Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (571)

Search Parameters:
Keywords = high-rise units

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5068 KiB  
Article
Estimating Household Green Space in Composite Residential Community Solely Using Drone Oblique Photography
by Meiqi Kang, Kaiyi Song, Xiaohan Liao and Jiayuan Lin
Remote Sens. 2025, 17(15), 2691; https://doi.org/10.3390/rs17152691 - 3 Aug 2025
Viewed by 145
Abstract
Residential green space is an important component of urban green space and one of the major indicators for evaluating the quality of a residential community. Traditional indicators such as the green space ratio only consider the relationship between green space area and total [...] Read more.
Residential green space is an important component of urban green space and one of the major indicators for evaluating the quality of a residential community. Traditional indicators such as the green space ratio only consider the relationship between green space area and total area of the residential community while ignoring the difference in the amount of green space enjoyed by household residents in high-rise and low-rise buildings. Therefore, it is meaningful to estimate household green space and its spatial distribution in residential communities. However, there are frequent difficulties in obtaining specific green space area and household number through ground surveys or consulting with property management units. In this study, taking a composite residential community in Chongqing, China, as the study site, we first employed a five-lens drone to capture its oblique RGB images and generated the DOM (Digital Orthophoto Map). Subsequently, the green space area and distribution in the entire residential community were extracted from the DOM using VDVI (Visible Difference Vegetation Index). The YOLACT (You Only Look At Coefficients) instance segmentation model was used to recognize balconies from the facade images of high-rise buildings to determine their household numbers. Finally, the average green space per household in the entire residential community was calculated to be 67.82 m2, and those in the high-rise and low-rise building zones were 51.28 m2 and 300 m2, respectively. Compared with the green space ratios of 65.5% and 50%, household green space more truly reflected the actual green space occupation in high- and low-rise building zones. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Landscape Ecology)
Show Figures

Figure 1

21 pages, 296 KiB  
Opinion
Populations in the Anthropocene: Is Fertility the Problem?
by Simon Szreter
Populations 2025, 1(3), 17; https://doi.org/10.3390/populations1030017 - 30 Jul 2025
Viewed by 224
Abstract
The article addresses the question of the relative importance of human population size and growth in relation to the environmental problems of planetary heating and biodiversity loss in the current, Anthropocene era. To what extent could policies to encourage lower fertility be justified, [...] Read more.
The article addresses the question of the relative importance of human population size and growth in relation to the environmental problems of planetary heating and biodiversity loss in the current, Anthropocene era. To what extent could policies to encourage lower fertility be justified, while observing that this subject is an inherently contested one. It is proposed that a helpful distinction can be made between specific threats to habitats and biodiversity, as opposed to those related to global energy use and warming. Pressures of over-population can be important in relation to the former. But with regard to the latter—rising per capita energy usage—reduced fertility has historically been positively, not negatively correlated. A case can be made that the high-fertility nations of sub-Saharan Africa could benefit from culturally respectful fertility reduction policies. However, where planetary heating is concerned, it is the hydrocarbon-based, per capita energy-consumption patterns of already low-fertility populations on the other five inhabited continents that is rather more critical. While it will be helpful to stabilise global human population, this cannot be viewed as a solution to the climate crisis problem of this century. That requires relentless focus on reducing hydrocarbon use and confronting the rising inequality since c.1980 that has been exacerbating competitive materialist consumerism. This involves the ideological negotiation of values to promote a culture change that understands and politically embraces a new economics of both human and planetary balance, equity, and distribution. Students of populations can contribute by re-assessing what can be the appropriate demographic units and measures for policies engaging with the challenges of the Anthropocene. Full article
13 pages, 469 KiB  
Article
Continuous Hemofiltration During Extracorporeal Membrane Oxygenation in Adult Septic Shock: A Comparative Cohort Analysis
by Nicoleta Barbura, Tamara Mirela Porosnicu, Marius Papurica, Mihail-Alexandru Badea, Ovidiu Bedreag, Felix Bratosin and Voichita Elena Lazureanu
Biomedicines 2025, 13(8), 1829; https://doi.org/10.3390/biomedicines13081829 - 26 Jul 2025
Viewed by 461
Abstract
Background and Objectives: Severe sepsis complicated by refractory shock is associated with high mortality. Adding continuous hemofiltration to venovenous extracorporeal membrane oxygenation (ECMO) may accelerate clearance of inflammatory mediators and improve haemodynamic stability, but evidence remains limited. We analysed 44 consecutive septic-shock [...] Read more.
Background and Objectives: Severe sepsis complicated by refractory shock is associated with high mortality. Adding continuous hemofiltration to venovenous extracorporeal membrane oxygenation (ECMO) may accelerate clearance of inflammatory mediators and improve haemodynamic stability, but evidence remains limited. We analysed 44 consecutive septic-shock patients treated with combined ECMO-hemofiltration (ECMO group) and compared them with 92 septic-shock patients managed without ECMO or renal replacement therapy (non-ECMO group). Methods: This retrospective single-centre study reviewed adults admitted between January 2018 and March 2025. Demographic, haemodynamic, laboratory and outcome data were extracted from electronic records. Primary outcome was 28-day mortality; secondary outcomes included intensive-care-unit (ICU) length-of-stay, vasopressor-free days, and change in Sequential Organ Failure Assessment (SOFA) score at 72 h. Results: Baseline age (49.2 ± 15.3 vs. 52.6 ± 16.1 years; p = 0.28) and APACHE II (27.8 ± 5.7 vs. 26.9 ± 6.0; p = 0.41) were comparable. At 24 h, mean arterial pressure rose from 52.3 ± 7.4 mmHg to 67.8 ± 9.1 mmHg in the ECMO group (mean change [∆] + 15.5 mmHg, p < 0.001). Controls exhibited a modest 4.9 mmHg rise that did not reach statistical significance (p = 0.07). Inflammatory markers decreased more sharply with ECMO (IL-6 ∆ −778 pg mL−1 vs. −248 pg mL−1, p < 0.001). SOFA fell by 3.6 ± 2.2 points with ECMO versus 1.6 ± 2.4 in controls (p = 0.01). Twenty-eight-day mortality did not differ (40.9% vs. 48.9%, p = 0.43), but ICU stay was longer with ECMO (median 12.5 vs. 9.3 days, p = 0.002). ΔIL-6 correlated with ΔSOFA (ρ = 0.46, p = 0.004). Conclusions: ECMO-assisted hemofiltration improved early haemodynamics and organ-failure scores and accelerated cytokine clearance, although crude mortality remained unchanged. Larger prospective trials are warranted to clarify survival benefit and optimal patient selection. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

16 pages, 3032 KiB  
Article
Severe Scrub Typhus with Acute Kidney Injury: Urine PCR Evidence from an East Coast Malaysian Cluster
by Siti Roszilawati Ramli, Nuridayu Arifin, Mohd Fahmi Ismail, Shirley Yi Fen Hii, Nur Suffia Sulaiman, Ernieenor Faraliana Che Lah and Nik Abdul Hadi Nik Abdul Aziz
Trop. Med. Infect. Dis. 2025, 10(8), 208; https://doi.org/10.3390/tropicalmed10080208 - 25 Jul 2025
Viewed by 492
Abstract
Background: Scrub typhus (ST) is caused by Orientia tsutsugamushi (OT) infection, which is transmitted to humans through the bites of infected chiggers. The clinical presentations range from mild to life-threatening multi-organ dysfunction. This report describes a cluster of ST cases involving five oil [...] Read more.
Background: Scrub typhus (ST) is caused by Orientia tsutsugamushi (OT) infection, which is transmitted to humans through the bites of infected chiggers. The clinical presentations range from mild to life-threatening multi-organ dysfunction. This report describes a cluster of ST cases involving five oil palm estate workers in Pekan district, Pahang, Malaysia. Methods: The clinical history, laboratory, and entomological investigation were conducted on the patients, including the index case and four suspected cases in the cluster. Polymerase chain reaction (PCR) tests for OT and genotyping were performed on the patients’ blood and urine samples. Serological testing by indirect immunoperoxidase (IIP) test against Rickettsial diseases was also conducted. Principal Findings: Patients presented with fever, myalgia, headache, rash, cough, and eschar. The index case developed severe ST complicated by acute kidney injury (AKI) and respiratory distress, requiring intubation and ventilation at the intensive care unit of a tertiary hospital. ST was confirmed through PCR analysis of a urine sample, showcasing a novel diagnostic approach. The other four cases were confirmed by a four-fold rise in immunoglobulin G (IgG) antibody titers. Conclusions: oil palm estate workers are at high risk for chigger exposure in Malaysia. Awareness among clinicians and the public of ST is crucial for effective prevention, accurate diagnosis, and optimal management. Full article
Show Figures

Figure 1

23 pages, 1593 KiB  
Article
Natural Ventilation Technique of uNVeF in Urban Residential Unit Through a Case Study
by Ming-Lun Alan Fong and Wai-Kit Chan
Urban Sci. 2025, 9(8), 291; https://doi.org/10.3390/urbansci9080291 - 25 Jul 2025
Viewed by 892
Abstract
The present study was motivated by the need to enhance indoor air quality and reduce airborne disease transmission in dense urban environments where high-rise residential buildings face challenges in achieving effective natural ventilation. The problem lies in the lack of scalable and convenient [...] Read more.
The present study was motivated by the need to enhance indoor air quality and reduce airborne disease transmission in dense urban environments where high-rise residential buildings face challenges in achieving effective natural ventilation. The problem lies in the lack of scalable and convenient tools to optimize natural ventilation rate, particularly in urban settings with varying building heights. To address this, the scientific technique developed with an innovative metric, the urbanized natural ventilation effectiveness factor (uNVeF), integrates regression analysis of wind direction, velocity, air change rate per hour (ACH), window configurations, and building height to quantify ventilation efficiency. By employing a field measurement methodology, the measurements were conducted across 25 window-opening scenarios in a 13.9 m2 residential unit on the 35/F of a Hong Kong public housing building, supplemented by the Hellman Exponential Law with a site-specific friction coefficient (0.2907, R2 = 0.9232) to estimate the lower floor natural ventilation rate. The results confirm compliance with Hong Kong’s statutory 1.5 ACH requirement (Practice Note for Authorized Persons, Registered Structural Engineers, and Registered Geotechnical Engineers) and achieving a peak ACH at a uNVeF of 0.953 with 75% window opening. The results also revealed that lower floors can maintain 1.5 ACH with adjusted window configurations. Using the Wells–Riley model, the estimation results indicated significant airborne disease infection risk reductions of 96.1% at 35/F and 93.4% at 1/F compared to the 1.5 ACH baseline which demonstrates a strong correlation between ACH, uNVeF and infection risks. The uNVeF framework offers a practical approach to optimize natural ventilation and provides actionable guidelines, together with future research on the scope of validity to refine this technique for residents and developers. The implications in the building industry include setting up sustainable design standards, enhancing public health resilience, supporting policy frameworks for energy-efficient urban planning, and potentially driving innovation in high-rise residential construction and retrofitting globally. Full article
Show Figures

Figure 1

17 pages, 2754 KiB  
Article
The Regulation of Thermodynamic Behavior and Structure of Aluminosilicate Glasses via the Mixed Alkaline Earth Effect
by Lin Yuan, Xurong Teng, Ping Li, Ouyuan Zhang, Fangfang Zhao, Changyuan Tao and Renlong Liu
Materials 2025, 18(15), 3450; https://doi.org/10.3390/ma18153450 - 23 Jul 2025
Viewed by 268
Abstract
This work systematically altered the molar ratio of CaO and MgO (R = [CaO]/[(CaO + MgO)], mol%) to elucidate the underlying mechanisms driving the observed changes in macroscopic properties. The results indicated that as CaO increasingly replaced MgO, the rise in the content [...] Read more.
This work systematically altered the molar ratio of CaO and MgO (R = [CaO]/[(CaO + MgO)], mol%) to elucidate the underlying mechanisms driving the observed changes in macroscopic properties. The results indicated that as CaO increasingly replaced MgO, the rise in the content of non-bridging oxygen led to the depolymerization of the glass structure. A quantitative analysis of Qn units in the [SiO4] tetrahedron using 29Si MAS NMR revealed that a non-monotonic variation appeared when the Q4 unit reached a minimum at R = 0.7. Meanwhile, the chemical environment of aluminum also varies with the R, and the presence of high-coordinated aluminum species is observed when Ca2+ and Mg2+ ions coexist. In terms of overall performance, both density and molar volume exhibited a linear trend. However, thermal stability, viscosity, characteristic temperatures (including melting temperature, Littleton softening temperature, working point temperature, and glass transition temperature), and mechanical properties showed deviations from linearity. Additionally, four non-isothermal thermodynamics was employed to quantitatively assess the thermal stability of samples C-0.7 and C-1. The insights gained from this study will aid in the development of advanced glass materials with tailored properties for industrial applications. Full article
Show Figures

Figure 1

17 pages, 6691 KiB  
Article
Antibiotic-Coated Melt Electrowritten Polycaprolactone Meshes: Fabrication and In Vitro Antibacterial Evaluation
by Joana Pinheiro Martins, Ana Sofia de Sousa, Sofia Costa de Oliveira, António Augusto Fernandes and Elisabete Teixeira da Silva
Macromol 2025, 5(3), 33; https://doi.org/10.3390/macromol5030033 - 16 Jul 2025
Viewed by 314
Abstract
In recent years, pelvic organ prolapse (POP) cases have been rising, affecting women’s quality of life. Synthetic surgical transvaginal meshes used for POP treatment were withdrawn from the United States market in 2019 due to high risks, including infection, vaginal mesh erosion, and [...] Read more.
In recent years, pelvic organ prolapse (POP) cases have been rising, affecting women’s quality of life. Synthetic surgical transvaginal meshes used for POP treatment were withdrawn from the United States market in 2019 due to high risks, including infection, vaginal mesh erosion, and POP reoccurrence. Biodegradable mesh implants with three-dimensional printing technology have emerged as an innovative alternative. In this study, polycaprolactone (PCL) meshes for POP repair were fabricated using melt electrospinning writing (MEW) and mechanically evaluated through uniaxial tensile tests. Following this, they were coated with antibiotics—azithromycin, gentamicin sulfate, and ciprofloxacin—commonly used for genitourinary tract infections. Zone inhibition and biofilm assays evaluated antibiotic effectiveness in preventing mesh infections by Escherichia coli, and methicillin-susceptible (MSSA) and methicillin-resistant (MRSA) Staphylococcus aureus. The meshes presented a mechanical behavior closer to vaginal tissue than commercially available meshes. Fourier transform infrared analysis confirmed antibiotic incorporation. Ciprofloxacin demonstrated antibacterial activity against MRSA, with a 92% reduction in metabolic activity and a 99% biomass reduction. Gentamicin and ciprofloxacin displayed inhibitory activity against MSSA and E. coli. Scanning electron microscopy images support these conclusions. This methodology may offer a more effective, patient-friendly solution for POP repair, improving healing and the quality of life for affected women. Full article
Show Figures

Figure 1

22 pages, 2967 KiB  
Article
Techno-Economic Assessment of Pink Hydrogen Produced from Small Modular Reactors for Maritime Applications
by E. E. Pompodakis and T. Papadimitriou
Hydrogen 2025, 6(3), 47; https://doi.org/10.3390/hydrogen6030047 - 12 Jul 2025
Viewed by 442
Abstract
This paper presents a techno-economic assessment of liquid hydrogen produced from small modular reactors (SMRs) for maritime applications. Pink hydrogen is examined as a carbon-free alternative to conventional marine fuels, leveraging the zero-emission profile and dispatchable nature of nuclear energy. Using Greece as [...] Read more.
This paper presents a techno-economic assessment of liquid hydrogen produced from small modular reactors (SMRs) for maritime applications. Pink hydrogen is examined as a carbon-free alternative to conventional marine fuels, leveraging the zero-emission profile and dispatchable nature of nuclear energy. Using Greece as a case study, the analysis includes both production and transportation costs, along with a sensitivity analysis on key parameters influencing the levelized cost of hydrogen (LCOH), such as SMR and electrolyzer CAPEX, uranium cost, and SMR operational lifetime. Results show that with an SMR CAPEX of 10,000 EUR/kW, the LCOH reaches 6.64 EUR/kg, which is too high to compete with diesel under current market conditions. Economic viability is achieved only if carbon costs rise to 0.387 EUR/kg and diesel prices exceed 0.70 EUR/L. Under these conditions, a manageable deployment of fewer than 1000 units (equivalent to 77 GW) is sufficient to achieve economies of mass production. Conversely, lower carbon and fuel prices require over 10,000 units (770 GW), rendering their establishment impractical. Full article
Show Figures

Graphical abstract

22 pages, 263 KiB  
Article
Global Agri-Food Competitiveness: Assessing Food Security, Trade, Sustainability, and Innovation in the G20 Nations
by Sylvain Charlebois, Janet Music, Nicole Goulart Natali and Janele Vezeau
World 2025, 6(3), 99; https://doi.org/10.3390/world6030099 - 12 Jul 2025
Viewed by 422
Abstract
This study presents a comparative benchmarking analysis of G20 nations’ agri-food competitiveness across five critical pillars: food security and nutrition, trade and geopolitics, environmental sustainability, fiscal regimes, and entrepreneurship support. Using a structured benchmarking framework with 13 performance indicators sourced from internationally recognized [...] Read more.
This study presents a comparative benchmarking analysis of G20 nations’ agri-food competitiveness across five critical pillars: food security and nutrition, trade and geopolitics, environmental sustainability, fiscal regimes, and entrepreneurship support. Using a structured benchmarking framework with 13 performance indicators sourced from internationally recognized datasets, the research delivers a comprehensive evaluation of national agri-food systems. The analysis reveals significant disparities in transparency, policy coherence, and investment in innovation across member states. Countries such as the United States, Germany, and Australia emerge as leaders, driven by integrated policy frameworks, trade surpluses, and sustainable production practices. Others fall behind due to import dependence, fragmented governance, or weak innovation ecosystems. Canada performs consistently in trade metrics but is hindered by high emissions intensity, infrastructure constraints, and a lack of a cohesive national food strategy. Theoretically, this work contributes to the emerging field of agri-food system diagnostics by operationalizing a cross-pillar benchmarking methodology applicable at the national level. Practically, it offers policymakers a decision-support tool for identifying structural gaps and setting reform priorities. The framework enables governments, trade partners, and multilateral institutions to design targeted interventions aimed at boosting food system resilience, economic competitiveness, and sustainability in an era of rising geopolitical and environmental volatility. Full article
15 pages, 2184 KiB  
Article
First-Principles Study on Interfacial Triboelectrification Between Water and Halogen-Functionalized Polymer Surfaces
by Taili Tian, Bo Zhao, Yimin Wang, Shifan Huang, Xiangcheng Ju and Yuyan Fan
Lubricants 2025, 13(7), 303; https://doi.org/10.3390/lubricants13070303 - 11 Jul 2025
Viewed by 395
Abstract
Contact electrification (CE), or triboelectrification, is an electron transfer phenomenon occurring at the interface between dissimilar materials due to differences in polarity, holding significant research value in tribology. The microscopic mechanisms of CE remain unclear due to the complex coupling of multiple physical [...] Read more.
Contact electrification (CE), or triboelectrification, is an electron transfer phenomenon occurring at the interface between dissimilar materials due to differences in polarity, holding significant research value in tribology. The microscopic mechanisms of CE remain unclear due to the complex coupling of multiple physical processes. Recently, with the rise of triboelectric nanogenerator (TENG) technology, solid–liquid contact electrification has demonstrated vast application potential, sparking considerable interest in its underlying mechanisms. Emerging experimental evidence indicates that at water–polymer CE interfaces, the process involves not only traditional ion adsorption but also electron transfer. Halogen-containing functional groups in the solid material significantly enhance the CE effect. To elucidate the microscopic mechanism of water–polymer CE, this study employed first-principles density functional theory (DFT) calculations, simulating the interfacial electrification process using unit cell models of water contacting polymers. We systematically and quantitatively investigated the charge transfer characteristics at interfaces between water and three representative polymers with similar backbones but different halogen-functionalized (F, Cl) side chains: fluorinated ethylene propylene (FEP), polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE), focusing on evaluating halogen’s influence and mechanism on interfacial electron transfer. The results reveal that electron transfer is primarily governed by the energy levels of the polymer’s lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO). Halogen functional groups modulate the material’s electron-donating/accepting capabilities by altering these frontier orbital energy levels. Consequently, we propose that the critical strategy for polymer chemical modification resides in lowering the LUMO energy level of electron-accepting materials. This study provides a novel theoretical insight into the charge transfer mechanism at solid–liquid interfaces, offers guidance for designing high-performance TENG interfacial materials, and holds significant importance for both the fundamental theory and the development of advanced energy devices. Full article
Show Figures

Figure 1

12 pages, 366 KiB  
Article
Increasing Antimicrobial Resistance to First-Line Therapies in Chronic Endometritis: A 2020–2024 Cross-Sectional Study
by Ettore Cicinelli, Francesco Di Gennaro, Antonia Gesario, Daniela Iachetti Amati, Giacomo Guido, Luisa Frallonardo, Annalisa Saracino, Antonella Vimercati, Rossana Cicinelli, Pierpaolo Nicolì and Amerigo Vitagliano
J. Clin. Med. 2025, 14(14), 4873; https://doi.org/10.3390/jcm14144873 - 9 Jul 2025
Viewed by 398
Abstract
Objectives: In the context of the global rise in antimicrobial resistance (AMR), this study aimed to investigate temporal trends in AMR among pathogens isolated from endometrial cultures of patients diagnosed with chronic endometritis (CE). Methods: This cross-sectional study included 244 women consecutively diagnosed [...] Read more.
Objectives: In the context of the global rise in antimicrobial resistance (AMR), this study aimed to investigate temporal trends in AMR among pathogens isolated from endometrial cultures of patients diagnosed with chronic endometritis (CE). Methods: This cross-sectional study included 244 women consecutively diagnosed with CE at the Gynecology Unit of the University of Bari, Italy, between January 2020 and June 2024. Exclusion criteria were (i) previous CE diagnosis or treatment; (ii) antimicrobial use in the month prior to hysteroscopy and biopsy; (iii) use of oral or vaginal prebiotics/probiotics or contraceptives in the three months prior; (iv) known immunosuppression; and (v) hypersensitivity to quinolones or macrolides. CE was diagnosed using hysteroscopy combined with endometrial histology and microbial culture. Specifically, in cases with hysteroscopic signs suggestive of CE, endometrial biopsies were obtained using a Novak curette and processed for histological and immunohistochemical analyses, as well as for microbial identification and antimicrobial susceptibility testing in accordance with EUCAST guidelines. The primary outcomes were the prevalence of CE-associated pathogens and their AMR profiles. Results: The median age at CE diagnosis was 33 years (range 26–44). The most frequently isolated pathogens were Enterococcus faecalis (26.2%), Escherichia coli (19.3%), and Ureaplasma urealyticum (16.4%). High AMR rates were observed, with increasing trends over time. Ampicillin resistance reached 98.5% (63/64), penicillin resistance 30.8% (16/52), and extended-spectrum beta-lactamase (ESBL) positivity 34.7% (25/72), all with statistically significant trends (p < 0.001). Resistance to commonly used first-line antimicrobials, such as tetracyclines, quinolones, and nitroimidazoles, was also substantial. Conclusions: This study highlights a significant increase in AMRs among microorganisms responsible for CE between 2020 and 2024. As a result, empirical first-line antimicrobial therapies commonly used to treat patients with CE may be increasingly ineffective in a growing number of cases. This underscores the need for improved and targeted diagnostic and therapeutic strategies to effectively manage CE and prevent treatment failures. Strengthening surveillance systems, implementing antimicrobial stewardship programs, and enhancing patient education may help counter the growing threat of AMR. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

27 pages, 658 KiB  
Review
Why High-Volume Post-Dilution Hemodiafiltration Should Be the New Standard in Dialysis Care: A Comprehensive Review of Clinical Outcomes and Mechanisms
by Stefano Stuard, Franklin W. Maddux and Bernard Canaud
J. Clin. Med. 2025, 14(14), 4860; https://doi.org/10.3390/jcm14144860 - 9 Jul 2025
Viewed by 1237
Abstract
The management of end-stage kidney disease (ESKD) poses a substantial clinical and economic challenge, characterized by a growing patient burden, rising healthcare costs, and persistent unmet needs to enhance survival outcomes and quality of life. Background/Objectives: Conventional high-flux hemodialysis (HD) remains the dominant [...] Read more.
The management of end-stage kidney disease (ESKD) poses a substantial clinical and economic challenge, characterized by a growing patient burden, rising healthcare costs, and persistent unmet needs to enhance survival outcomes and quality of life. Background/Objectives: Conventional high-flux hemodialysis (HD) remains the dominant form of renal replacement therapy for ESKD but is still associated with substantial morbidity and mortality. High-volume post-dilution online hemodiafiltration (HVHDF) offers a promising alternative by enhancing the convective removal of uremic toxins. Methods: We conducted a narrative review of randomized controlled trials, meta-analyses, real-world cohort studies, and registry analyses published between 2010 and 2024. Evidence was categorized into short-term, medium-term, and long-term outcomes, including hemodynamic stability, inflammation, anemia, infection risk, cardiovascular events, cognitive decline, quality of life, and survival. Results: HVHDF improves short-term outcomes by enhancing toxin clearance, stabilizing blood pressure, reducing inflammation and oxidative stress, and improving anemia management. Medium-term benefits include improved nutritional status, reduced hospitalizations related to infections, and improved neurological and immune function. Long-term data from major trials (e.g., ESHOL, CONVINCE) and large real-world studies show consistent reductions in all-cause and cardiovascular mortality, particularly with convection volumes ≥ 23 L/session. A clear dose–response relationship supports the clinical relevance of convection volume targets. HVHDF has also shown benefits in preserving cognitive function and enhancing health-related quality of life. Conclusions: Strong and converging evidence supports HVHDF as a superior dialysis modality. Given its survival benefits, better tolerance, and broader impact on patient outcomes, HVHDF should be considered the new standard of care in dialysis, especially in light of the recent regulatory approval of the machine that provides the ability to perform HDF in the United States. Full article
Show Figures

Figure 1

22 pages, 5266 KiB  
Article
Preserving Modern Heritage in the Emirate of Dubai: A Digital Documentation and Semantic HBIM Approach
by Abeer Abu Raed, Wido Quist and Uta Pottgiesser
Heritage 2025, 8(7), 263; https://doi.org/10.3390/heritage8070263 - 4 Jul 2025
Viewed by 553
Abstract
The rapid urbanization and technological advancements in the United Arab Emirates (UAE) have placed its modern architectural heritage from the 1970s and 1980s at increasing risk of being unrecognized and lost, particularly in Dubai following the discovery of oil. This research addresses the [...] Read more.
The rapid urbanization and technological advancements in the United Arab Emirates (UAE) have placed its modern architectural heritage from the 1970s and 1980s at increasing risk of being unrecognized and lost, particularly in Dubai following the discovery of oil. This research addresses the critical need for the documentation and heritage representation of Dubai’s modern heritage, a city undergoing rapid transformation within a globalized urban landscape. Focusing on the Nasser Rashid Lootah Building (Toyota Building), an iconic early 1970s residential high-rise representing the modern architecture of Dubai and a significant milestone in its architectural history, this study explores a replicable and cost-effective approach to digitally document and conserve urban heritage under threat. The existing building was meticulously documented and analyzed to highlight its enduring value within the fast-changing urban fabric. Through the innovative combination of drone photography, ground-based photography, and HBIM, a high-resolution 3D model and a semantically organized HBIM prototype were generated. This research demonstrates a replicable measure for identifying architectural values, understanding modernist design typologies, and raising local community awareness about Dubai’s modern heritage. Ultimately, this study contributes toward developing recognition criteria and guiding efforts in documenting modern high-rise buildings as vital heritage worthy of recognition, documentation, and future conservation in the UAE. Full article
(This article belongs to the Topic 3D Documentation of Natural and Cultural Heritage)
Show Figures

Figure 1

26 pages, 1917 KiB  
Article
A System Dynamics Approach to Resilience Analysis in the Sino-Russian Timber Supply Chain
by Chenglin Ma, Changjiang Liu, Jiajia Feng and Lin Zhang
Forests 2025, 16(7), 1106; https://doi.org/10.3390/f16071106 - 4 Jul 2025
Viewed by 287
Abstract
In the context of global timber supply chains facing policy adjustments, resource fluctuations, and market uncertainties, this study focuses on the resilience of the Sino-Russian timber supply chain. A system dynamics (SD) model is developed to analyze the dynamic evolution of the key [...] Read more.
In the context of global timber supply chains facing policy adjustments, resource fluctuations, and market uncertainties, this study focuses on the resilience of the Sino-Russian timber supply chain. A system dynamics (SD) model is developed to analyze the dynamic evolution of the key segments. By integrating the entropy weight–TOPSIS method, the research quantitatively assesses overall supply chain resilience by synthesizing data from four capability dimensions—Russian logistics and transportation capability, Russian primary wood processing capability, Sino-Russian timber import–export capability, and Heilongjiang furniture sales capability—over the 2017–2033 period. Results indicate a “first decline, then rise” trajectory for resilience, with a minimum normalized resilience index of 0.1549 recorded in 2021, followed by a gradual recovery and sustained strengthening thereafter. Among evaluated segments, Russian logistics demonstrates the strongest short-term shock resistance (36.2% reduction in minimum resilience), while Heilongjiang’s sales segment exhibits optimal long-term recoverability (the normalized resilience index increased by an average of 0.0363 units per year during the recovery phase). Based on these findings, a “short-term logistics enhancement–long-term demand-driven” strategy is proposed to improve resilience, providing actionable insights for the high-quality development of the Sino-Russian timber supply chain. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

33 pages, 5308 KiB  
Review
A Comprehensive Review of Explainable Artificial Intelligence (XAI) in Computer Vision
by Zhihan Cheng, Yue Wu, Yule Li, Lingfeng Cai and Baha Ihnaini
Sensors 2025, 25(13), 4166; https://doi.org/10.3390/s25134166 - 4 Jul 2025
Viewed by 1515
Abstract
Explainable Artificial Intelligence (XAI) is increasingly important in computer vision, aiming to connect complex model outputs with human understanding. This review provides a focused comparative analysis of representative XAI methods in four main categories, attribution-based, activation-based, perturbation-based, and transformer-based approaches, selected from a [...] Read more.
Explainable Artificial Intelligence (XAI) is increasingly important in computer vision, aiming to connect complex model outputs with human understanding. This review provides a focused comparative analysis of representative XAI methods in four main categories, attribution-based, activation-based, perturbation-based, and transformer-based approaches, selected from a broader literature landscape. Attribution-based methods like Grad-CAM highlight key input regions using gradients and feature activation. Activation-based methods analyze the responses of internal neurons or feature maps to identify which parts of the input activate specific layers or units, helping to reveal hierarchical feature representations. Perturbation-based techniques, such as RISE, assess feature importance through input modifications without accessing internal model details. Transformer-based methods, which use self-attention, offer global interpretability by tracing information flow across layers. We evaluate these methods using metrics such as faithfulness, localization accuracy, efficiency, and overlap with medical annotations. We also propose a hierarchical taxonomy to classify these methods, reflecting the diversity of XAI techniques. Results show that RISE has the highest faithfulness but is computationally expensive, limiting its use in real-time scenarios. Transformer-based methods perform well in medical imaging, with high IoU scores, though interpreting attention maps requires care. These findings emphasize the need for context-aware evaluation and hybrid XAI methods balancing interpretability and efficiency. The review ends by discussing ethical and practical challenges, stressing the need for standard benchmarks and domain-specific tuning. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Back to TopTop