponte Lira
Remote Sens. 2025, 17(8), 1326; https://doi.org/10.3390/rs17081326 - 8 Apr 2025
Viewed by 917
Abstract
Understanding long-term coastal evolution requires historical data, yet accessing reliable information becomes increasingly challenging for extended periods. While vertical aerial imagery has been extensively used in coastal studies since the mid-20th century, and satellite-derived shoreline measurements are now revolutionizing shoreline change studies, ground-based [...] Read more.
Understanding long-term coastal evolution requires historical data, yet accessing reliable information becomes increasingly challenging for extended periods. While vertical aerial imagery has been extensively used in coastal studies since the mid-20th century, and satellite-derived shoreline measurements are now revolutionizing shoreline change studies, ground-based images, such as historical photographs and picture postcards, provide an alternative source of shoreline data for earlier periods when other datasets are scarce. Despite their frequent use for documenting qualitative morphological changes, these valuable historical data sources have rarely supported quantitative assessments of coastal evolution. This study demonstrates the potential of historical ground-oblique images for quantitatively assessing shoreline position and long-term change. Using Conceição-Duquesa Beach (Cascais, Portugal) as a case study, we analyze shoreline evolution over 92 years by applying a novel methodology to historical photographs and postcards. The approach combines image registration, shoreline detection, coordinate transformation, and rectification while accounting for positional uncertainty. Results reveal a significant counterclockwise rotation of the shoreline between the 20th and 21st centuries, exceeding estimated uncertainty thresholds. This study highlights the feasibility of using historical ground-based imagery to reconstruct shoreline positions and quantify long-term coastal change. The methodology is straightforward, adaptable, and offers a promising avenue for extending the temporal range of shoreline datasets, advancing our understanding of coastal evolution. Full article
(This article belongs to the Special Issue Advances in Remote Sensing of the Inland and Coastal Water Zones II)
Show Figures

Figure 1

32 pages, 23634 KiB  
Article
Predictive Archaeological Risk Assessment at Reservoirs with Multitemporal LiDAR and Machine Learning (XGBoost): The Case of Valdecañas Reservoir (Spain)
by Enrique Cerrillo-Cuenca and Primitiva Bueno-Ramírez
Remote Sens. 2025, 17(7), 1306; https://doi.org/10.3390/rs17071306 - 5 Apr 2025
Cited by 1 | Viewed by 889
Abstract
The conservation and monitoring of archaeological sites submerged in water reservoirs have become increasingly necessary in a climatic context where water management policies are possibly accelerating erosion and sedimentation processes. This study assesses the potential of using multitemporal LiDAR data and Machine Learning [...] Read more.
The conservation and monitoring of archaeological sites submerged in water reservoirs have become increasingly necessary in a climatic context where water management policies are possibly accelerating erosion and sedimentation processes. This study assesses the potential of using multitemporal LiDAR data and Machine Learning (ML)—specifically the XGBoost algorithm—to predict erosional and sedimentary processes affecting archaeological sites in the Valdecañas Reservoir (Spain). Using data from 2010 to 2023, topographic variations were calculated through a robust workflow that included the co-registration of LiDAR point clouds and the generation of high-resolution DEMs. Hydrological variables, topographic descriptors, and water dynamics-related factors were extracted and used to train models based on the detected measurement errors and the temporal ranges of the DEMs. The model trained with 2018–2023 data exhibited the highest predictive performance (R2 = 0.685), suggesting that sedimentary and erosional patterns are partially predictable. Finally, a multicriteria approach was applied using a DEM generated from 1957 aerial photographs to estimate past variations based on historical terrain conditions. The results indicate that areas exposed to fluctuating water levels and different topographic orientations suffer greater damage. This study highlights the value of LiDAR and ML in assessing the vulnerability of archaeological sites in highly dynamic environments. Full article
Show Figures

Figure 1

21 pages, 60967 KiB  
Article
Geomorphological Effects of Land Reclamation on the Coastal Plain East of the Venice Lagoon (Italy)
by Federica Rizzetto, Andrea Osti and Annamaria Volpi Ghirardini
Water 2025, 17(7), 1060; https://doi.org/10.3390/w17071060 - 3 Apr 2025
Viewed by 800
Abstract
The present study aimed at identifying the transformations that occurred since the 1600s in a low-lying territory located east of the Venice Lagoon. The environmental modifications were examined in a GIS environment through the interpretation of multidisciplinary data. The analysis of historical maps [...] Read more.
The present study aimed at identifying the transformations that occurred since the 1600s in a low-lying territory located east of the Venice Lagoon. The environmental modifications were examined in a GIS environment through the interpretation of multidisciplinary data. The analysis of historical maps realized from 1641 to 1943, as well as aerial photographs and satellite images taken in the last few decades, was fundamental to reconstruct the evolution of the study area mainly in relation to anthropogenic processes. Over the past few centuries, various attempts of land reclamation partially or totally failed. However, even if an overall general decrease in both the total pond surface area and the marsh extension has been observed since the 19th century, the territory appeared entirely dry back only in the 1940s owing to the efficacy of the main most recent works. Full article
Show Figures

Figure 1

17 pages, 8550 KiB  
Article
Enhancing Historical Aerial Photographs: A New Approach Based on Non-Reference Metric and Photo Interpretation Elements
by Abdullah Harun Incekara and Dursun Zafer Seker
Sensors 2025, 25(7), 2126; https://doi.org/10.3390/s25072126 - 27 Mar 2025
Cited by 1 | Viewed by 459
Abstract
Deep learning-based super-resolution (SR) is an effective state-of-the-art technique for enhancing low-resolution images. This study explains a hierarchical dataset structure within the scope of enhancing grayscale historical aerial photographs with a basic SR model and relates it to non-reference image quality metric. The [...] Read more.
Deep learning-based super-resolution (SR) is an effective state-of-the-art technique for enhancing low-resolution images. This study explains a hierarchical dataset structure within the scope of enhancing grayscale historical aerial photographs with a basic SR model and relates it to non-reference image quality metric. The dataset was structured based on the hierarchy of photo interpretation elements. Images of bare land and forestry areas were evaluated as the primary category containing tone and color elements, images of residential areas as the secondary category containing shape and size elements, and images of farmland areas as the tertiary category containing pattern elements. Instead of training all images in all categories at once, which is the issue that any SR model with low number of parameters has difficulty handling, each category was trained separately. Test images containing the features of each category were enhanced separately, which means three enhanced images for one test image. The obtained images were divided into equal parts of 5 × 5 pixel size, and the final image was created by concatenating those that were determined to be of higher quality based on the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) metric values. Subsequently, comparative analyses based on visual interpretation and reference-based image quality metrics proved that the approach to the dataset structure positively impacted the results. Full article
(This article belongs to the Special Issue Computational Optical Sensing and Imaging)
Show Figures

Figure 1

19 pages, 5416 KiB  
Article
Re-Using Historical Aerial Imagery for Obtaining 3D Data of Beach-Dune Systems: A Novel Refinement Method for Producing Precise and Comparable DSMs
by Jaime Almonacid-Caballer, Carlos Cabezas-Rabadán, Denys Gorkovchuk, Jesús Palomar-Vázquez and Josep E. Pardo-Pascual
Remote Sens. 2025, 17(4), 594; https://doi.org/10.3390/rs17040594 - 10 Feb 2025
Cited by 3 | Viewed by 1230
Abstract
This study explores the potential of repurposing historical aerial photographs to produce high-accuracy digital surface models (DSMs) at regional scales. A novel methodology is introduced, incorporating road points for quality control and refinement to enhance the precision and comparability of multitemporal DSMs. The [...] Read more.
This study explores the potential of repurposing historical aerial photographs to produce high-accuracy digital surface models (DSMs) at regional scales. A novel methodology is introduced, incorporating road points for quality control and refinement to enhance the precision and comparability of multitemporal DSMs. The method consists of two phases. The first is the photogrammetric phase, where DSMs are generated using photogrammetric and structure from motion (SfM) techniques. The second is the refinement phase, which uses a large number (millions) of points extracted from road centrelines to evaluate altimetric residuals—defined as the differences between photogrammetric DSMs and a reference DSM. These points are filtered to ensure that they represent stable positions. The analysis shows that the initial residuals exhibit geographical trends, rather than random behaviour, that are removed after the refinement. An application example covering the whole coast of the Valencian region (Eastern Spain, 518 km of coastline) shows the obtention of a series composed of six DSMs. The method achieves levels of accuracy (0.15–0.20 m) comparable to modern LiDAR techniques, offering a cost-effective alternative for three-dimensional characterisation. The application to the foredune and coastal environment demonstrated the method’s effectiveness in quantifying sand volumetric changes through comparison with a reference DSM. The achieved accuracy is crucial for establishing precise sedimentary balances, essential for coastal management. At the same time, this method shows significant potential for its application in other dynamic landscapes, as well as urban or agricultural monitoring. Full article
Show Figures

Figure 1

33 pages, 7731 KiB  
Article
Historicizing Natural Hazards and Human-Induced Landscape Transformation in a Tropical Mountainous Environment in Africa: Narratives from Elderly Citizens
by Violet Kanyiginya, Ronald Twongyirwe, David Mubiru, Caroline Michellier, Mercy Gloria Ashepet, Grace Kagoro-Rugunda, Matthieu Kervyn and Olivier Dewitte
Land 2025, 14(2), 346; https://doi.org/10.3390/land14020346 - 8 Feb 2025
Viewed by 1291
Abstract
Studying natural hazards in the context of human-induced landscape transformation is complex, especially in regions with limited information. The narratives of the elderly can play a role in filling these knowledge gaps at the multi-decadal timescale. Here, we build upon a citizen-based elderly [...] Read more.
Studying natural hazards in the context of human-induced landscape transformation is complex, especially in regions with limited information. The narratives of the elderly can play a role in filling these knowledge gaps at the multi-decadal timescale. Here, we build upon a citizen-based elderly approach to understanding natural hazard patterns and landscape transformation in a tropical mountainous environment, the Kigezi Highlands (SW Uganda). We engaged 98 elderly citizens (>70 years old) living in eight small watersheds with different characteristics. Through interviews and focus group discussions, we reconstructed historical timelines and used participatory mapping to facilitate the interview process. We cross-checked the information of the elderly citizens with historical aerial photographs, archives, and field visits. Our results show that major land use/cover changes are associated with a high population increase over the last 80 years. We also evidence an increase in reported natural hazard events such as landslides and flash floods from the 1940s until the 1980s. Then, we notice a stabilization in the number of hazard events per decade, although the two most impacted decades (1980s and 2000s) stand out. Despite this new information, an increase in natural hazard frequency due to land use/cover change cannot yet be quantitatively validated, especially when the probable modulator effect of climate variability is considered. Nevertheless, the increase in the exposure of a vulnerable population to natural hazards is clear, and population growth together with poor landscape management practices are the key culprits that explain this evolution. This study demonstrates the added value of historical narratives in terms of understanding natural hazards in the context of environmental changes. This insight is essential for governments and non-governmental organizations for the development of policies and measures for disaster risk reduction that are grounded in the path dependence of local realities. Full article
Show Figures

Figure 1

18 pages, 11448 KiB  
Article
Historical Roots of Heritage Horticulture in the Southern Coastal Plain of Israel
by Motti Zohar, Yuval Ben-Bassat and Guy Bar-Oz
Land 2025, 14(2), 285; https://doi.org/10.3390/land14020285 - 30 Jan 2025
Viewed by 1787
Abstract
This study reconstructs the agricultural landscape of the southern coastal plain of late Ottoman and British Mandatory Palestine (today southwestern Israel) utilizing late 19th and early 20th century cartographic materials and aerial photographs. Immense human effort and ingenuity were required to maintain sustainable [...] Read more.
This study reconstructs the agricultural landscape of the southern coastal plain of late Ottoman and British Mandatory Palestine (today southwestern Israel) utilizing late 19th and early 20th century cartographic materials and aerial photographs. Immense human effort and ingenuity were required to maintain sustainable agricultural on the fringes of the desert. Given today’s increasingly severe climate crisis, the lessons drawn from these historical agricultural practices have particular resonance. The agricultural land use described in this work extended into the coastal dunes of the region where the shallow water table was exploited to create complex agricultural systems that enabled the growth of citrus trees, grapes, and other crops for export and trade. Aerial photos and maps reveal the critical aspects of this region’s neglected agricultural history. The stability and resilience of these systems, some of which are still in existence 76 years or more after they were abandoned, as seen in the survey conducted for this study, point to the importance of understanding and preserving this chapter of the region’s agricultural heritage. The unique varieties of fruit trees adapted to the local climate of the western Negev still have significant economic value and are threatened with extinction from rapid urban encroachment. The remnants of this tradition serve as historical testimony of a bygone agricultural era which was replaced by mechanized monoculture. The discussion centers on the ways n which the study of heritage agriculture in rapidly changing areas can contribute to the broader field of historical geography by reconstructing landscapes that preserve the knowledge and societal patterns of behavior of past communities for future generations. Full article
(This article belongs to the Section Landscape Archaeology)
Show Figures

Figure 1

18 pages, 9341 KiB  
Article
Climate Change-Induced Decline in Succulent Euphorbia in Namibia’s Arid Regions
by J. J. Marion Meyer, Marie M. Potgieter, Nicole L. Meyer and Anika C. Meyer
Plants 2025, 14(2), 190; https://doi.org/10.3390/plants14020190 - 11 Jan 2025
Viewed by 1430
Abstract
The global rise in temperatures due to climate change has made it difficult even for specialised desert-adapted plant species to survive on sandy desert soils. Two of Namibia’s iconic desert-adapted plant species, Welwitschia mirabilis and the quiver tree Aloidendron dichotomum, have recently [...] Read more.
The global rise in temperatures due to climate change has made it difficult even for specialised desert-adapted plant species to survive on sandy desert soils. Two of Namibia’s iconic desert-adapted plant species, Welwitschia mirabilis and the quiver tree Aloidendron dichotomum, have recently been shown to be under threat because of climate change. In the current study, three ecologically important Namibian Euphorbia milk bushes were evaluated for their climate change response. By comparing good-quality aerial photographs from the 1960s and recent 2020s high-resolution satellite images, it was determined by QGIS remote sensing techniques that very high percentages of the large succulents E. damarana, E. gummifera, and E. gregaria have died during the last 50 years in arid areas of Namibia. Areas like Brandberg (northern Namibia), Klein Karas (south-east), and Garub (south-west), with a high sandy-textured ground cover, have seen the loss of around 90% of E. damarana and E. gregaria and about 61% of E. gummifera in this period. This is alarming, as it could threaten the survival of several animal species adapted to feed on them, especially during droughts. This study focused on large succulent euphorbias, distinguishable in satellite images and historical photographs. It was observed that many other plant species are also severely stressed in arid sandy areas. The obtained results were ground-truthed and species identification was confirmed by the chemical analysis of remaining dead twigs using GC-MS and metabolomics. The ERA5 satellite’s 2 m above-ground temperature data show a 2 °C rise in annual average noon temperatures since 1950 at the three locations analysed. Annual daily temperatures increased by 1.3 °C since 1950, exceeding the global average rise of about 1.0 °C since 1900. This suggests that euphorbias and other plants on low-water-capacity sandy soils in Namibia face greater climate change pressure than plants globally. Full article
(This article belongs to the Special Issue Ethnobotany and Biodiversity Conservation in South Africa)
Show Figures

Figure 1

27 pages, 22102 KiB  
Article
Integration of Multi-Source Archival Data for 3D Reconstruction of Non-Existent Historical Buildings
by Beata Calka, Paulina Jaczewska and Justyna Slowik
Appl. Sci. 2025, 15(1), 299; https://doi.org/10.3390/app15010299 - 31 Dec 2024
Cited by 1 | Viewed by 1231
Abstract
The city of Warsaw, Poland, has endured significant damage throughout its history, particularly during World War II. The city was bombed in September 1939, and many buildings were blown up following the Warsaw Ghetto Uprising in May 1943. The Warsaw Uprising in August [...] Read more.
The city of Warsaw, Poland, has endured significant damage throughout its history, particularly during World War II. The city was bombed in September 1939, and many buildings were blown up following the Warsaw Ghetto Uprising in May 1943. The Warsaw Uprising in August and September 1944 led to further destruction from artillery bombardments and fires. Even after the surrender and civilian evacuation in October 1944, additional demolitions occurred, leaving almost 90% of Warsaw in ruins. Despite ongoing efforts to rebuild the city, many landmarks could not be fully reconstructed. However, invaluable historical archives preserve remnants of Warsaw’s rich history. To reconstruct 3D models of pre-war buildings in Warsaw, a methodology was developed that integrates cartographic materials, spatial data, and results from tachymetric measurements. Historical maps, terrestrial and aerial photographs, and architectural blueprints from the National Archives in Warsaw were used to propose three distinct approaches to 3D modeling. Notable structures such as the Grand Synagogue, the Kamienica Theater building, and the Tłomackie buildings were selected for 3D modeling. These buildings either were destroyed or endured significant damage during the war. The 3D modeling process involved meticulous processing and calibrating of historical photographs alongside tachymetric surveying for accurate measurements. The proposed methodology showcases the feasibility of recreating 3D renderings of historical edifices, even those lost to time, utilizing archival cartographic data and spatial information from diverse sources. By leveraging cartographic heritage with digital advancements, a unique perspective on Warsaw’s narrative can be gained, enriching the understanding of its past for both residents and professionals such as historians, archivists, and cartographers. Full article
Show Figures

Figure 1

23 pages, 35351 KiB  
Article
Geological and Geomorphological Characterization of the Anthropogenic Landslide of Pie de la Cuesta in the Vitor Valley, Arequipa, Peru
by Rosmery Infa, Antenor Chavez, Jorge Soto, Joseph Huanca, Gioachino Roberti, Brent Ward, Rigoberto Aguilar and Teresa Teixidó
Geosciences 2024, 14(11), 291; https://doi.org/10.3390/geosciences14110291 - 31 Oct 2024
Viewed by 1861
Abstract
This study presents the geological and geomorphological characterization of the Pie de la Cuesta landslide, a large (>60 ha) slow-moving (up 4.5 m/month) landslide in Southern Peru. The landslide has been active since 1975 and underwent a significant re-activation in 2016; the mass [...] Read more.
This study presents the geological and geomorphological characterization of the Pie de la Cuesta landslide, a large (>60 ha) slow-moving (up 4.5 m/month) landslide in Southern Peru. The landslide has been active since 1975 and underwent a significant re-activation in 2016; the mass movement has caused the loss of property and agricultural land and it is currently moving, causing further damage to property and land. We use a combination of historical aerial photographs, satellite images and field work to characterize the landslide’s geology and geomorphology. The landslide is affecting the slope of the Vitor Valley, constituted by a coarsening upward sedimentary sequence transitioning from layers of mudstone and gypsum at the base, to sandstone and conglomerate at the top with a significant ignimbrite layer interbedded within conglomerates near the top of the sequence. The landslide is triggered by an irrigation system that provides up to 10 L/s of water infiltrating the landslide mass. This water forms two groundwater levels at lithological transitions between conglomerates and mudstones, defining the main failure planes. The landslide is characterized by three main structural domains defined by extension, translation and compression deformation regimes. The extensional zone, near the top of the slope, is defined by a main horst–graben structure that transitions into the translation zone defined by toppling and disaggregating blocks that eventually become earth flows that characterize the compressional zone at the front of the landslides, defined by thrusting structures covering the agricultural land at the valley floor. The deformation rates range from 8 cm/month at the top of the slope to 4.5 m/month within the earth flows. As of May 2023, 22.7 ha of potential agricultural land has been buried. Full article
Show Figures

Figure 1

27 pages, 56757 KiB  
Article
Active Fault Interpretation in the Northern Segment of the Red River Fault Based on Multisource Remote Sensing Data
by Long Guo, Zhongtai He, Zhikun Ren, Xingao Li and Linlin Li
Remote Sens. 2024, 16(21), 3925; https://doi.org/10.3390/rs16213925 - 22 Oct 2024
Viewed by 1370
Abstract
High-resolution topographic and geomorphic data are important basic data for the study of active structures. Here, multisource remote sensing data were used to reinterpret the active faults in the northern segment of the Red River Fault (China). First, we obtained airborne light detection [...] Read more.
High-resolution topographic and geomorphic data are important basic data for the study of active structures. Here, multisource remote sensing data were used to reinterpret the active faults in the northern segment of the Red River Fault (China). First, we obtained airborne light detection and ranging (LiDAR) data, high-resolution GaoFen-7 (GF-7) remote sensing image data, and historical aerial photographs, and a high-resolution digital elevation model (DEM) was generated based on the airborne LiDAR data and GF-7 data. According to the remote sensing interpretation, the main active faults were identified. We subsequently verified the faults in the field and constrained the geographic locations. The current activity was confirmed to be dominantly normal faulting, with some dextral strike-slip components, and the latest active age was the Late Holocene. It reflects the coordination of structural deformation between the rotation of the secondary block and the sliding of the boundary fault within the Sichuan–Yunnan Block. The results show that airborne LiDAR and GF-7 remote sensing data have a great application value in providing high-resolution topographic and geomorphologic data for the study of active structures. The comprehensive application of multisource remote sensing data can greatly improve the reliability of active fault interpretations and provide a reference for follow-up research within the study area. Full article
Show Figures

Graphical abstract

17 pages, 12934 KiB  
Article
Geological Assessment of Faults in Digitally Processed Aerial Images within Karst Area
by Laszlo Podolszki, Nikola Gizdavec, Mateo Gašparović and Tihomir Frangen
Geosciences 2024, 14(7), 195; https://doi.org/10.3390/geosciences14070195 - 18 Jul 2024
Viewed by 1189
Abstract
The evolution of map development has been shaped by advancing techniques and technologies. Nevertheless, field and remote mapping with cabinet data analysis remains essential in this process. Geological maps are thematic maps that delineate diverse geological features. These maps undergo updates reflecting changes [...] Read more.
The evolution of map development has been shaped by advancing techniques and technologies. Nevertheless, field and remote mapping with cabinet data analysis remains essential in this process. Geological maps are thematic maps that delineate diverse geological features. These maps undergo updates reflecting changes in the mapped area, technological advancements, and the availability of new data. Herein, a geological assessment example focused on enhancing mapped data using digitally processed historical (legacy) aerial images is presented for a case study in the Dinarides karst area in Croatia. The study area of Bribirske Mostine is covered by the Basic Geological Map of Yugoslavia (BGMY) at a 100,000 scale, which was developed during the 1960s. As the BGMY was developed 60+ years ago, one of its segments is further analyzed and discussed, namely, faults. Moreover, applying modern-day technologies and reinterpretation, its data, scale, presentation, and possible areas of improvement are presented. Georeferenced digital historical geological data (legacy), comprising BGMY, archive field maps, and aerial images from 1959 used in BGMY development, are reviewed. Original faults were digitalized and reinterpreted within the geographic information system with the following conclusions: (i) more accurate data (spatial positioning) on faults can be gained by digitally processing aerial photographs taken 60+ years ago with detailed review and analysis; (ii) simultaneously, new data were acquired (additional fault lines were interpreted); (iii) the map scale can be up-scaled to 1:25,000 for the investigated area of Bribirske Mostine; and (iv) a newly developed map for the Bribirske Mostine study area is presented. Full article
(This article belongs to the Section Structural Geology and Tectonics)
Show Figures

Figure 1

21 pages, 10718 KiB  
Article
A Comprehensive Approach to Quantitative Risk Assessment of Rockfalls on Buildings Using 3D Model of Rockfall Runout
by Mohammad Al-Shaar, Pierre-Charles Gerard, Ghaleb Faour, Walid Al-Shaar and Jocelyne Adjizian-Gérard
J 2024, 7(2), 183-203; https://doi.org/10.3390/j7020011 - 30 May 2024
Cited by 1 | Viewed by 2358
Abstract
Rockfalls are incidents of nature that take place when rocks or boulders break from a steep slope and fall to the ground. They can pose considerable threats to buildings placed in high-risk zones. Despite the fact that the impact of a rockfall on [...] Read more.
Rockfalls are incidents of nature that take place when rocks or boulders break from a steep slope and fall to the ground. They can pose considerable threats to buildings placed in high-risk zones. Despite the fact that the impact of a rockfall on a building can cause structural and non-structural damage, few studies have been undertaken to investigate the danger associated with this event. Most of these studies indicated that the risk resulting from rockfall hazards is hard to forecast and assess. A comprehensive quantitative risk assessment approach for rockfalls on buildings is developed and described in this paper and applied for the Mtein village in Mount Lebanon. This method employs a 3D model to simulate the rockfall trajectories using a combination of digital elevation data, field surveys, and orthorectified aerial photographs. The spatial and temporal probability of rockfalls were evaluated using the analysis of historical data in two triggering-factor scenarios: earthquake and precipitation. The findings show that, during the period of 1472 years between the years 551 (the first observed large earthquake in Lebanon) and the current year of the study (2023), the temporal probability will potentially be equal to 0.002 and 0.105 in the cases of earthquake- and rainfall-triggered rockfalls, respectively, while the maximal damage values are expected to be 232 USD and 10,511 USD per year, respectively. The end result is a final map presenting the risk values assigned to each building that could be damaged by rockfalls. Full article
Show Figures

Figure 1

Back to TopTop