Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (742)

Search Parameters:
Keywords = high-gain antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2737 KiB  
Article
Design of a Wideband Loaded Sleeve Monopole Embedded with Filtering High–Low Impedance Structure
by Jiansen Ma, Weiping Cao and Xinhua Yu
Electronics 2025, 14(15), 3137; https://doi.org/10.3390/electronics14153137 - 6 Aug 2025
Abstract
In this paper, a compact wideband filtering monopole is presented for remote terrestrial omnidirectional communication systems. The presented antenna features a sleeve monopole structure integrating with two key components: the lumped parallel RLC circuits and an embedded high–low impedance structure within the sleeve [...] Read more.
In this paper, a compact wideband filtering monopole is presented for remote terrestrial omnidirectional communication systems. The presented antenna features a sleeve monopole structure integrating with two key components: the lumped parallel RLC circuits and an embedded high–low impedance structure within the sleeve section. The integrated high–low impedance structure enables the monopole to achieve excellent filtering characteristics while maintaining the monopole compactly. Meanwhile, the combination of the RLC loads and the sleeve monopole ensures wideband omnidirectional radiation performance. To validate the design, a prototype operating from 200 to 1500 MHz is fabricated and tested. The measurement results demonstrate that the monopole achieves a VSWR below 3 across the entire operating band and a measured gain exceeding 0 dB. Furthermore, the monopole exhibits satisfactory out-of-band rejection from 1700 to 4000 MHz, confirming its effective filtering capability. Full article
20 pages, 6269 KiB  
Article
Miniaturized EBG Antenna for Efficient 5.8 GHz RF Energy Harvesting in Self-Powered IoT and Medical Sensors
by Yahya Albaihani, Rizwan Akram, Abdullah. M. Almohaimeed, Ziyad M. Almohaimeed, Lukman O. Buhari and Mahmoud Shaban
Sensors 2025, 25(15), 4777; https://doi.org/10.3390/s25154777 - 3 Aug 2025
Viewed by 264
Abstract
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. [...] Read more.
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. The proposed antenna features a compact design with reduced physical dimensions of 36 × 40 mm2 (0.69λo × 0.76λo) while providing high-performance parameters such as a reflection coefficient of −27.9 dB, a voltage standing wave ratio (VSWR) of 1.08, a gain of 7.91 dBi, directivity of 8.1 dBi, a bandwidth of 188 MHz, and radiation efficiency of 95.5%. Incorporating EBG cells suppresses surface waves, enhances gain, and optimizes impedance matching through 50 Ω inset feeding. The simulated and measured results of the designed antenna show a high correlation. This study demonstrates a robust and promising solution for high-performance wireless systems requiring a compact size and energy-efficient operation. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

15 pages, 6688 KiB  
Article
Integrated Additive Manufacturing of TGV Interconnects and High-Frequency Circuits via Bipolar-Controlled EHD Jetting
by Dongqiao Bai, Jin Huang, Hongxiao Gong, Jianjun Wang, Yunna Pu, Jiaying Zhang, Peng Sun, Zihan Zhu, Pan Li, Huagui Wang, Pengbing Zhao and Chaoyu Liang
Micromachines 2025, 16(8), 907; https://doi.org/10.3390/mi16080907 (registering DOI) - 2 Aug 2025
Viewed by 159
Abstract
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to [...] Read more.
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to drive ink into deep and narrow vias; sufficiently high ink viscosity to prevent gravity-induced leakage; and stable meniscus dynamics to avoid satellite droplets and charge accumulation on the glass surface. By coupling electrostatic field analysis with transient level-set simulations, we establish a dimensionless regime map that delineates stable cone-jetting regime; these predictions are validated by high-speed imaging and surface profilometry. Operating within this window, the platform achieves complete, void-free filling of 200 µm × 1.52 mm TGVs and continuous 10 µm-wide traces in a single print pass. Demonstrating its capabilities, we fabricate transparent Ku-band substrate-integrated waveguide antennas on borosilicate glass: the printed vias and arc feed elements exhibit a reflection coefficient minimum of −18 dB at 14.2 GHz, a −10 dB bandwidth of 12.8–16.2 GHz, and an 8 dBi peak gain with 37° beam tilt, closely matching full-wave predictions. This physics-driven, all-in-one EHD approach provides a scalable route to high-performance, glass-integrated RF devices and transparent electronics. Full article
Show Figures

Figure 1

16 pages, 3042 KiB  
Article
A Dual-Circularly Polarized Antenna Array for Space Surveillance: From Design to Experimental Validation
by Chiara Scarselli, Guido Nenna and Agostino Monorchio
Appl. Sci. 2025, 15(15), 8439; https://doi.org/10.3390/app15158439 - 30 Jul 2025
Viewed by 318
Abstract
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 [...] Read more.
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 MHz in reception mode and consists of an array of 19 slotted-patch radiating elements with a cavity-based metallic superstrate, designed to support dual circular polarization. These elements are arranged in a hexagonal configuration, enabling the array structure to achieve a maximum realized gain of 17 dBi and a Side Lobe Level (SLL) below −17 dB while maintaining high polarization purity. Two identical analog feeding networks enable the precise control of phase and amplitude, allowing the independent reception of Right-Hand and Left-Hand Circularly Polarized (RHCP and LHCP) signals. Full-wave simulations and experimental measurements confirm the high performance and robustness of the system, demonstrating its suitability for integration into large-scale Space Situational Awareness (SSA) sensor networks. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

30 pages, 7092 KiB  
Article
Slotted Circular-Patch MIMO Antenna for 5G Applications at Sub-6 GHz
by Heba Ahmed, Allam M. Ameen, Ahmed Magdy, Ahmed Nasser and Mohammed Abo-Zahhad
Telecom 2025, 6(3), 53; https://doi.org/10.3390/telecom6030053 - 28 Jul 2025
Viewed by 261
Abstract
The swift advancement of fifth-generation (5G) wireless technology brings forth a range of enhancements to address the increasing demand for data, the proliferation of smart devices, and the growth of the Internet of Things (IoT). This highly interconnected communication environment necessitates using multiple-input [...] Read more.
The swift advancement of fifth-generation (5G) wireless technology brings forth a range of enhancements to address the increasing demand for data, the proliferation of smart devices, and the growth of the Internet of Things (IoT). This highly interconnected communication environment necessitates using multiple-input multiple-output (MIMO) systems to achieve adequate channel capacity. In this article, a 2-port MIMO system using two flipped parallel 1 × 2 arrays and a 2-port MIMO system using two opposite 1 × 4 arrays designed and fabricated antennas for 5G wireless communication in the sub-6 GHz band, are presented, overcoming the limitations of previous designs in gain, radiation efficiency and MIMO performance. The designed and fabricated single-element antenna features a circular microstrip patch design based on ROGER 5880 (RT5880) substrate, which has a thickness of 1.57 mm, a permittivity of 2.2, and a tangential loss of 0.0009. The 2-port MIMO of two 1 × 2 arrays and the 2-port MIMO of two 1 × 4 arrays have overall dimensions of 132 × 66 × 1.57 mm3 and 140 × 132 × 1.57 mm3, respectively. The MIMO of two 1 × 2 arrays and MIMO of two 1 × 4 arrays encompass maximum gains of 8.3 dBi and 10.9 dBi, respectively, with maximum radiation efficiency reaching 95% and 97.46%. High MIMO performance outcomes are observed for both the MIMO of two 1 × 2 arrays and the MIMO of two 1 × 4 arrays, with the channel capacity loss (CCL) ˂ 0.4 bit/s/Hz and ˂0.3 bit/s/Hz, respectively, an envelope correlation coefficient (ECC) ˂ 0.006 and ˂0.003, respectively, directivity gain (DG) about 10 dB, and a total active reflection coefficient (TARC) under −10 dB, ensuring impedance matching and effective mutual coupling among neighboring parameters, which confirms their effectiveness for 5G applications. The three fabricated antennas were experimentally tested and implemented using the MIMO Application Framework version 19.5 for 5G systems, demonstrating operational effectiveness in 5G applications. Full article
Show Figures

Figure 1

23 pages, 13578 KiB  
Article
Cascaded Detection Method for Ship Targets Using High-Frequency Surface Wave Radar in the Time–Frequency Domain
by Zhiqing Yang, Hao Zhou, Yingwei Tian, Gan Liu, Bing Zhang, Yao Qin, Peng Li and Weimin Huang
Remote Sens. 2025, 17(15), 2580; https://doi.org/10.3390/rs17152580 - 24 Jul 2025
Viewed by 296
Abstract
Compact high-frequency surface wave radars (HFSWRs) utilize miniaturized antennas, resulting in lower antenna gain and a reduced signal-to-noise ratio (SNR) for target echoes. Due to noise interference, ship echoes in the noise region often fall below the detection threshold, leading to missed detections. [...] Read more.
Compact high-frequency surface wave radars (HFSWRs) utilize miniaturized antennas, resulting in lower antenna gain and a reduced signal-to-noise ratio (SNR) for target echoes. Due to noise interference, ship echoes in the noise region often fall below the detection threshold, leading to missed detections. To address this issue, this paper proposes a cascaded detection method in the time–frequency (TF) domain to improve ship detection performance under such conditions. First, TF features are extracted from TF representations of ship and noise signals. Supervised machine learning algorithms are then employed to distinguish targets from noise, reducing false alarms. Next, a non-constant false alarm rate (CFAR) threshold is computed based on the noise mean, standard deviation, and an adjustment factor to improve detection robustness. Experiments show that the classification accuracy between the ship and noise signals exceeds 99%, and the proposed method significantly outperforms the conventional CFAR and TF-domain CFAR in terms of detection performance. Full article
Show Figures

Graphical abstract

19 pages, 3810 KiB  
Article
Compact and High-Efficiency Linear Six-Element mm-Wave Antenna Array with Integrated Power Divider for 5G Wireless Communication
by Muhammad Asfar Saeed, Augustine O. Nwajana and Muneeb Ahmad
Electronics 2025, 14(15), 2933; https://doi.org/10.3390/electronics14152933 - 23 Jul 2025
Viewed by 277
Abstract
Millimeter-wave frequencies are crucial for meeting the high-capacity, low-latency demands of 5G communication systems, thereby driving the need for compact, high-gain antenna arrays capable of efficient beamforming. This paper presents the design, simulation, fabrication, and experimental validation of a compact, high-efficiency 1 × [...] Read more.
Millimeter-wave frequencies are crucial for meeting the high-capacity, low-latency demands of 5G communication systems, thereby driving the need for compact, high-gain antenna arrays capable of efficient beamforming. This paper presents the design, simulation, fabrication, and experimental validation of a compact, high-efficiency 1 × 6 linear series-fed microstrip patch antenna array for 5G millimeter-wave communication operating at 28 GHz. The proposed antenna is fabricated on a low-loss Rogers RO3003 substrate and incorporates an integrated symmetric two-way microstrip power divider to ensure balanced feeding and phase uniformity across elements. The antenna achieves a simulated peak gain of 11.5 dBi and a broad simulated impedance bandwidth of 30.21%, with measured results confirming strong impedance matching and a return loss better than −20 dB. The far-field radiation patterns demonstrate a narrow, highly directive beam in the E-plane, and the H-plane results reveal beam tilting behavior, validating the antenna’s capability for passive beam steering through feedline geometry and element spacing (~0.5λ). Surface current distribution analysis confirms uniform excitation and efficient radiation, further validating the design’s stability. The fabricated prototype shows excellent agreement with the simulation, with minor discrepancies attributed to fabrication tolerances. These results establish the proposed antenna as a promising candidate for applications requiring compact, high-gain, and beam-steerable solutions, such as 5G mm-wave wireless communication systems, point-to-point wireless backhaul, and automotive radar sensing. Full article
(This article belongs to the Special Issue Advances in MIMO Systems)
Show Figures

Figure 1

24 pages, 4549 KiB  
Review
Research on Tbps and Kilometer-Range Transmission of Terahertz Signals
by Jianjun Yu and Jiali Chen
Micromachines 2025, 16(7), 828; https://doi.org/10.3390/mi16070828 - 20 Jul 2025
Viewed by 576
Abstract
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) [...] Read more.
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) (>120 dB/km) and atmospheric absorption. This review comprehensively summarizes our group′s advancements in overcoming fundamental challenges of long-distance THz communication. Through systematic photonic–electronic co-optimization, we report key enabling technologies including photonically assisted THz signal generation, polarization-multiplexed multiple-input multiple-output (MIMO) systems with maximal ratio combining (MRC), high-gain antenna–lens configurations, and InP amplifier systems for complex weather resilience. Critical experimental milestones encompass record-breaking 1.0488 Tbps throughput using probabilistically shaped 64QAM (PS-64QAM) in the 330–500 GHz band; 30.2 km D-band transmission (18 Gbps with 543.6 Gbps·km capacity–distance product); a 3 km fog-penetrating link at 312 GHz; and high-sensitivity SIMO-validated 100 Gbps satellite-terrestrial communication beyond 36,000 km. These findings demonstrate THz communication′s viability for 6G networks requiring extreme-capacity backhaul and ultra-long-haul connectivity. Full article
Show Figures

Figure 1

16 pages, 6343 KiB  
Article
Smart Sensor Platform for MIMO Antennas with Gain and Isolation Enhancement Using Metamaterial
by Kranti Dhirajsinh Patil, Dinesh M. Yadav and Jayshri Kulkarni
Electronics 2025, 14(14), 2892; https://doi.org/10.3390/electronics14142892 - 19 Jul 2025
Viewed by 282
Abstract
In modern wireless communication systems, achieving high isolation and consistent signal gain is essential for optimizing Multiple-Input Multiple-Output (MIMO) antenna performance. This study presents a metamaterial-integrated smart sensor platform featuring a hexagonal two-element MIMO antenna designed to improve isolation and directive gain. Constructed [...] Read more.
In modern wireless communication systems, achieving high isolation and consistent signal gain is essential for optimizing Multiple-Input Multiple-Output (MIMO) antenna performance. This study presents a metamaterial-integrated smart sensor platform featuring a hexagonal two-element MIMO antenna designed to improve isolation and directive gain. Constructed on an FR4 substrate (1.6 mm thick), the proposed antenna configurations include a base hexagonal patch, an orthogonally oriented two-element system (TEH_OC), and further enhanced variants employing metamaterial arrays as the superstrate and reflector (TEH_OC_MTS and TEH_OC_MTR). The metamaterial structures significantly suppress mutual coupling, yielding superior diversity parameters such as Envelope Correlation Coefficient (ECC), Mean Effective Gain (MEG), and Channel Capacity Loss (CCL). All configurations were fabricated and validated through comprehensive anechoic chamber measurements. The results demonstrate robust isolation and radiation performance across the 3 GHz and 5 GHz bands, making these antennas well-suited for deployment in compact, low-latency smart sensor networks operating in 5G and IoT environments. Full article
(This article belongs to the Special Issue Advances in MIMO Systems)
Show Figures

Figure 1

17 pages, 7597 KiB  
Article
Screen-Printed 1 × 4 Quasi-Yagi-Uda Antenna Array on Highly Flexible Transparent Substrate for the Emerging 5G Applications
by Matthieu Egels, Anton Venouil, Chaouki Hannachi, Philippe Pannier, Mohammed Benwadih and Christophe Serbutoviez
Electronics 2025, 14(14), 2850; https://doi.org/10.3390/electronics14142850 - 16 Jul 2025
Viewed by 259
Abstract
In the Internet of Things (IoT) era, the demand for cost-effective, flexible, wearable antennas and circuits has been growing. Accordingly, screen-printing techniques are becoming more popular due to their lower costs and high-volume manufacturing. This paper presents and investigates a full-screen-printed 1 × [...] Read more.
In the Internet of Things (IoT) era, the demand for cost-effective, flexible, wearable antennas and circuits has been growing. Accordingly, screen-printing techniques are becoming more popular due to their lower costs and high-volume manufacturing. This paper presents and investigates a full-screen-printed 1 × 4 Quasi-Yagi-Uda antenna array on a high-transparency flexible Zeonor thin-film substrate for emerging 26 GHz band (24.25–27.55 GHz) 5G applications. As part of this study, screen-printing implementation rules are developed by properly managing ink layer thickness on a transparent flexible Zeonor thin-film dielectric to achieve a decent antenna array performance. In addition, a screen-printing repeatability study has been carried out through a performance comparison of 24 antenna array samples manufactured by our research partner from CEA-Liten Grenoble. Despite the challenging antenna array screen printing at higher frequencies, the measured results show a good antenna performance as anticipated from the traditional subtractive printed circuit board (PCB) manufacturing process using standard substrates. It shows a wide-band matched input impedance from 22–28 GHz (i.e., 23% of relative band-width) and a maximum realized gain of 12.8 dB at 27 GHz. Full article
Show Figures

Figure 1

23 pages, 4015 KiB  
Article
Predicting Electromagnetic Performance Under Wrinkling in Thin-Film Phased Arrays
by Xiaotao Zhou, Jianfei Yang, Lei Zhang, Huanxiao Li, Xin Jin, Yesen Fan, Yan Xu and Xiaofei Ma
Aerospace 2025, 12(7), 630; https://doi.org/10.3390/aerospace12070630 - 14 Jul 2025
Viewed by 257
Abstract
Deployable thin-film antennas deliver large aperture gains and high stowage efficiency for spaceborne phased arrays but suffer wrinkling-induced planarity loss and radiation distortion. To bridge the lack of electromechanical coupling models for tensioned thin-film patch antennas, we present a unified framework combining structural [...] Read more.
Deployable thin-film antennas deliver large aperture gains and high stowage efficiency for spaceborne phased arrays but suffer wrinkling-induced planarity loss and radiation distortion. To bridge the lack of electromechanical coupling models for tensioned thin-film patch antennas, we present a unified framework combining structural deformation and electromagnetic simulation. We derive a coupling model capturing the increased bending stiffness of stepped-thickness membranes, formulate a wrinkling analysis algorithm to compute tension-induced displacements, and fit representative unit-cell deformations to a dual-domain displacement model. Parametric studies across stiffness ratios confirm the framework’s ability to predict shifts in pattern, gain, and impedance due to wrinkling. This tool supports the optimized design of wrinkle-resistant thin-film phased arrays for reliable, high-performance space communications. Full article
(This article belongs to the Special Issue Space Mechanisms and Robots)
Show Figures

Figure 1

29 pages, 5555 KiB  
Review
The Development of a Spaceborne SAR Based on a Reflector Antenna
by Yongfei Huang, Weidong Yu, Qiang Lin, Wenbao Li and Yihang Feng
Remote Sens. 2025, 17(14), 2432; https://doi.org/10.3390/rs17142432 - 14 Jul 2025
Viewed by 515
Abstract
In recent years, synthetic aperture radars (SARs) have been widely applied in various fields due to their all-weather, day-and-night global imaging capabilities. As one of the most common types of antennas, the reflector antenna offers some advantages for spaceborne radars, including low cost, [...] Read more.
In recent years, synthetic aperture radars (SARs) have been widely applied in various fields due to their all-weather, day-and-night global imaging capabilities. As one of the most common types of antennas, the reflector antenna offers some advantages for spaceborne radars, including low cost, lightweight, high gain, high radiation efficiency, and low sidelobes. Consequently, spaceborne SAR systems based on reflector antennas exhibit significant potential. This paper reviews the main types and characteristics of reflector antennas, with particular attention to the structural configurations and feed arrangements of deployable reflector antennas in spaceborne SAR applications. Additionally, some emerging techniques, such as digital beamforming, staggered SAR, and SweepSAR based on reflector antennas, are examined. Finally, future development directions in this field are discussed, including high-resolution wide-swath imaging and advanced antenna deployment schemes. Full article
Show Figures

Figure 1

14 pages, 4522 KiB  
Article
A Wideband Circularly Polarized Metasurface Antenna with High Gain Using Characteristic Mode Analysis
by Zijie Li, Yuechen Liu, Mengfei Zhao, Weihua Zong and Shi He
Electronics 2025, 14(14), 2818; https://doi.org/10.3390/electronics14142818 - 13 Jul 2025
Viewed by 419
Abstract
This paper proposes a novel high-gain, wideband, circularly polarized (CP) metasurface (MTS) antenna. The antenna is composed of a centrally symmetric MTS and a slot-coupled feeding network. Through characteristic mode analysis (CMA), parasitic patches and mode-suppressing patches are added around the MTS to [...] Read more.
This paper proposes a novel high-gain, wideband, circularly polarized (CP) metasurface (MTS) antenna. The antenna is composed of a centrally symmetric MTS and a slot-coupled feeding network. Through characteristic mode analysis (CMA), parasitic patches and mode-suppressing patches are added around the MTS to enhance the desired modes and suppress the unwanted modes. Subsequently, a feeding network that merges a ring slot with an L-shaped microstrip line is utilized to excite two orthogonal modes with a 90° phase difference, thereby achieving CP and high-gain radiation. Finally, a prototype with dimensions of 0.9λ0 × 0.9λ0 × 0.05λ0 is fabricated and tested. The measured results demonstrate an impedance bandwidth (IBW) of 39.5% (4.92–7.37 GHz), a 3 dB axial ratio bandwidth (ARBW) of 33.1% (5.25–7.33 GHz), and a peak gain of 9.4 dBic at 6.9 GHz. Full article
Show Figures

Figure 1

19 pages, 5777 KiB  
Article
Considering a mm-Wave Front-End Receiver and Quadrature Down-Converter for 18–40 GHz with Low Noise Figure and High Gain for an ESM System
by Yuseok Jeon and Hyunkyu Kim
Electronics 2025, 14(14), 2803; https://doi.org/10.3390/electronics14142803 - 11 Jul 2025
Viewed by 231
Abstract
In this paper, RF sub-modules with millimeter-wave functionality are considered and verified for designing an ultra-wideband receiver (18–40 GHz) required in the electronic support measure (ESM) field. The pre-design of an ultra-wideband super heterodyne receiver (SHR) requires a front-end module (FEM) with four [...] Read more.
In this paper, RF sub-modules with millimeter-wave functionality are considered and verified for designing an ultra-wideband receiver (18–40 GHz) required in the electronic support measure (ESM) field. The pre-design of an ultra-wideband super heterodyne receiver (SHR) requires a front-end module (FEM) with four units in the system. Each FEM has four channels with the same path, while the quadrature millimeter down-converter (QMDC) needs to have a converting function that uses a broadband mixer. The FEM includes the ability to provide built-in test (BIT) path functionality to the antenna ports prior to system field installation. Each path of the QMDC requires the consideration of several factors, such as down-converting, broadband gain flatness, and high isolation. As this is an RF module requiring high frequency and wideband characteristics, it is necessary to identify risk factors in advance within a predictable range. Accordingly, the blind-mate A (BMA) connector connection method, the phase-alignment test method in the down-conversion structure, and the LO signal, IF path inflow-blocking method were analyzed and designed. Full article
Show Figures

Figure 1

23 pages, 5970 KiB  
Article
Miniaturized and Circularly Polarized Dual-Port Metasurface-Based Leaky-Wave MIMO Antenna for CubeSat Communications
by Tale Saeidi, Sahar Saleh and Saeid Karamzadeh
Electronics 2025, 14(14), 2764; https://doi.org/10.3390/electronics14142764 - 9 Jul 2025
Viewed by 386
Abstract
This paper presents a compact, high-performance metasurface-based leaky-wave MIMO antenna with dimensions of 40 × 30 mm2, achieving a gain of 12.5 dBi and a radiation efficiency of 85%. The antenna enables precise control of electromagnetic waves, featuring a flower-like metasurface [...] Read more.
This paper presents a compact, high-performance metasurface-based leaky-wave MIMO antenna with dimensions of 40 × 30 mm2, achieving a gain of 12.5 dBi and a radiation efficiency of 85%. The antenna enables precise control of electromagnetic waves, featuring a flower-like metasurface (MTS) with coffee bean-shaped arrays on substrates of varying permittivity, separated by a cavity layer to enhance coupling. Its dual-port MIMO design boosts data throughput operating in three bands (3.75–5.25 GHz, 6.4–15.4 GHz, and 22.5–30 GHz), while the leaky-wave mechanism supports frequency- or phase-dependent beamsteering without mechanical parts. Ideal for CubeSat communications, its compact size meets CubeSat constraints, and its high gain and efficiency ensure reliable long-distance communication with low power consumption, which is crucial for low Earth orbit operations. Circular polarization (CP) maintains signal integrity despite orientation changes, and MIMO capability supports high data rates for applications such as Earth observations or inter-satellite links. The beamsteering feature allows for dynamic tracking of ground stations or satellites, enhancing mission flexibility and reducing interference. This lightweight, efficient antenna addresses modern CubeSat challenges, providing a robust solution for advanced space communication systems with significant potential to enhance satellite connectivity and data transmission in complex space environments. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

Back to TopTop