Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,768)

Search Parameters:
Keywords = high-temperature electronics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4140 KB  
Article
Preparation and Properties of Ellagic Acid-Modified Single-Walled Carbon Nanotube/Aramid Nanofiber Composite Films
by Xuguo Huai, Yuhan Wang, Weiwei Cao, Xiaowei Fan and Hong-Zhang Geng
Coatings 2026, 16(2), 147; https://doi.org/10.3390/coatings16020147 - 23 Jan 2026
Abstract
To combat the critical hurdles of thermal buildup and low-temperature shutdown events in 5G-enabled smart wearables, a high-performance flexible composite film based on ellagic acid-modified single-walled carbon nanotubes (EA-SWCNTs) and aramid nanofibers (ANF) was designed and developed. The influence mechanism of the loading [...] Read more.
To combat the critical hurdles of thermal buildup and low-temperature shutdown events in 5G-enabled smart wearables, a high-performance flexible composite film based on ellagic acid-modified single-walled carbon nanotubes (EA-SWCNTs) and aramid nanofibers (ANF) was designed and developed. The influence mechanism of the loading amount of the conductive network on the electrothermal properties of the composite material was focused on. The results show that through the π-π stacking non-covalent modification strategy, the uniform dispersion of EA-SWCNTs on the layer of ANF substrate and the construction of an ordered layered structure were successfully achieved. The prepared composite film could reach a steady-state temperature of 171 °C under a driving voltage of 3.5 V. In addition, it exhibits excellent electrothermal response characteristics and cyclic stability. It could reach the steady-state voltage within 10 s and shows no obvious performance degradation after multiple cycles. This composite film shows broad application prospects in fields such as intelligent wearable devices and flexible electronic protection. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

18 pages, 5504 KB  
Article
Genesis of the Yawan Gold Deposit, West Qinling Orogen: Insights from Calcite U-Pb Geochronology and Geochemistry of Sulfides
by Chang-Qing Dong, Zhao-Hua Bai, Ke Yang, Meng-Zhen Hao, Jia-Yi Wang, Hao Zhou and Jia-Nan Fu
Minerals 2026, 16(1), 114; https://doi.org/10.3390/min16010114 - 22 Jan 2026
Abstract
The Yawan gold deposit, located in the Western Qinling Orogen, contains gold mineralisation that is predominantly controlled by approximately east-west-trending fault systems. This study integrates field geology, petrography, cathodoluminescence imaging, electron probe microanalysis of gold-bearing minerals (pyrite and arsenopyrite), and in situ laser [...] Read more.
The Yawan gold deposit, located in the Western Qinling Orogen, contains gold mineralisation that is predominantly controlled by approximately east-west-trending fault systems. This study integrates field geology, petrography, cathodoluminescence imaging, electron probe microanalysis of gold-bearing minerals (pyrite and arsenopyrite), and in situ laser ablation U-Pb dating of calcite to constrain the timing of mineralisation and to elucidate the mechanisms of gold enrichment. This study reveals that the deposit is significantly structurally controlled and comprises two discrete mineralisation stages: a quartz-pyrite (Py1)-arsenopyrite (Apy1)-chalcopyrite assemblage (Stage 1), and a quartz-calcite-pyrite (Py2)-arsenopyrite (Apy2)-stibnite-sphalerite-galena assemblage (Stage 2). Py1 displays distinct zonation, with rim As contents notably higher than core values, while Co and Ni contents gradually decrease from core to rim. Py2 is characterised by high As (0.00%–4.72%), low Fe/S ratios, and a porous texture, containing gold and arsenopyrite inclusions. Invisible gold occurs in lattice-bound form in both Py1 and Py2. The As-Fe-S ternary diagram of pyrite indicates that Au+ likely entered the crystal lattice as a solid solution. Arsenopyrite geothermometry yields a mineralisation temperature of 389 ± 44 °C, and sulfur fugacity (ƒS2) decreased markedly from Stage 1 to Stage 2. Combined with the S and Fe characteristics of pyrite, these features support a medium-temperature metamorphic hydrothermal environment. U-Pb dating of calcite from Stage 2 yields an age of 215.6 ± 7.1 Ma. In summary, the Yawan gold deposit belongs to the orogenic gold system, with its gold precipitation and enrichment controlled by sulfidation triggered by Late Triassic tectono-fluid activity. Full article
(This article belongs to the Special Issue Gold–Polymetallic Deposits in Convergent Margins)
Show Figures

Figure 1

10 pages, 2160 KB  
Article
Tailoring Ge Nanocrystals via Ag-Catalyzed Chemical Vapor Deposition to Enhance the Performance of Non-Volatile Memory
by Chucai Guo, Qingwei Zhou, Biyuan Zheng, Hansheng Li, Fan Wu, Dan Chen, Fang Luo and Zhihong Zhu
Nanomaterials 2026, 16(2), 146; https://doi.org/10.3390/nano16020146 - 22 Jan 2026
Abstract
With the rapid advancement in portable electronics, artificial intelligence, and the Internet of Things, there is an escalating demand for high-density, low-voltage non-volatile memory (NVM) technologies. Germanium (Ge) nanocrystals (NCs) have emerged as a promising candidate for NVM applications; however, traditional synthesis methodologies [...] Read more.
With the rapid advancement in portable electronics, artificial intelligence, and the Internet of Things, there is an escalating demand for high-density, low-voltage non-volatile memory (NVM) technologies. Germanium (Ge) nanocrystals (NCs) have emerged as a promising candidate for NVM applications; however, traditional synthesis methodologies suffer from limitations in achieving precise control over the size and density of these nanocrystals, which exert a significant influence on device performance. This study presents an innovative Ag-catalyzed chemical vapor deposition (CVD) methodology for the synthesis of Ge NCs with precisely controllable size and density on SiO2/Si substrates, tailored for NVM applications. Scanning electron microscopy characterization confirms the successful growth of faceted Ge NCs. Electrical characterization of the fabricated devices reveals that Ge NCs grown at temperatures ranging from 700 to 1000 °C exhibit memory windows spanning from 3.0 to 6.8 V under a ±6 V bias. Notably, the device synthesized at 900 °C demonstrates an exceptional memory window of 7.0 V under a ±8 V bias. Furthermore, the Ge NC-based NVM devices exhibit excellent charge retention characteristics. Specifically, for the device with Ge NCs grown at 700 °C, the time required to retain charge from 100% to 95% of its initial value exceeds 10 years, demonstrating long-term stable charge storage capability. These findings underscore the significant potential of this approach for the development of high-performance NVM technologies. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

16 pages, 7138 KB  
Article
Characteristics of Plasma-Assisted Ammonia Jet Flame Under High-Pressure Conditions
by Zhicong Lv, Zhiwei Wang, Qifu Lin, Jiawei Gong, Yong Li, Yuchen Zhang and Longwei Chen
Processes 2026, 14(2), 373; https://doi.org/10.3390/pr14020373 - 21 Jan 2026
Abstract
A plasma-assisted ammonia jet flame igniter was developed in this study to address the limitations of conventional spark ignition at high pressures. The effect of pressure on plasma discharge characteristics, optical emission spectra, and exhaust gas emission was systematically investigated, providing new insights [...] Read more.
A plasma-assisted ammonia jet flame igniter was developed in this study to address the limitations of conventional spark ignition at high pressures. The effect of pressure on plasma discharge characteristics, optical emission spectra, and exhaust gas emission was systematically investigated, providing new insights into the mechanisms of plasma-assisted ammonia ignition under high-pressure conditions. The results indicate that increased chamber pressure elevates gas density, which in turn raises the voltage required to sustain an arc discharge at 0.4 MPa and markedly reduces the frequency of arc drift. Spectral analysis shows that higher pressure inhibits atomic oxygen lines (777.2 nm and 844.6 nm) while intensifying the molecular nitrogen bands between 350–450 nm. A corresponding decrease in electron excitation temperature is also observed. In terms of exhaust composition, hydrogen concentration demonstrates a bifurcated behavior, rising with pressure under fuel-rich conditions (the equivalence ratio φ > 1.2) and falling under fuel-lean conditions (φ ≤ 1). Conversely, NO concentration consistently decreases with increasing pressure across all test conditions. The ammonia concentration in the exhaust gas shows opposite pressure dependencies at different equivalence ratios. It increases with rising pressure for φ ≥ 1, while it decreases with increasing pressure for φ < 1. Full article
(This article belongs to the Special Issue Synthesis and Utilization of Clean Ammonia as Fuel)
Show Figures

Figure 1

17 pages, 4784 KB  
Article
Low-Thermal-Budget Enhancement of Electrically Conductive Adhesive Interconnection for HPBC Photovoltaic Modules
by Min Kwak, Woocheol Choi, Geonu Kim, Kiseok Jeon, Jinyong Seok, Jinho Shin and Chaehwan Jeong
Energies 2026, 19(2), 528; https://doi.org/10.3390/en19020528 - 20 Jan 2026
Abstract
The growing demand for high-efficiency photovoltaic (PV) technologies has intensified interest in advanced cell architectures, including hybrid passivated back contact (HPBC) solar cells. Conventional solder-based interconnection processes require high thermal budgets, which can induce thermomechanical stress and lead to performance degradation in thin [...] Read more.
The growing demand for high-efficiency photovoltaic (PV) technologies has intensified interest in advanced cell architectures, including hybrid passivated back contact (HPBC) solar cells. Conventional solder-based interconnection processes require high thermal budgets, which can induce thermomechanical stress and lead to performance degradation in thin back-contact cell structures. In this study, electrically conductive adhesive (ECA) interconnection is investigated as a low-thermal-budget, solder-free alternative for HPBC solar cells. The curing behavior of an acrylic-based, silver-filled ECA is systematically examined by controlling the upper lamp temperature and the welding time during the interconnection process. Electrical performance is evaluated through current–voltage characterization, fill factor, and series resistance analysis, while interfacial microstructural evolution is examined using scanning electron microscopy. The results identify a well-defined processing window in which adequate curing enables stable electrical contact formation. In contrast, both insufficient curing and excessive curing result in degraded electrical performance. To assess practical applicability, HPBC modules with an industry-relevant size of ~1000 × 1160 mm2 are fabricated and evaluated using electroluminescence imaging and I–V measurements. By identifying a robust curing window and demonstrating its successful transfer from string-level interconnections to full-size HPBC modules, this study establishes a practical, low-thermal-budget, solder-free interconnection strategy for advanced back-contact PV architectures. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Graphical abstract

10 pages, 275 KB  
Communication
High-Temperature Plasma in Casimir Physics
by Suman Kumar Panja and Mathias Boström
Physics 2026, 8(1), 11; https://doi.org/10.3390/physics8010011 - 20 Jan 2026
Abstract
We present a brief review of a nontraditional but significant application for a high-temperature charged plasma. The unorthodox proposition was made by Barry Ninham concerning a contribution from Casimir forces across high-temperature electron–positron plasma in nuclear interactions. The key message in this review [...] Read more.
We present a brief review of a nontraditional but significant application for a high-temperature charged plasma. The unorthodox proposition was made by Barry Ninham concerning a contribution from Casimir forces across high-temperature electron–positron plasma in nuclear interactions. The key message in this review is that high temperatures (about 1011 K) are found to be essential. Certainly, classical, semi-classical, and quantum considerations for the background media impact both the Casimir effect and the physics of stars and the Universe. Full article
13 pages, 3191 KB  
Article
Thermal Cycling Induced Degradation of Graphite Bipolar Plates: Mechanisms and Experimental Analysis
by Daokuan Jiao, Feiyu Li, Yongping Hou, Ruidi Wang and Dong Hao
Energies 2026, 19(2), 523; https://doi.org/10.3390/en19020523 - 20 Jan 2026
Abstract
Bipolar plates are critical components in high-efficiency energy conversion devices such as electrolyzers, fuel cells, and flow batteries, and their durability directly affects the overall performance and lifespan of the system. Although graphite bipolar plates exhibit excellent electrical conductivity and corrosion resistance, their [...] Read more.
Bipolar plates are critical components in high-efficiency energy conversion devices such as electrolyzers, fuel cells, and flow batteries, and their durability directly affects the overall performance and lifespan of the system. Although graphite bipolar plates exhibit excellent electrical conductivity and corrosion resistance, their inherent brittleness and porous structure render them prone to thermal-stress-induced damage under dynamic temperature conditions. In this study, a self-designed thermal shock testing system was utilized to perform 16,000 cycles of accelerated aging tests on graphite bipolar plates, alternating between high-temperature (90 °C) and low-temperature (30 °C) water bath environments. Systematic analysis was conducted on the performance degradation behaviors under such thermal cycling conditions using multi-scale characterization techniques, including scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrical conductivity, contact angle, surface roughness, and corrosion current density analysis. The results demonstrate that the degradation in electrical conductivity, loss of hydrophobicity, and increased surface roughness were primarily attributed to thermal-stress-induced microcrack initiation and propagation, surface oxidation, and physical structural deterioration. Notably, the corrosion current density did not increase significantly after 16,000 thermal cycles, but slightly decreased in the later stage, indicating that the aging of graphite bipolar plates is dominated by physical fatigue damage, and the graphite matrix has excellent chemical stability. The novelty of this study lies in the construction of a thermal shock testing system under long-cycle conditions, revealing the synergistic mechanism of thermal cycle-induced performance degradation of graphite bipolar plates, which provides experimental evidence and theoretical guidance for the material selection, structural design, and protection strategies of highly durable bipolar plates. Full article
(This article belongs to the Special Issue Energy Conversion Technologies for a Clean Environment)
Show Figures

Figure 1

18 pages, 8446 KB  
Article
Influence of Post-Processing Temperatures on Microstructure and Hardness of PBF-LB Ti-6Al-4V
by Trung Van Trinh, Trang Huyen Dang, Anh Hoang Pham, Gia Khanh Pham and Ulrich E. Klotz
Metals 2026, 16(1), 121; https://doi.org/10.3390/met16010121 - 20 Jan 2026
Abstract
This study investigates the effects of post-build heat treatments—such as annealing, quenching, and aging—on the microstructure and hardness of Laser Powder Bed Fusion (PBF-LB) Ti-6Al-4V. Specimens were subjected to annealing (950 °C, 1010 °C) or solution treatment/quenching (950 °C, 1010 °C), followed by [...] Read more.
This study investigates the effects of post-build heat treatments—such as annealing, quenching, and aging—on the microstructure and hardness of Laser Powder Bed Fusion (PBF-LB) Ti-6Al-4V. Specimens were subjected to annealing (950 °C, 1010 °C) or solution treatment/quenching (950 °C, 1010 °C), followed by aging (350–550 °C). Microstructural evolution was analyzed using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), electron backscatter diffraction (EBSD), and Vickers hardness testing. Results showed that the as-built sample exhibited high hardness (365.2 HV0.1) due to fine α′ martensite. Sub-β-transus annealing at 950 °C decomposed α′ into equilibrium α + 1.25% β (329 HV0.1), while super-β-transus annealing at 1010 °C formed coarse lamellar structures of α + 1.5% β, yielding the lowest hardness (319 HV0.1). Quenching from 1010 °C produced dominant α′ martensite with high hardness (371.6 HV0.1). Notably, aging samples quenched from 950 °C increased hardness, peaking at 382.6 HV0.1 at 450 °C due to precipitation, before decreasing to 364.4 HV0.1 at 550 °C due to coarsening. These findings demonstrate that optimizing heat treatment temperatures is critical for controlling phase transformations and tailoring mechanical properties in additively manufactured Ti-6Al-4V components. Full article
Show Figures

Graphical abstract

26 pages, 9979 KB  
Article
An Intelligent Multi-Port Temperature Control Scheme with Open-Circuit Fault Diagnosis for Aluminum Heating Systems
by Song Xu, Yiqi Rui, Lijuan Wang, Pengqiang Nie, Wei Jiang, Linfeng Sun and Seiji Hashimoto
Processes 2026, 14(2), 362; https://doi.org/10.3390/pr14020362 (registering DOI) - 20 Jan 2026
Abstract
Industrial aluminum-block heating processes exhibit nonlinear dynamics, substantial time delays, and stringent requirements for fault detection and diagnosis, especially in semiconductor manufacturing and other high-precision electronic processes, where slight temperature deviations can accelerate device degradation or even cause catastrophic failures. To address these [...] Read more.
Industrial aluminum-block heating processes exhibit nonlinear dynamics, substantial time delays, and stringent requirements for fault detection and diagnosis, especially in semiconductor manufacturing and other high-precision electronic processes, where slight temperature deviations can accelerate device degradation or even cause catastrophic failures. To address these challenges, this study presents a digital twin-based intelligent heating platform for aluminum blocks with a dual-artificial-intelligence framework (dual-AI) for control and diagnosis, which is applicable to multi-port aluminum-block heating systems. The system enables real-time observation and simulation of high-temperature operational conditions via virtual-real interaction. The platform precisely regulates a nonlinear temperature control system with a prolonged time delay by integrating a conventional proportional–integral–derivative (PID) controller with a Levenberg–Marquardt-optimized backpropagation (LM-optimized BP) neural network. Simultaneously, a relay is employed to sever the connection to the heater, thereby simulating an open-circuit fault. Throughout this procedure, sensor data are gathered simultaneously, facilitating the creation of a spatiotemporal time-series dataset under both normal and fault conditions. A one-dimensional convolutional neural network (1D-CNN) is trained to attain high-accuracy fault detection and localization. PID+LM-BP achieves a response time of about 200 s in simulation. In the 100 °C to 105 °C step experiment, it reaches a settling time of 6 min with a 3 °C overshoot. Fault detection uses a 0.38 °C threshold defined based on the absolute minute-to-minute change of the 1-min mean temperature. Full article
Show Figures

Figure 1

12 pages, 2318 KB  
Article
Enhanced Room-Temperature Optoelectronic NO2 Sensing Performance of Ultrathin Non-Layered Indium Oxysulfide via In Situ Sulfurization
by Yinfen Cheng, Nianzhong Ma, Zhong Li, Dengwen Hu, Zhentao Ji, Lieqi Liu, Rui Ou, Zhikang Shen and Jianzhen Ou
Sensors 2026, 26(2), 670; https://doi.org/10.3390/s26020670 - 19 Jan 2026
Abstract
The detection of trace nitrogen dioxide (NO2) is critical for environmental monitoring and industrial safety. Among various sensing technologies, chemiresistive sensors based on semiconducting metal oxides are prominent due to their high sensitivity and fast response. However, their application is hindered [...] Read more.
The detection of trace nitrogen dioxide (NO2) is critical for environmental monitoring and industrial safety. Among various sensing technologies, chemiresistive sensors based on semiconducting metal oxides are prominent due to their high sensitivity and fast response. However, their application is hindered by inherent limitations, including low selectivity and elevated operating temperatures, which increase power consumption. Two-dimensional metal oxysulfides have recently attracted attention as room-temperature sensing materials due to their unique electronic properties and fully reversible sensing performance. Meanwhile, their combination with optoelectronic gas sensing has emerged as a promising solution, combining higher efficiency with minimal energy requirements. In this work, we introduce non-layered 2D indium oxysulfide (In2SxO3−x) synthesized via a two-step process: liquid metal printing of indium followed by thermal annealing of the resulting In2O3 in a H2S atmosphere at 300 °C. The synthesized material is characterized by a micrometer-scale lateral dimension with 6.3 nm thickness and remaining n-type semiconducting behavior with a bandgap of 2.53 eV. It demonstrates a significant response factor of 1.2 toward 10 ppm NO2 under blue light illumination at room temperature. The sensor exhibits a linear response across a low concentration range of 0.1 to 10 ppm, alongside greatly improved reversibility, selectivity, and sensitivity. This study successfully optimizes the application of 2D metal oxysulfide and presents its potential for the development of energy-efficient NO2 sensing systems. Full article
(This article belongs to the Special Issue Gas Sensing for Air Quality Monitoring)
Show Figures

Figure 1

16 pages, 3884 KB  
Article
Cobalt Diffusion Treatment in Topaz: Process and Mechanism of Color Modification
by Xiaoxu Yan, Suwei Yue, Zida Tong, Yuzhi Zhang and Yun Wu
Minerals 2026, 16(1), 94; https://doi.org/10.3390/min16010094 - 19 Jan 2026
Viewed by 103
Abstract
Topaz is one of the most economically important fluorine-rich nesosilicates, which are predominantly colorless in natural crystals. Hence, the trade relies almost entirely on irradiated blue topaz with an unstable color center, which has been shown to fade over time. The cobalt (Co) [...] Read more.
Topaz is one of the most economically important fluorine-rich nesosilicates, which are predominantly colorless in natural crystals. Hence, the trade relies almost entirely on irradiated blue topaz with an unstable color center, which has been shown to fade over time. The cobalt (Co) diffusion treatment is a stable alternative process for converting colorless topaz to blue by a solid-state diffusion mechanism. To investigate the potential role of Co2+ substitution in the formation of the blue layer and the coupled behavior of F/OH dehydroxylation in facilitating this process, systematic diffusion treatments have been successfully conducted and compared. In this study, gem-quality topazes were annealed in air at 1000 °C for 20–40 h (hr) along with CoO, Fe2O3, Cr2O3, and CuO powders. The diffused products were characterized using Scanning Electron Microscope (SEM), Ultraviolet-Visible absorption spectroscopy (UV-Vis), Near-Mid Infrared spectroscopy (NMIR), and X-ray photoelectron spectroscopy (XPS). Parallel runs with CuO, Fe2O3, or Cr2O3 alone confirmed that none of these oxides produces a stable blue layer, underscoring the unique role of Co. The Co-diffused sample displays an intense blue layer characterized by a Co2+ octahedral isomorphism triplet at 540, 580, and 630 nm, which are absent from both untreated and heat-only controls. XPS analysis reveals the emergence of Co2+ (binding energy: 780.63 eV) and a concomitant depletion in F, along with the disappearance of the OH overtone absorption at 7123 cm−1. These observations confirm that defluorination generates octahedral vacancies accommodated by the coupled substitution: CoF2 (solid reactant) + (AlO2) (fragment of topaz structure) → AlOF (solid product) + (CoOF) (fragment of topaz structure). Prolonged annealing leads to decreased relative atomic percentages of K+ and F ions, consistent with volatilization losses during the high-temperature process, thereby directly correlating color intensity with cobalt valence state, which transfers from Co2+ to Co3+. These findings establish a Co-incorporation chronometer for F–rich aluminosilicate systems, with an optimal annealing time of approximately 20 hr at 1000 °C. Furthermore, the above results demonstrate that the color mechanism in nesosilicate gems is simultaneously governed by volatile release and cation availability. Full article
Show Figures

Figure 1

17 pages, 5273 KB  
Article
Novel Lytic Bacteriophage PAT-A: Isolation, Characterization, Genome Analysis, and Biocontrol Potential Against Agrobacterium tumefaciens
by Chenglin Liang, Wei Tian, Jianlong Liu, Zan Zhang and Dingli Li
Microorganisms 2026, 14(1), 223; https://doi.org/10.3390/microorganisms14010223 - 18 Jan 2026
Viewed by 86
Abstract
Agrobacterium tumefaciens, a destructive pathogen causing crown gall disease, results in substantial agricultural losses. Traditional chemical and existing biocontrol methods are limited by environmental pollution, pesticide resistance, and low efficacy, while bacteriophages emerge as a promising alternative due to their high host [...] Read more.
Agrobacterium tumefaciens, a destructive pathogen causing crown gall disease, results in substantial agricultural losses. Traditional chemical and existing biocontrol methods are limited by environmental pollution, pesticide resistance, and low efficacy, while bacteriophages emerge as a promising alternative due to their high host specificity, environmental compatibility, and low resistance risk. In this study, we isolated and characterized a lytic phage (PAT-A) targeting A. tumefaciens, evaluating its biological traits, genomic features, and biocontrol potential. The host strain A. tumefaciens CL-1 was isolated from cherry crown gall tissue and identified by 16S rDNA sequencing. Phage PAT-A was recovered from orchard soil via the double-layer agar method, showing a tadpole-shaped morphology (60 nm head diameter, 30 nm tail length) under transmission electron microscopy (TEM). Nucleic acid analysis confirmed a double-stranded DNA genome, susceptible to DNase I but resistant to RNase A and Mung Bean Nuclease. PAT-A exhibited an optimal MOI of 0.01, tolerated wide pH and temperature ranges, but was sensitive to UV (titer declined after 15 min of irradiation) and chloroform (8% survival at a 5% concentration). Whole-genome sequencing revealed a 44,828 bp genome with a compact structure, and phylogenetic/collinearity analyses placed it in the Atuphduvirus genus (Autographiviridae). Biocontrol experiments on tobacco plants demonstrated that PAT-A significantly reduced crown gall incidence. Specifically, simultaneous inoculation of PAT-A and A. tumefaciens CL-1 resulted in the lowest tumor incidence (12.0%), while pre-inoculation of PAT-A 2 days before pathogen exposure achieved an incidence rate of 33.3%. In conclusion, PAT-A is a novel strictly lytic phage with favorable biological properties and potent biocontrol efficacy against A. tumefaciens, enriching phage resources for crown gall management and supporting phage-based agricultural biocontrol strategies. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

16 pages, 4168 KB  
Article
Therapeutic Potential of a Novel Stenotrophomonas maltophilia Phage XAN_XB1: Isolation, Characterization, Genome Analysis and Evaluation in Mice Model
by Qingqing Yang, Baoyu Gan, Zhonglin Wang, Shan Jiang, Cao Qiu, Yawen Wang, Bing Liu and Xiaoyan Zeng
Int. J. Mol. Sci. 2026, 27(2), 944; https://doi.org/10.3390/ijms27020944 - 18 Jan 2026
Viewed by 68
Abstract
A novel lytic bacteriophage, XAN_XB1, was isolated from hospital wastewater through host bacterial enrichment and evaluated for its potential in controlling multidrug-resistant Stenotrophomonas maltophilia infections. Transmission electron microscopy revealed that XAN_XB1 has a long tail, possessing an icosahedral head of ~80 nm in [...] Read more.
A novel lytic bacteriophage, XAN_XB1, was isolated from hospital wastewater through host bacterial enrichment and evaluated for its potential in controlling multidrug-resistant Stenotrophomonas maltophilia infections. Transmission electron microscopy revealed that XAN_XB1 has a long tail, possessing an icosahedral head of ~80 nm in diameter and a tail measuring ~150 nm in length. It produced clear plaques of 0.5–1 mm on host bacterial lawns. Host range analysis demonstrated its ability to infect multiple multidrug-resistant S. maltophilia isolates. Biological characterization showed that the phage is chloroform-insensitive, retains strong lytic activity across a wide temperature (4–60 °C) and pH (3.0–10.0) range, and achieves more rapid host suppression under higher multiplicity of infection (MOI). Whole-genome sequencing determined a ~47 kb double-stranded DNA genome encoding 71 predicted open reading frames, with no known virulence or antibiotic resistance genes. Phylogenetic analysis of MCP and terminase large subunit sequences placed XAN_XB1 in a unique Caudoviricetes, with ANI values below the 95% ICTV threshold verifying its status as a novel phage species. The XAN_XB1 therapy significantly alleviates S. maltophilia infection-induced severe pulmonary inflammatory lesions, high mortality, elevated serum inflammatory factors and massive pulmonary bacterial colonization in male BALB/c mice, confirming its favorable therapeutic effect on such infections. Collectively, these results reveal that is an efficacious candidate for therapeutic development against S. maltophilia infections. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 10848 KB  
Article
Creep Deformation Estimation of Single Crystal Ni-Based Superalloy by Optimized Geometrically Necessary Dislocation Density Evaluation
by Cristina Motta, Francesco Mastromatteo, Niccolò Baldi, Elisabetta Gariboldi and Luca Bernardini
Metals 2026, 16(1), 107; https://doi.org/10.3390/met16010107 - 17 Jan 2026
Viewed by 150
Abstract
In the framework of high temperature components, the need to evaluate the accumulated creep damage during service life is fundamental to extend the life of components which are currently deemed as scrap as per design intent. Thus, the life assessment of Ni-based superalloys [...] Read more.
In the framework of high temperature components, the need to evaluate the accumulated creep damage during service life is fundamental to extend the life of components which are currently deemed as scrap as per design intent. Thus, the life assessment of Ni-based superalloys could be performed in relation to the accumulated creep deformation which represents the limiting factor for serviced components. Despite the different microstructural changes that occur in service life, this work focuses on the possibility to evaluate the material strain by means of electron backscattered diffraction (EBSD). The key point is the identification of the correlation between geometrically necessary dislocation (GND) density derived from EBSD analyses and the reached creep strain for a single crystal Ni-based superalloy. However, the results of GND density are affected by the settings’ parameters adopted to perform the analysis by the magnification level and the step size. These two parameters have been optimized by analyzing specimens from interrupted creep tests at strain levels between 0.5% and 10%, in the temperature range between 850 °C and 1000 °C. Full article
Show Figures

Figure 1

14 pages, 6663 KB  
Article
Study on the Diffusion and Atomic Mobility of Alloying Elements in the β Phase of the Ti-Cr-Nb Ternary System
by Danya Shen, Jingmin Liu, Wenqing Zhao, Junfeng Wu, Maohua Rong, Jiang Wang, Hongyu Zhang, Ligang Zhang and Libin Liu
Processes 2026, 14(2), 331; https://doi.org/10.3390/pr14020331 - 17 Jan 2026
Viewed by 109
Abstract
Diffusion-controlled processes play a critical role in the heat treatment and microstructural homogenization of β-titanium alloys containing multiple β-stabilizing elements. Adding β-phase stabilizing elements like Cr and Nb to titanium alloys can significantly improve the high-temperature strength and creep performance of the alloy. [...] Read more.
Diffusion-controlled processes play a critical role in the heat treatment and microstructural homogenization of β-titanium alloys containing multiple β-stabilizing elements. Adding β-phase stabilizing elements like Cr and Nb to titanium alloys can significantly improve the high-temperature strength and creep performance of the alloy. Their diffusion coefficients can be used to predict the risk of softening and creep failure in high-temperature components caused by diffusion. However, reliable diffusion kinetic data for the β phase in the Ti–Cr–Nb ternary system remain scarce, limiting quantitative process modeling and simulation. In this study, diffusion behavior in the BCC (β) region of the Ti–Cr–Nb system was investigated using diffusion couples combined with CALPHAD-based kinetic modeling. Twelve sets of diffusion couples were prepared and annealed at 1373 K for 48 h, 1423 K for 36 h, and 1473 K for 24 h. The corresponding composition–distance profiles were measured by electron probe microanalysis. Composition-dependent interdiffusion coefficients and atomic mobility parameters were determined using the numerical inverse method. The results revealed temperature and composition dependence of the main interdiffusion coefficients, with Nb exhibiting a stronger influence than Cr. The evaluated kinetic parameters provide an effective kinetic description for diffusion-controlled process simulations. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

Back to TopTop