Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = high-temperature superconducting tapes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2061 KiB  
Article
A Tube Furnace Design for the Oxygen Annealing of a REBCO Superconducting Joint
by Zili Zhang, Chuangan Liu, Yang Gao, Hongli Suo, Lei Wang, Shunzhong Chen, Jianhua Liu and Qiuliang Wang
Materials 2025, 18(13), 3053; https://doi.org/10.3390/ma18133053 - 27 Jun 2025
Viewed by 326
Abstract
In this study, we investigated how to design a tube furnace for the oxygen annealing of a REBa2Cu3O7−x (REBCO, where RE = rare earth) superconducting joint. We confirmed the annealing temperature threshold of REBCO tape Ic degradation, [...] Read more.
In this study, we investigated how to design a tube furnace for the oxygen annealing of a REBa2Cu3O7−x (REBCO, where RE = rare earth) superconducting joint. We confirmed the annealing temperature threshold of REBCO tape Ic degradation, which was 175C. A heat exchange model that included REBCO tape and a tube furnace was established by using this temperature as the boundary condition. At the same time, the temperature distribution of the REBCO tape in a commercial tube furnace was measured for the calibration of the heat exchange model. The feasibility and accuracy of the model were confirmed by comparing the real measurements and the simulation results. We then optimized the furnace design based on the model according to two criteria: a 20 mm length of REBCO tape should be kept at high temperatures for the oxygen annealing of REBCO joints and the length of tape at temperatures over the Ic degradation temperature should be as short as possible. The results of this furnace design investigation could help fabricate shorter REBCO superconducting joints, making the magnet more compact and decreasing the length of the Cu stabilizer layer to be removed. Full article
Show Figures

Figure 1

11 pages, 2621 KiB  
Article
Comparison of Commercial REBCO Tapes Through Flux Pinning Energy
by Masood Rauf Khan, Antonio Leo, Andrea Masi, Achille Angrisani Armenio, Andrea Augieri, Giuseppe Celentano, Armando Galluzzi, Massimiliano Polichetti, Angela Nigro and Gaia Grimaldi
Crystals 2024, 14(12), 1017; https://doi.org/10.3390/cryst14121017 - 23 Nov 2024
Viewed by 1488
Abstract
This work presents a comparison of different commercial tapes belonging to the second-generation High-Temperature Superconductors (2G HTS) produced by SuNAM Co., Ltd., SuperOx, and Shanghai Superconductors Technology Co., Ltd. (SST) companies. The aim is to investigate pinning mechanisms responsible for best performances, looking [...] Read more.
This work presents a comparison of different commercial tapes belonging to the second-generation High-Temperature Superconductors (2G HTS) produced by SuNAM Co., Ltd., SuperOx, and Shanghai Superconductors Technology Co., Ltd. (SST) companies. The aim is to investigate pinning mechanisms responsible for best performances, looking at the anisotropy of the irreversibility field and of the flux pinning energy. The irreversibility line states the upper limit of current-carrying capacity, whereas the flux pinning energy explores the ability of material defects to act as weak collectively or strong single vortex pinning centers. All investigated samples have artificial pinning centers (APCs) included in the superconducting matrix: BHO-doped EuBCO for SST, Y2O3 in YBCO for SuperOx, and Gd2O3 particles trapped in GdBCO for SuNAM. Resistive transition curves were measured in high magnetic fields up to 16 T for magnetic field orientations parallel and perpendicular to the tape surface. We found that the anistropy of SST tape shows an overall independence both on temperature and magnetic field, while the other two samples show a more complex behavior. This leads to the conclusion that properly engineered APC optimization in coated conductors can further reduce anisotropy of superconducting properties. Full article
(This article belongs to the Special Issue Research on REBCO Films and Conductors)
Show Figures

Figure 1

23 pages, 5827 KiB  
Article
Design Study for a Superconducting High-Power Fan Drive for a Long-Range Aircraft
by Jan Hoffmann, Wolf-Rüdiger Canders and Markus Henke
Energies 2024, 17(22), 5652; https://doi.org/10.3390/en17225652 - 12 Nov 2024
Viewed by 1384
Abstract
New aerodynamic aircraft concepts enable the storage of volumetric liquid hydrogen (LH2). Additionally, the low temperatures of LH2 enable technologies such as the superconductivity of electrical fan drives and power distribution components. An increased power density of the onboard wiring harness and the [...] Read more.
New aerodynamic aircraft concepts enable the storage of volumetric liquid hydrogen (LH2). Additionally, the low temperatures of LH2 enable technologies such as the superconductivity of electrical fan drives and power distribution components. An increased power density of the onboard wiring harness and the electrical machine can be expected. The highest system efficiency and the smallest fuel and tank weight will be achieved with a highly efficient energy conversion by the fuel cell from LH2 to electrical energy. This publication shows a comprehensive study for cryogenic fan drives based on experimental-driven tape superconductor investigations, mission profile-based considerations, design analyses of superconducting electrical machines, and studies of the cooling concepts. A cryogenic system cannot be considered without a feasible cooling concept. Here, an approach with a safe He-based cooling system is proposed, using the LH2 flow to the fuel cell as a heat sink for the losses in the electrical system. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

19 pages, 13480 KiB  
Article
The Identification of Microstructural Changes in High-Temperature Superconducting Tapes for Superconducting Fault Current Limiters
by Sylwia Hajdasz, Adam Kempski, Katarzyna Arkusz, Mariusz Michalski and Paweł Szczesniak
Appl. Sci. 2024, 14(20), 9520; https://doi.org/10.3390/app14209520 - 18 Oct 2024
Viewed by 939
Abstract
HTS 2G tapes used in Superconducting Fault Current Limiters (SFCLs) have properties that allow for the effective limitation of short-circuit currents; however, due to the specificity of the device operation, they should be characterized by the high stability of the parameters when repeatedly [...] Read more.
HTS 2G tapes used in Superconducting Fault Current Limiters (SFCLs) have properties that allow for the effective limitation of short-circuit currents; however, due to the specificity of the device operation, they should be characterized by the high stability of the parameters when repeatedly leaving the superconducting state. During the operation of SFCLs, a situation may occur in which the parameters of the HTS tapes used will change several times as a result of the action of short-circuit currents that exceed the critical current IC of the superconductor of the tape used. This paper presents the results of microstructural tests of 2G HTS tapes intended for SFCLs, subjected to surge currents corresponding to prospective short-circuit currents with values higher than their critical currents IC and for which IC changes were observed. The HTS tapes were examined using a JEOL 7600F field emission scanning electron microscope (SEM), and their chemical composition was analyzed using Energy-Dispersive X-ray Spectroscopy (EDS). The test results indicate the possibility of micro-damage in the form of cracks in the superconductor layer, as well as the interruption of the buffer layers and the oxidation of the silver layers. The analysis of the chemical composition of the HTS tape layers may indicate the occurrence of diffusion processes. Full article
Show Figures

Figure 1

13 pages, 4545 KiB  
Article
Comparison of Levitation Properties between Bulk High-Temperature Superconductor Blocks and High-Temperature Superconductor Tape Stacks Prepared from Commercial Coated Conductors
by Anke Kirchner, Tilo Espenhahn, Sebastian Klug, Kornelius Nielsch and Ruben Hühne
Materials 2024, 17(18), 4516; https://doi.org/10.3390/ma17184516 - 14 Sep 2024
Cited by 1 | Viewed by 1055
Abstract
Bulk high-temperature superconductors (HTSs) such as REBa2Cu3O7−x (REBCO, RE = Y, Gd) are commonly used in rotationally symmetric superconducting magnetic bearings. However, such bulks have several disadvantages such as brittleness, limited availability and high costs [...] Read more.
Bulk high-temperature superconductors (HTSs) such as REBa2Cu3O7−x (REBCO, RE = Y, Gd) are commonly used in rotationally symmetric superconducting magnetic bearings. However, such bulks have several disadvantages such as brittleness, limited availability and high costs due to the time-consuming and energy-intensive fabrication process. Alternatively, tape stacks of HTS-coated conductors might be used for these devices promising an improved bearing efficiency due to a simplification of manufacturing processes for the required shapes, higher mechanical strength, improved thermal performance, higher availability and therefore potentially reduced costs. Hence, tape stacks with a base area of (12 × 12) mm2 and a height of up to 12 mm were prepared and compared to commercial bulks of the same size. The trapped field measurements at 77 K showed slightly higher values for the tape stacks if compared to bulks with the same size. Afterwards, the maximum levitation forces in zero field (ZFC) and field cooling (FC) modes were measured while approaching a permanent magnet, which allows the stiffness in the vertical and lateral directions to be determined. Similar levitation forces were measured in the vertical direction for bulk samples and tape stacks in ZFC and FC modes, whereas the lateral forces were almost zero for stacks with the REBCO films parallel to the magnet. A 90° rotation of the tape stacks with respect to the magnet results in the opposite behavior, i.e., a high lateral but negligible vertical stiffness. This anisotropy originates from the arrangement of decoupled superconducting layers in the tape stacks. Therefore, a combination of stacks with vertical and lateral alignment is required for stable levitation in a bearing. Full article
(This article belongs to the Special Issue Novel Superconducting Materials and Applications of Superconductivity)
Show Figures

Figure 1

41 pages, 10274 KiB  
Article
Techno-Economic Assessment of Coaxial HTS HVAC Transmission Cables with Critical Current Grading between Phases Using the OSCaR Tool
by Andrea Musso, Lorenzo Cavallucci, Giuliano Angeli, Marco Bocchi, Angelo L’Abbate, Lorenzo Carmine Vitulano, Sebastian Dambone Sessa, Francesco Sanniti and Marco Breschi
Appl. Sci. 2024, 14(17), 7488; https://doi.org/10.3390/app14177488 - 24 Aug 2024
Cited by 1 | Viewed by 1382
Abstract
In recent years, the scientific and industrial interest regarding alternative technologies for transmission cables has increased. These conductors should efficiently transmit significant amounts of power between grid nodes, which are expected to be particularly congested due to the projected global increase in electricity [...] Read more.
In recent years, the scientific and industrial interest regarding alternative technologies for transmission cables has increased. These conductors should efficiently transmit significant amounts of power between grid nodes, which are expected to be particularly congested due to the projected global increase in electricity production. Superconducting cables are considered a promising solution in this context, offering the potential to transmit large amounts of energy with minimal losses and compact dimensions, thereby potentially benefiting the environment. To evaluate the feasibility of integrating superconducting cables into existing grids, techno-economic approaches should be adopted. Such techniques enable the conceptual design of a specific cable structure, allowing users to explore a wide range of operating parameters to derive optimal designs. This paper reports a comprehensive techno-economic analysis of High Voltage Alternating Current (HVAC) cables realized with High-Temperature Superconducting (HTS) tapes, with the aim to transmit extremely high-power level. The optimal coaxial design is selected using Optimization Tool for Superconducting Cable Research (OSCaR) by implementing a graded approach to the critical current of the HTS tapes used for the different phases. This optimization aims to achieve the most effective balance between the cost of the coated conductors and their electrical properties. The whole set of model equations, the user-defined parameters, and the applied constraints are detailed. The OSCaR tool is then applied to assess the impact on the optimized design of the cable system and the corresponding cost indexes of several crucial parameters, such as the maximum transmitted power, the voltage level, and the line length. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

16 pages, 5259 KiB  
Article
Numerical Study on Mechanical Behavior and Electromechanical Properties of Solder-Jointed REBCO-Coated Conductors
by Tianfa Liao, Wenyuan Wang, Zhiming Chen and Mingzhi Guan
Materials 2024, 17(11), 2517; https://doi.org/10.3390/ma17112517 - 23 May 2024
Cited by 2 | Viewed by 1431
Abstract
As the second-generation high-temperature superconducting conductors, rare earth–barium–copper–oxide (REBCO) coated conductor (CC) tapes have good potential as high-field and high-energy superconductors. In superconducting applications, several joints are required for conjugating comparatively short REBCO CC tapes. Soldering lap joints are the simplest and most [...] Read more.
As the second-generation high-temperature superconducting conductors, rare earth–barium–copper–oxide (REBCO) coated conductor (CC) tapes have good potential as high-field and high-energy superconductors. In superconducting applications, several joints are required for conjugating comparatively short REBCO CC tapes. Soldering lap joints are the simplest and most commonly applied REBCO CC joints. In addition to joint resistance, the mechanical behavior and electromechanical properties are also crucial for superconducting applications. In this paper, the electromechanical properties and mechanical behaviors of soldering lap joints at 77 K under a self-field were studied. The mechanical behavior was addressed by using a full three-dimensional multilayer elastic–plastic finite element model (FEM) with REBCO CC tape main layers and solder connecting layers. Then, the electromechanical properties were analyzed by using Gao’s strain-Ic degradation general model on the basis of the FEM results. Both the mechanical behavior and electromechanical properties were verified by experimental results. The effects of soldering lap conditions including lap length, soldering thickness and lap style on the electromechanical properties and mechanical behaviors were discussed. The results indicate that shorter overlap lengths and a thinner solder can reduce the premature degradation of Ic due to stress concentrations nearby the joint edges; moreover, the irreversible critical strain is significantly higher in the back-to-back joint approach compared to the widely used face-to-face joint approach. Full article
Show Figures

Figure 1

17 pages, 5165 KiB  
Article
Optimization of REBCO Tapes through Division and Striation for Use in Superconducting Cables with Low AC Losses
by Marcela Pekarčíková, Lubomír Frolek, Martin Necpal, Eva Cuninková, Michal Skarba, Simona Hulačová, Filip Ferenčík and Barbora Bočáková
Materials 2023, 16(23), 7333; https://doi.org/10.3390/ma16237333 - 25 Nov 2023
Cited by 1 | Viewed by 2434
Abstract
This study aimed to enhance the performance of Ag-stabilized high-temperature superconducting (HTS) tapes with a focus on reducing magnetization losses. Two approaches were employed: dividing the tapes into narrower widths and introducing striation at the level of the superconducting layer. The process of [...] Read more.
This study aimed to enhance the performance of Ag-stabilized high-temperature superconducting (HTS) tapes with a focus on reducing magnetization losses. Two approaches were employed: dividing the tapes into narrower widths and introducing striation at the level of the superconducting layer. The process of laser ablation proved to be an effective method for implementing these modifications. The quality of the cut edges and grooves was assessed using scanning electron microscopy. To evaluate the electrical properties, measurements were conducted on the critical current and magnetization loss in samples at different stages: in their initial state, after cutting, and after the striation process. Of the two modifications, the striation process more effectively reduced the AC losses in the HTS tapes, approximately by one order of magnitude. The retention of critical current remained high after cutting, but varied with the number of created filaments after the striation process. Subsequently, a short cable was wound from the cut and striated HTS tape. This cable demonstrated a remarkable sixfold reduction in AC losses compared to the initial HTS tape. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

12 pages, 3506 KiB  
Article
Evaluation of the Performance of Commercial High Temperature Superconducting Tapes for Dynamo Flux Pump Applications
by Giacomo Russo and Antonio Morandi
Energies 2023, 16(21), 7244; https://doi.org/10.3390/en16217244 - 25 Oct 2023
Cited by 3 | Viewed by 2101
Abstract
High Temperature Superconducting (HTS) dynamo flux pumps are a promising alternative to metal current leads for energization and the persistent current mode operation of high current DC superconducting magnet systems for applications in rotating machines, such as Magnetic Resonance Imaging (MRI) or fusion [...] Read more.
High Temperature Superconducting (HTS) dynamo flux pumps are a promising alternative to metal current leads for energization and the persistent current mode operation of high current DC superconducting magnet systems for applications in rotating machines, such as Magnetic Resonance Imaging (MRI) or fusion systems. The viability of the flux pump concept has been widely proven by laboratory experiments and research is now in progress for the design and optimization of flux pump devices for practical applications. It has been widely established that the dependence of the critical current density (Jc) on the temperature (T), the magnetic field magnitude (B), and the orientation (θ), has a substantial impact on the overall DC voltage obtained at the terminals, as well as on the current limit and the loss of the flux pump. Since HTS tapes produced by different manufacturers, they show different dependencies of Jc with the amplitude and the orientation of the magnetic field. They also give rise to different outputs when employed in flux pumps. In this paper, we evaluate and compare the performance of several commercial HTS tapes used for flux pumping purposes through numerical simulation. We also investigate the dependence of the flux pump ‘s performance on the operating temperatures. A 2D finite element numerical model is first developed and validated against experimental data at 77 K. Afterward, the same HTS dynamo apparatus used for validation is exploited for the comparison. The Jc(B,θ,T) and n(B,θ,T) relations, which characterize each different tape in the model, are reconstructed via artificial intelligence techniques based on the open-access database of the Robinson Research Institute. It is shown in the paper that certain tapes are more suitable than others for flux pump applications and that the best overall operating temperature is in the vicinity of 77 K. Full article
Show Figures

Figure 1

26 pages, 5516 KiB  
Review
Selected Materials and Technologies for Electrical Energy Sector
by Henryka Danuta Stryczewska, Oleksandr Boiko, Mariusz Adam Stępień, Paweł Lasek, Masaaki Yamazato and Akira Higa
Energies 2023, 16(12), 4543; https://doi.org/10.3390/en16124543 - 6 Jun 2023
Cited by 9 | Viewed by 2779
Abstract
Ensuring the energy transition in order to decrease CO2 and volatile organic compounds emissions and improve the efficiency of energy processes requires the development of advanced materials and technologies for the electrical energy sector. The article reviews superconducting materials, functional nanomaterials used [...] Read more.
Ensuring the energy transition in order to decrease CO2 and volatile organic compounds emissions and improve the efficiency of energy processes requires the development of advanced materials and technologies for the electrical energy sector. The article reviews superconducting materials, functional nanomaterials used in the power industry mainly due to their magnetic, electrical, optical, and dielectric properties and the thin layers of amorphous carbon nitride, which properties make them an important material from the point of view of environmental protection, optoelectronic, photovoltaic and energy storage. The superconductivity-based technologies, material processing, and thermal and nonthermal plasma generation have been reviewed as technologies that can be a solution to chosen problems in the electrical energy sector and environment. The study explains directly both—the basics and application potential of low and high-temperature superconductors as well as peculiarities of the related manufacturing technologies for Roebel cables, 1G and 2G HTS tapes, and superconductor coil systems. Among the superconducting materials, particular attention was paid to the magnesium di-boride MgB2 and its potential applications in the power industry. The benefits of the use of carbon films with amorphous structures in electronics, sensing technologies, solar cells, FETs, and memory devices were discussed. The article provides the information about most interesting, from the R&D point of view, groups of materials for PV applications. It summarises the advantages and disadvantages of their use regarding commercial requirements such as efficiency, lifetime, light absorption, impact on the environment, costs of production, and weather dependency. Silicon processing, inkjet printing, vacuum deposition, and evaporation technologies that allow obtaining improved and strengthened materials for solar cell manufacturing are also described. In the case of the widely developed plasma generation field, waste-to-hydrogen technology including both thermal and non-thermal plasma techniques has been discussed. The review aims to draw attention to the problems faced by the modern power industry and to encourage research in this area because many of these problems can only be solved within the framework of interdisciplinary and international cooperation. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

19 pages, 9674 KiB  
Article
Critical Current Degradation in HTS Tapes for Superconducting Fault Current Limiter under Repeated Overcurrent
by Sylwia Hajdasz, Adam Kempski, Krzysztof Solak, Maciej Marc, Jacek Rusinski and Pawel Szczesniak
Appl. Sci. 2023, 13(7), 4323; https://doi.org/10.3390/app13074323 - 29 Mar 2023
Cited by 4 | Viewed by 2777
Abstract
Superconducting fault current limiters (SFCL) can be an alternative to conventional devices limiting short-circuit currents in power systems. SFCL use high-temperature superconducting tapes of the second generation (HTS 2G) in SFCL, which, after reaching the characteristic critical current of the tape, go into [...] Read more.
Superconducting fault current limiters (SFCL) can be an alternative to conventional devices limiting short-circuit currents in power systems. SFCL use high-temperature superconducting tapes of the second generation (HTS 2G) in SFCL, which, after reaching the characteristic critical current of the tape, go into the resistive state (quenching), limiting the short-circuit current. The critical current determines the moment of activation of the SFCL. Therefore, its value should not change during the operation of the device due to repeated limitation of short-circuit currents. The constancy of the critical current is a prerequisite for proper cooperation with the power system protection devices. Multiple quenching can cause microdamage in the superconducting layers responsible for lowering of the value of the critical current of the HTS tapes. The article presents the research results on the degradation processes of 2G HTS tapes intended for the construction of SFCL due to the action of prospective short-circuit currents with values exceeding the critical current of the tested tapes. The decrease in the value of the critical current of the HTS tape as a result of multiple transitions to the resistive state was investigated. The amount of energy emitted during the test current pulse of 0.2 s duration was determined. The limitation values of the voltage drop on the tape, which does not cause accelerated degradation processes, were defined. The microstructural tests of cross-sections of new HTS tapes subjected to prospective short-circuit currents were performed. Full article
(This article belongs to the Collection Advanced Power Electronics in Power Networks)
Show Figures

Figure 1

15 pages, 5890 KiB  
Article
Electron Beam Characterization of REBCO-Coated Conductors at Cryogenic Conditions
by Michal Haubner, Patrick Krkotić, Catarina Serafim, Valentine Petit, Vincent Baglin, Sergio Calatroni, Bernard Henrist, Artur Romanov, Teresa Puig and Joffre Gutierrez
Appl. Sci. 2023, 13(5), 2765; https://doi.org/10.3390/app13052765 - 21 Feb 2023
Cited by 3 | Viewed by 2701
Abstract
Particle accelerators with superconducting magnets operating at cryogenic temperatures use a beam screen (BS) liner that extracts heat generated by the circulating bunched charge particle beam before it can reach the magnets. The BS surface, commonly made of high–conductivity copper, provides a low [...] Read more.
Particle accelerators with superconducting magnets operating at cryogenic temperatures use a beam screen (BS) liner that extracts heat generated by the circulating bunched charge particle beam before it can reach the magnets. The BS surface, commonly made of high–conductivity copper, provides a low impedance for beam stability reasons, low secondary electron yield (SEY) to mitigate the electron–cloud (EC) effect, and low electron–stimulated desorption yield (ESD) to limit the dynamic pressure rise due to EC. Rare–earth barium copper oxide (REBCO) high–temperature superconductors (HTSs) recently reached technical maturity, are produced as coated conductor tapes (REBCO–CCs), and will be considered for application in future colliders to decrease the BS impedance and enable operation at around 50 K, consequently relaxing the cryogenic requirements. Aside from HTS properties, industry–grade REBCO–CCs also need qualification for EC and dynamic vacuum compatibility under accelerator–like conditions. Hence, we report the SEY and ESD measured at cryogenic temperatures of 12 K under low–energy electron irradiation of 0–1.4 keV. We also verify the sample compositions and morphologies using the XPS, SEM, and EDS methods. The energy and dose dependencies of ESD are comparable to those of technical–grade metals and one sample reached SEYMAX = 1.2 after electron conditioning. Full article
(This article belongs to the Special Issue High-Temperature Superconductors and Their Applications)
Show Figures

Figure 1

15 pages, 5643 KiB  
Article
Intelligent Probability Estimation of Quenches Caused by Weak Points in High-Temperature Superconducting Tapes
by Alireza Sadeghi, Zhihui Xu, Wenjuan Song and Mohammad Yazdani-Asrami
Energies 2023, 16(1), 193; https://doi.org/10.3390/en16010193 - 24 Dec 2022
Cited by 7 | Viewed by 2017
Abstract
Fluctuations in the critical current along the length of high-temperature superconducting (HTS) tapes manufactured in the form of coated conductors is a common manufacturing phenomenon. These fluctuations originate in the generation of weak points through the length of HTS tapes that may cause [...] Read more.
Fluctuations in the critical current along the length of high-temperature superconducting (HTS) tapes manufactured in the form of coated conductors is a common manufacturing phenomenon. These fluctuations originate in the generation of weak points through the length of HTS tapes that may cause quenching later. By means of the propagation of quenches in HTS tapes, the reliability, stability, and the performance of the device and the system that contain HTS tapes could be seriously degraded. In this study, an artificial intelligence technique based on artificial neural networks (ANN) was proposed to estimate the probability of quenches in HTS tapes caused by weak points. For this purpose, six different HTS tapes were considered with different widths, total thicknesses, and thicknesses of sub-layers. Then, for each one of these tapes, different operating conditions were considered, where the operating temperature changed from 40 K to 80 K, in 1 K steps. Under each operating temperature, different operating currents were considered from 50% to 100% of tape critical current. All of these resulted in more than 5000 different data points. Then, for each of these data points, analytical modelling was performed to provide initial inputs and outputs for the ANN model. It should be noted that the performed simulations were conducted based on an analytical method that was experimentally validated in the literature. After that, a sensitivity analysis was conducted to select the hyperparameters and structure of the ANN-based model. The last step was to take advantage of the trained model, as a function in the MATLAB software package to estimate the probability of quenches in different case studies. The significant feature of the proposed model is the capability for estimating the probability of quenches under different operating temperatures and currents for different types of HTS tapes. Full article
Show Figures

Figure 1

32 pages, 10430 KiB  
Article
New Scaling Laws for Pinning Force Density in Superconductors
by Evgueni F. Talantsev
Condens. Matter 2022, 7(4), 74; https://doi.org/10.3390/condmat7040074 - 13 Dec 2022
Cited by 5 | Viewed by 3396
Abstract
Since the report by Fietz and Webb (Phys. Rev.1968, 178, 657–667), who considered the pinning force density, Fp=Jc×B (where Jc is the critical current density and B is applied [...] Read more.
Since the report by Fietz and Webb (Phys. Rev.1968, 178, 657–667), who considered the pinning force density, Fp=Jc×B (where Jc is the critical current density and B is applied magnetic flux density), in isotropic superconductors as a unique function of reduced magnetic field, BBc2 (where Bc2 is the upper critical field), Fp has been scaled based on the BBc2 ratio, for which there is a widely used Kramer–Dew–Hughes scaling law of FpB=Fp,maxBBc2p1BBc2q, where Fp,max, Bc2, p, and q are free-fitting parameters. To describe FpB in high-temperature superconductors, the Kramer–Dew–Hughes scaling law has been modified by (a) an assumption of the angular dependence of all parameters and (b) by the replacement of the upper critical field, Bc2, by the irreversibility field, Birr. Here, we note that Fp is also a function of critical current density, and thus, the FpJc scaling law should exist. In an attempt to reveal this law, we considered the full FpB,Jc function and reported that there are three distinctive characteristic ranges of BBc2,JcJcsf (where Jcsf is the self-field critical current density) on which FpB,Jc can be splatted. Several new scaling laws for FpJc were proposed and applied to MgB2, NdFeAs(O,F), REBCO, (La,Y)H10, and YH6. The proposed scaling laws describe the in-field performance of superconductors at low and moderate magnetic fields, and thus, the primary niche for these laws is superconducting wires and tapes for cables, fault current limiters, and transformers. Full article
(This article belongs to the Section Superconductivity)
Show Figures

Figure 1

14 pages, 4071 KiB  
Article
Multi-Objective Optimization for Improving Weight and Fault Characteristics of a DC HTS Cable in Cryo-Electric Aircraft
by Alireza Sadeghi and Mohammad Yazdani-Asrami
Aerospace 2022, 9(12), 753; https://doi.org/10.3390/aerospace9120753 - 26 Nov 2022
Cited by 9 | Viewed by 2025
Abstract
The aim of the presented study is to optimize the different classes of high-temperature superconducting (HTS) DC cables for improving their performances in a cryo-electric aircraft considering their weight, peak temperature during faults, and the ratio of current passing through each tape to [...] Read more.
The aim of the presented study is to optimize the different classes of high-temperature superconducting (HTS) DC cables for improving their performances in a cryo-electric aircraft considering their weight, peak temperature during faults, and the ratio of current passing through each tape to the critical current of HTS tapes. These terms were interpreted into three objective functions, and a multi-objective optimization algorithm known as non-dominated sorting genetic algorithm II was used to find the optimal solution clusters. The cable optimization was conducted for different former materials by changing the former thickness and radius. Results showed that the DC HTS cables with aluminum former have the lowest weight while cables with copper formers have the best thermal performance against faults. Full article
Show Figures

Figure 1

Back to TopTop