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Abstract: Fluctuations in the critical current along the length of high-temperature superconducting
(HTS) tapes manufactured in the form of coated conductors is a common manufacturing phenomenon.
These fluctuations originate in the generation of weak points through the length of HTS tapes that
may cause quenching later. By means of the propagation of quenches in HTS tapes, the reliability,
stability, and the performance of the device and the system that contain HTS tapes could be seriously
degraded. In this study, an artificial intelligence technique based on artificial neural networks (ANN)
was proposed to estimate the probability of quenches in HTS tapes caused by weak points. For
this purpose, six different HTS tapes were considered with different widths, total thicknesses, and
thicknesses of sub-layers. Then, for each one of these tapes, different operating conditions were
considered, where the operating temperature changed from 40 K to 80 K, in 1 K steps. Under each
operating temperature, different operating currents were considered from 50% to 100% of tape critical
current. All of these resulted in more than 5000 different data points. Then, for each of these data
points, analytical modelling was performed to provide initial inputs and outputs for the ANN model.
It should be noted that the performed simulations were conducted based on an analytical method
that was experimentally validated in the literature. After that, a sensitivity analysis was conducted
to select the hyperparameters and structure of the ANN-based model. The last step was to take
advantage of the trained model, as a function in the MATLAB software package to estimate the
probability of quenches in different case studies. The significant feature of the proposed model is
the capability for estimating the probability of quenches under different operating temperatures and
currents for different types of HTS tapes.

Keywords: artificial intelligence; critical current; quench; thermal runaway current; weak point

1. Introduction

Implementation of high-temperature superconducting (HTS) tapes in large-scale
power apparatuses is among the most promising scenarios to ensure the safe, reliable,
and efficient operation of future power systems and electrified transportation units. HTS
tapes could reduce the size, weight, loss, and total ownership cost of power devices while
their efficiency and reliability are increased [1–3]. Although HTS tapes offer a wide range of
advantages, their applications in airborne, marine, space, and terrestrial power systems face
challenges such as cost, manufacturing issues, and all the challenges related to cryogenic
operation, and thus the needs of a cryo-plant, the low energy efficiency of cryo-plants them-
selves, and complex integration and system engineering decisions. Among them, quenches
and especially premature quenches are physical phenomena that could endanger the safe
operation of superconducting devices in large-scale power applications. Quenching is de-
fined as the transition of HTS tapes from a superconducting state to a non-superconducting
state where HTS tapes show a high resistivity and may lead to burnouts of superconducting
devices in severe cases if the devices are unprotected [4,5]. Indeed, quench analysis of
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HTS tapes used in power devices plays a significant role in helping the commercialized
application of HTS tapes for electric transportation units and power systems.

It should be noticed that weak points in HTS tapes are one of the origins of quenches,
causing the local reduction in critical current, the local dissipation of power, thermal
instability and thus quenches. In such points, the local critical current of HTS tapes is
reduced to a value lower than the total critical current, and if this local critical current
becomes lower than a threshold value and if this weak point is wide enough, quenches are
highly possible/likely to occur. So, to analyze these weak points, there are multiple factors
to be studied, including the local critical current, width of the weak point, operational
temperature, and the operational current [6]. This is shown in Figure 1, which is a simple
schematic of weak points in an arbitrary HTS tape with an yttrium barium copper oxide
(YBCO) layer. Since the fluctuation of local critical current is a common phenomenon during
the manufacturing process of HTS tapes, it is necessary for manufacturers to estimate the
probability of quenches in their product, under different operational conditions. It is also
necessary for users of HTS tapes to know how probable quenches that originate in local
critical current fluctuations are during the design stages of HTS devices.
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Many investigations were performed to analyze the quenches and their consequences
in superconducting tapes, coils, and devices in the literature. These efforts could be
categorized into four subclasses: experimental studies (ESs) [7–9], finite element-based
methods (FEMs) [10–12], analytical approaches (Aps) [13–15], and intelligent methods
(IMs). ESs are usually performed to characterize the quenches in superconductors under
different thermal, mechanical, magnetic, electrical, and cryogenic conditions, but might
be destructive to tape. FEMs and APs can be used for quench characterization in different
superconducting devices and tapes. However, FEMs are usually too slow for real-time
applications and APs are mostly specialized and characterized as being valid for one specific
type of HTS tape that has gone through experimental tests, and so the outcomes of such
models cannot be generally used for all types of HTS tapes or under all operating conditions.
IMs are suitable for detecting and locating the quenches; however, there is a gap to develop
a probability model of quenches. Such a probability model allows manufacturers to observe
the performance of their products under different operating conditions. Additionally, a
probability model could help engineers and researchers when designing an HTS device
for a specific application. By accessing such a model, engineers could conceive which
operational condition could reduce the risk of quenches as well as meeting the constraints
of device operation.

In this paper, a method based on artificial neural networks (ANN) is proposed for
the first time to calculate the probability of quenches in different YBCO tapes operating at
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different temperatures. For this purpose, data for six different YBCO tapes were extracted
from Robinson Research Institute’s open access database [16]. After that, an ANN is used to
train a model to estimate the probability of quenches in these six tapes and then a plug and
play code is proposed in MATLAB software package to estimate the quench probability.
At last, three case studies are considered to test the performance of the function which is
developed in quench detection.

2. Quench Probability Estimation

Due to micro-damages, manufacturing-related failures, local heating, and anisotropy
of HTS materials, quenching can occur. The fluctuations of the critical current in HTS
tapes results in an abrupt jump in voltage at these points. Consequently, by passing the
operational current, which is higher than the local critical current, a local power dissipation
occurs. If the width of the weak point is large enough and the local critical current is small
enough, the dissipated power results in thermal instability of HTS tape, and so premature
quenching takes place [14]. Each one of these weak points is probable to turn into a quench
under a specific condition. The procedure of quench probability estimation deals with the
probability of turning weak points into quenches. This can be affected by the operating
temperature, operating current, structure of HTS tape, width of the weak points, value of
local critical current in the weak points, and index value. To perform such estimation, it
should be noted that weak points turn into a quench when the current passing through
HTS tape surpasses a threshold value, known as thermal runaway current. Based on this,
we consider different widths and minimum local critical currents for each one of HTS tapes,
operating in pre-defined operational conditions. Then, for each one of cases of weak points,
the width and minimum local critical current and thermal runaway current are calculated.
After that, the number of cases where the operational current exceeds the value of thermal
runaway current, known as quench events, is counted. Finally, the number of quench
events is divided by the total cases and based on probability rules, the quench probability
for each tape is calculated. According to [6,15], if the thermal operational current is higher
than the runaway current, the occurrence of quenches is 100% certain. The thermal runaway
current is calculated based on Equation (1) [15], which was experimentally validated in [6]:

Itr = Icm

[
ktape

(
Tc − Top

)
Icm e dxwpEc n(T)

](n(T)+1)−1

(1)

where Itr is the thermal runaway current, ktape is the thermal conductivity of the HTS tape
in W

m. K , Icm is the minimum local critical current, Tc is the critical temperature, Top is the
operating temperature, e is Euler’s number and is equal to 2.7183, dxwp is the width of the
weak point, Ec is the electric field criterion in µV/cm and n(T) is the index value of the
HTS tape at an operating temperature of Top.

To gain a better understanding about the physical nature of quenches originating in
weak points, Figure 2 is presented. Figure 2a shows the local characteristics of critical
current in an HTS tape where the weak point has a width of dxwp with the local critical
current value of (Icm), while the overall critical current of HTS tape is shown by (Ic0).
Based on the characteristics of the weak point and with respect to Equation (1), an electrical
threshold could be calculated known as thermal runaway current (Itr). According to
Figure 2b, if the operational current of the HTS tape

(
Iop
)
, becomes higher than the thermal

runaway current, the temperature of the HTS tape will enter the thermal runaway regime
and would results in burnout of the HTS tape.
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According to Equation (1), the thermal runaway current in each HTS tape which
could result in quenching can be changed based on variations in the minimum local critical
current (Icm), operating temperature (Top), tape properties and specifications, and the width
of the weak point (dxwp). Equation (1) presents the electrical limitation for each HTS tape
and does not directly calculate the probability of quenches in HTS tapes. To find this, firstly
we have to acquire the thermal runaway current for all possible cases of Icm and dxwp under
a specific operating current and temperature. After these steps, the quench probability
is calculated based on Equation (2) and by using the value of the normalized operating
current Iop/Ic:

Pq =
nq

ntot
× 100 (2)
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where Pq is the quench probability in %, nq is the number of events in which the operating
current is higher than the thermal runaway current, and ntot is the total number of states.
Events in probability can be defined as a set of outcomes of a random experiment.

Next, ntot is calculated based on Equation (3) and nq is calculated based on Equation (4):

ntot = nx × nc (3)

nq = ∑ statei where Iopi ≥ Itri (4)

where nx is the total number of considered widths for weak points, and nc is the total
number of Icm/Icoveral. Additionally, statei refers to the ith state where operating current is
higher than the calculated thermal runaway current based on values considered for dxwp
and Icm. To calculate this, the width of weak points is considered to be between 0.05 mm
and 20 mm, as proposed in [15], and nc is considered to be 0.5 to 1, which is due to the fact
that the safety margin of the critical current for HTS tapes in large-scale power applications
is usually between 0.4 and 0.6, which means that no quenching is probable for normalized
operating currents lower than this range.

Figure 3 shows the quench probability flowchart for the proposed model in this paper.
Firstly, operating conditions and tape structure are received, and then initial values for
the width of the weak point (Wi) and the ratio of the minimum local critical current to the
overall critical current (Ri) is considered. After that, for these values, the thermal runaway
current is calculated and then one has to check if thermal runaway current is lower than
operating current or not. If thermal runaway current is lower than operating current,
number of quench events (nq) is counted, on the other hand number of non-quench states
(nnq) is counted. At the next stage, Ri and Wi must be increased based on a step related
to Ri, known as dr and another step related to with, known as dW. After increasing the
minimum critical current in the weak point and width of the weak point, it should be
checked whether the considered ratio and width are higher than the upper bound of these
values or not. In the last step, quench probability is calculated based on nnq and nq values.
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3. ANN Model Development

In recent years, artificial intelligence (AI) techniques, especially machine learning
(ML) methods, have attracted widespread attention for their successful applications in
many engineering fields. In superconductivity, AI techniques have been applied to address
design [17], condition monitoring [18], control [19], and modelling [20] issues for large-scale
applications. ANN is an AI-based technique that is used to characterize nonlinear and
complex characteristics through given inputs and outputs to minimize objective function
that is given in Equation (5) [21]:

Fε =
1
2

nd

∑
i=1

(di − yi)
2 =

1
2

nd

∑
i=1

e2
i (5)

where Fε is the objective function, nd is the number of data, di is the desired value, yi is the
predicted/estimated value, and ei is the error value.

Any ANN model is divided into three layers, the input layer, the hidden layers, and
the output layer, as shown in Figure 4. The neurons of the input layer are primarily used to
receive the data from external input resources. Activation functions are used to generate
nonlinear variations in neural networks, and the function is used to map a feature to a new
feature space which is more conducive to training [22]. The activation function is often
configured as a bounded monotonic function. Neurons process the input signals and the
result in the outputs for both the hidden and output layers. The hidden layer in ANN
supplies the computing ability and processing power to produce the network output [21].
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The calculation from the input layer to the first hidden layer of ANN can be shown as
expressed in Equation (6) [21]:

H1j = f (∑n
i=1 wijxi + bj) (6)

where j = 1, 2 . . . N. Hhj is the jth node in the first hidden layer. The wij is the connection
weight from the ith node of the input layer to the jth node of the first hidden layer and xi
indicates the input from ith node. The bj is bias of jth node in the first hidden layer.

When the output transfers to next hidden layer, the output can be calculated by
Equation (7) [21]:

Hhj = f (∑n
i=1 wijxi) (7)

where j = 1, 2 . . . N, h = 1, 2 . . . M. Hhj is the jth node in the hth hidden layer.
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When the output of the hidden layer has been calculated, the calculation from hidden
layer to output layer is as expressed in Equation (8) [21]:

Ok = f (∑n
i=1 wjk HMj + bk) (8)

where j = 1, 2 . . . N, k = 1, 2 . . . m. wjk is the connection weight from the jth node of the last
hidden layer to the kth nodes of output layer and HMj indicates the output from the jth
node of the last hidden layer. The bk is the bias factor of the kth node in the output layer.

In the analysis process, the sample data are divided into a training set, a validation
set and a testing set, as shown in Figure 5. The training set fits the model and derives
the neurons’ built-in parameters. The model’s hyper-parameters are modified using the
validation set, and a preliminary evaluation of the model’s performance is conducted. The
test set evaluates the performance of the final model and its ability to classify the data [23].
Finally, it should be noted that thermal run-away current is modelled only in analytical
equations and not in the ANN-based model; therefore, the ANN model only predicts the
quench probability based on the tape structure and operating condition.
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For quench probability estimation, eight inputs for the ANN-based model were con-
sidered in this paper, namely, operating current, operating temperature, tape width, tape
thickness, stabilizer thickness, superconducting layer thickness, shield thickness, and sub-
strate thickness. It should be noted that the training data as well as validation and test data
are provided based on the analytical method, as explained in Section 2. The importance of
developing an ANN-based model for quench probability estimation, instead of continuing
to work with the analytical model, is due to the adaptability and updatability of the ANN
model. This means that the proposed ANN-based model could be updated and adapted in
future based on any new data fed into the model. This is an excellent aspect for any model
to be fitted with new requirements and properties of HTS tapes or even HTS devices.
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The root mean squared error (RMSE) and Pearson correlation coefficient (R) are used to
evaluate the error and accuracy of the quench probability estimation, which are formulated
as in Equations (9) and (10) [24]:

RMSE =

√√√√ ns

∑
k=1

(dk − yk)
2

ns
(9)

R =
∑ns

k=1(dk − d)(yk − y)√
∑ns

k=1 (dk − d)
2

∑ns
k=1 (yk − y)2

(10)

4. Results and Discussion

Based on the Ic and index value data presented in [16] for different temperature
ranges, we decided to develop our ANN-based model for six different tapes, tabulated in
Table 1 [25]. The temperature range was selected to be 40 K to 80 K for all tapes and the Iop/Ic
ratio was from 0.5 to 1, as discussed before to consider the safety margin. This ratio plays a
significant role during the design of HTS devices such as cables, machines, transformers,
SFCLs, SMESs, etc., henceforth referred to in this paper as o. It should be mentioned that
the 85% value for the operating factor is over-conservative and a weak spot is less likely
with this local critical current. However, we considered values of less than 85% for the
operating factor to observe the specific trend for quench probability. Additionally, this wide
range of operating factors could increase the adaptability of the developed ANN-based
model and make it able to react under all possible circumstances/consequences. By doing
this, the proposed model is capable of estimating the probability of quenches for different
superconducting tapes while the temperature effect is adjusted in the model. Please note
that further tape samples can be easily added to this model in future, as it was designed to
be quite flexible.

Table 1. Geometrical properties of HTS tapes used for quench probability estimation in the ANN
model.

Manufacturer Width (mm) Thickness (µm)

AMSC Amperium® 2G HTS 12 100
Fujikura FESC 2G HTS 4 106

Shanghai Creative Superconductor 4 60
SuNAM SAN04200 4 170

SuperOx YBCO 4 150
THEVA 10 110

4.1. Sensitivity Analysis on ANN Structure and Hyperparameters

There are two important hyper- or controlling parameters in each ANN model, namely
the number of neurons and the number of hidden layers. Choosing the best values of the
ANN model hyperparameters will reduce the error and increase the accuracy of the whole
quench probability estimation procedure. Figure 6a shows the impact of the aforementioned
hyperparameters on the RMSE of estimations. As can be seen, the increase in the number of
hidden layers and the number of neurons results in RMSE reduction from 10% to less than
0.001%. On the other hand, Figure 6b illustrates the impact of the hidden layers and neuron
number on the R value of estimations. Based on the results shown in Figure 5, the number
of hidden layers (nH) is selected to be seven, which results in the lowest RMSE value and
the highest R value, among other things. Additionally, the number of neurons is selected to
be 17, which reduces the RMSE value to the lowest possible value and R to highest possible
value. It should be also mentioned that increasing the number of neurons and nH to be
more than the selected values does not change the RMSE and R values significantly, while
the training time will be dramatically increased. In this stage, the training method was
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based on the Levenberg–Marquardt algorithm explained in [26]. For the sake of clarification
about the training time of each case study, Figure 7 is presented. In this figure, it can be seen
that the training time is increased by increasing the number of neurons and the number
of hidden layers, while in all cases studies, the training time remains lower than 90 s. It
should be mentioned that the computational resources that have been used for gaining
such a time are as follows:

• 16 GB DDR3 RAM
• AMD Ryzen 7 1700 eight-core processor unit (CPU).
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This is just a personal computer, and indeed if one uses high-performance computation
resources, this training time can be shorter than a second.

4.2. Accuracy of ANN-Based Model

After tuning the hyperparameters, Figure 7 shows the estimated probability versus
expected probability. The more accurate the estimation is, the more the distribution of data
points in Figure 8 must be aligned to the y = x line. The R value is about 0.99999, showing
the high capability of the ANN model in estimating the quench probability.
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Figure 8. Regression for quench probability estimation by proposed structure of ANN.

Figure 9 shows the estimated values and expected (real) values in the solid black line
and dotted red line, respectively. As can be seen in this figure, the estimated values are in
excellent agreement with the real values. This can also be seen for the absolute error in
Figure 8, which is shown by the solid blue line. The absolute error shows that the maximum
error between estimated and real values is 1.35%. Additionally, most of the absolute error
data are in range of −0.2% to 1.2%, which indicates the high accuracy of the model.
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Figure 10 depicts the estimated quench probability versus temperature and operating
current. Regardless of quench probability, the figure shows that the lower the temperature
gets, the Ic value of each HTS tape increases, and thus HTS tapes can carry a higher current
at lower temperatures. On the other hand, the low possibility of quenching (lower than
30%) is distributed more in areas with low temperature and low current. This is because of
the nature of HTS tapes, where in lower temperatures, Ic is increased and if the passing
current remains lower that the Ic value (especially 50% lower than Ic), the probability of
quenching is reduced significantly.
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4.3. Case Studies: MATLAB Function

To avoid a long computation procedure, once the model is trained, we developed a
MATLAB ANN function that operates based on the trained ANN model to estimate quench
probability. To test the performance of the ANN function, we tested three different tapes
and fed their operating conditions into the developed MATLAB function. As shown in
Figure 11a, firstly, the operating temperature is established by the program. After that, as
illustrated in Figure 11b, the type of HTS tape must be selected. Three case studies are
analyzed under different operating condition including current and temperature for each
tape. For each tape, two temperatures are considered—50 K, which represents an ideal
thermal condition which is much lower than the critical temperature of HTS tapes, and
80 K, which represents a near-critical temperature for HTS tapes. It should also mentioned
be that for all cases, the minimum local critical current is considered to be 50% lower than
the overall critical current. This means that in the worst-case scenario, local critical currents
are 50% lower than the overall critical current.
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As shown in Table 2, for all HTS tapes and under all temperatures, the quench proba-
bility under 50% loading is equal to zero. In this scenario, the thermal runaway current
is always higher than the operating current, and quenching is absolutely impossible. On
the contrary, when a fault current passes through HTS tape with a three times higher
amplitude than the critical current, representing fault currents in superconducting devices,
quenching is 100% probable. For full loading conditions, there is a quench probability of
21% to 27%. This means that under assumed condition, regardless of the application of
HTS tapes, if they operate at full load, they will probably quench. This is considered the
worst-case scenario when Icm is 50% lower than overall critical current. If Icm increases
to just 55%, the quench probability will be 12% to 16%, and if Icm increases to 60%, the
probability will be changed to 2% to 6%. For overloading conditions, the quench probability
is higher than 80%, and this means that quenching is highly probable in this scenario. If the
worst-case scenario of local critical current reduces to 90% of the overall critical current, the
quench probability is still 28%. This means that in overloading conditions, quenching is
highly probable. Regarding the test time of the proposed method, it can be seen that it has
values about 1 to 4 ms, which is an excellent choice for real-time condition monitoring of
superconducting devices.
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Table 2. The test performance of the proposed ANN model for quench probability estimation.

Current Level Operating
Factor

HTS Tape-Shanghai
Creative Superconductor

HTS Tape-SuNAM
SAN04200 HTS Tape-THEVA

50 K 80 K 50 K 80 K 50 K 80 K

Quench
probability

(%)

50% loading 0.3 0 0 0 0 0 0
100% loading 0.6 21.29 22.43 24.89 27.45 23.12 26.36
150% loading 0.9 85.61 88.03 90.37 94.11 88.81 93.43
Fault current 3 100 100 100 100 100 100

Test time
(ms)

50% loading 0.3 3.58 2.81 2.05 1.19 4.28 1.37
100% loading 0.6 2.56 2.51 3.75 2.62 3.01 3.29
150% loading 0.9 4.54 1.35 1.74 3.43 3.55 3.99
Fault current 3 1.15 3.91 4.54 4.43 2.67 2.84

Figure 12 shows the impact of the worst-case scenario of local critical current on the
quench probability at different temperatures, for an operating factor of 0.6 and Shanghai
Creative Superconductor HTS tape. By increasing the local critical current from 0.5 to 0.7,
the quench possibility increases from 4% to 19%. Thus, when one designs a superconducting
device such as an HTS machine, an HTS cable, an HTS transformer, etc., one must take the
lowest value of local critical current into consideration. This value could be affected by the
operating temperature, self and external magnetic fields, and applied strain.
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5. Conclusions

Quenching is among the most significant issues of high-temperature superconducting
(HTS) tapes in large-scale power applications that could result in their thermal runaway
and even burnout. In this paper, an artificial neural network (ANN)-based surrogate model
is proposed for the first time to enable the estimation of quench probability in various
HTS tapes. For this purpose and the adaptability of the model in future investigations, an
ANN-based model is used to build an intelligent method that is capable of estimating the



Energies 2023, 16, 193 14 of 15

probability of quenches in different HTS tapes. Then, a function is built in the MATLAB
software package as a code that can be used as a plug and play software in other applications
such as coils, cables, etc., during their condition monitoring and design stages. By having
such a model, the manufacturer can observe the probability of quenches in the produced
HTS tape and can reduce it by improving the local critical current value of the HTS tape.

The most important findings and research outcomes of this paper are:

• The ANN-based model is capable of estimating quench probability for different types
of HTS tapes with 4 mm, 10 mm, and 12 mm width.

• It turned out that the ANN-based surrogate model with 7 hidden layers and 17 neurons
in each layer is the best structure for ANNs to estimate the probability of quenches.

• The proposed ANN-based model is a highly accurate model with an accuracy higher
than 99.9%.

• The probability of quenches depends highly on the minimum value of local critical
currents, especially in full load condition of HTS tapes

• Under 50% loading conditions of HTS tapes (i.e., Iop = 0.3Ic), quenching is completely
impossible.

• Under overloading conditions of HTS tapes (i.e., Iop = 0.9Ic), quenching is highly
possible, at a probability of 70% to 90%, based on different HTS tapes and temperatures.

• Under fault conditions (i.e., Iop = 3Ic), the probability of quenching is 100%.
• As the future work, the impact of magnetic field amplitude and its orientation on the

probability of quenching in HTS tapes can be integrated into the presented model.
Additionally, adding other types of quenches to this model can be conducted in future.
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