Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = high-frequency link DC–DC converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4627 KiB  
Article
A Low-Voltage Back-to-Back Converter Interface for Prosumers in a Multifrequency Power Transfer Environment
by Zaid Ali, Hamed Athari and David Raisz
Appl. Sci. 2025, 15(15), 8340; https://doi.org/10.3390/app15158340 - 26 Jul 2025
Viewed by 204
Abstract
The research demonstrates, through simulation and laboratory validation, the development of a low-voltage DC-link (LVDC) back-to-back converter system that enables multi-frequency power transfer. The system operates in two distinct modes, which include a three-phase grid-connected converter transferring fundamental and 5th and 7th harmonic [...] Read more.
The research demonstrates, through simulation and laboratory validation, the development of a low-voltage DC-link (LVDC) back-to-back converter system that enables multi-frequency power transfer. The system operates in two distinct modes, which include a three-phase grid-connected converter transferring fundamental and 5th and 7th harmonic power to a three-phase residential inverter supplying a clean 50 Hz load and another mode that uses a DC–DC buck–boost converter to integrate a battery storage unit for single-phase load supply. The system allows independent control of each harmonic component and maintains a clean sinusoidal voltage at the load side through DC-link isolation. The LVDC link functions as a frequency-selective barrier to suppress non-standard harmonic signals on the load side, effectively isolating the multi-frequency power grid from standard-frequency household loads. The proposed solution fills the gap between the multi-frequency power systems and the single-frequency loads because it allows the transfer of total multi-frequency grid power to the traditional household loads with pure fundamental frequency. Experimental results and simulation outcomes demonstrate that the system achieves high efficiency, robust harmonic isolation, and dynamic adaptability when load conditions change. Full article
(This article belongs to the Special Issue Power Electronics: Control and Applications)
Show Figures

Figure 1

32 pages, 10857 KiB  
Article
Improved Fault Resilience of GFM-GFL Converters in Ultra-Weak Grids Using Active Disturbance Rejection Control and Virtual Inertia Control
by Monigaa Nagaboopathy, Kumudini Devi Raguru Pandu, Ashmitha Selvaraj and Anbuselvi Shanmugam Velu
Sustainability 2025, 17(14), 6619; https://doi.org/10.3390/su17146619 - 20 Jul 2025
Viewed by 327
Abstract
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair [...] Read more.
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair voltage and frequency stability, imposing challenging conditions for Inverter-Based Resources. To address these challenges, this paper considers a 110 KVA, three-phase, two-level Voltage Source Converter, interfacing a 700 V DC link to a 415 V AC ultra-weak grid. X/R = 1 is controlled using Sinusoidal Pulse Width Modulation, where the Grid-Connected Converter operates in Grid-Forming Mode to maintain voltage and frequency stability under a steady state. During symmetrical and asymmetrical faults, the converter transitions to Grid-Following mode with current control to safely limit fault currents and protect the system integrity. After fault clearance, the system seamlessly reverts to Grid-Forming Mode to resume voltage regulation. This paper proposes an improved control strategy that integrates voltage feedforward reactive power support and virtual capacitor-based virtual inertia using Active Disturbance Rejection Control, a robust, model-independent controller, which rapidly rejects disturbances by regulating d and q-axes currents. To test the practicality of the proposed system, real-time implementation is carried out using the OPAL-RT OP4610 platform, and the results are experimentally validated. The results demonstrate improved fault current limitation and enhanced DC link voltage stability compared to a conventional PI controller, validating the system’s robust Fault Ride-Through performance under ultra-weak grid conditions. Full article
Show Figures

Figure 1

17 pages, 7969 KiB  
Article
Methodology for Designing Broadband DC Link Filters for Voltage Source Converters
by Sebastian Raab, Sebastian Weickert and Henning Kasten
Electronics 2025, 14(14), 2743; https://doi.org/10.3390/electronics14142743 - 8 Jul 2025
Viewed by 279
Abstract
This paper presents a new methodology for the design process of DC ripple filters for voltage source converters. It focuses on fast-switching, wide-bandgap-material-based converters. Therefore, a wide frequency range of up to 100 MHz is taken into consideration during the whole process. Different [...] Read more.
This paper presents a new methodology for the design process of DC ripple filters for voltage source converters. It focuses on fast-switching, wide-bandgap-material-based converters. Therefore, a wide frequency range of up to 100 MHz is taken into consideration during the whole process. Different tools like analytic calculations, time-domain modelling, and the finite element method are used for different tasks in order to generate a realistic model in terms of filter effect and reliability. The models are validated by small-signal measurements using a vector network analyser as well as realistic high-power tests. The contribution of this paper is to provide a tool for DC link filter design to estimate the filter efficiency and the current stress on the filter elements with a special focus on WBG hardware. Full article
(This article belongs to the Special Issue Gallium Nitride (GaN)-Based Power Electronic Devices and Systems)
Show Figures

Figure 1

28 pages, 9836 KiB  
Article
Cascaded H-Bridge Multilevel Converter Topology for a PV Connected to a Medium-Voltage Grid
by Hammad Alnuman, Essam Hussain, Mokhtar Aly, Emad M. Ahmed and Ahmed Alshahir
Machines 2025, 13(7), 540; https://doi.org/10.3390/machines13070540 - 21 Jun 2025
Viewed by 379
Abstract
When connecting a renewable energy source to a medium-voltage grid, it has to fulfil grid codes and be able to work in a medium-voltage range (>10 kV). Multilevel converters (MLCs) are recognized for their low total harmonic distortion (THD) and ability to work [...] Read more.
When connecting a renewable energy source to a medium-voltage grid, it has to fulfil grid codes and be able to work in a medium-voltage range (>10 kV). Multilevel converters (MLCs) are recognized for their low total harmonic distortion (THD) and ability to work at high voltage compared to other converter types, making them ideal for applications connected to medium-voltage grids whilst being compliant with grid codes and voltage ratings. Cascaded H-bridge multilevel converters (CHBs-MLC) are a type of MLC topology, and they does not need any capacitors or diodes for clamping like other MLC topologies. One of the problems in these types of converters involves the double-frequency harmonics in the DC linking voltage and power, which can increase the size of the capacitors and converters. The use of line frequency transformers for isolation is another factor that increases the system’s size. This paper proposes an isolated CHBs-MLC topology that effectively overcomes double-line frequency harmonics and offers isolation. In the proposed topology, each DC source (renewable energy source) supplies a three-phase load rather than a single-phase load that is seen in conventional MLCs. This is achieved by employing a multi-winding high-frequency transformer (HFT). The primary winding consists of a winding connected to the DC sources. The secondary windings consist of three windings, each supplying one phase of the load. This configuration reduces the DC voltage link ripples, thus improving the power quality. Photovoltaic (PV) renewable energy sources are considered as the DC sources. A case study of a 1.0 MW and 13.8 kV photovoltaic (PV) system is presented, considering two scenarios: variations in solar irradiation and 25% partial panel shedding. The simulations and design results show the benefits of the proposed topology, including a seven-fold reduction in capacitor volume, a 2.7-fold reduction in transformer core volume, a 50% decrease in the current THD, and a 30% reduction in the voltage THD compared to conventional MLCs. The main challenge of the proposed topology is the use of more switches compared to conventional MLCs. However, with advancing technology, the cost is expected to decrease over time. Full article
(This article belongs to the Special Issue Power Converters: Topology, Control, Reliability, and Applications)
Show Figures

Figure 1

37 pages, 3905 KiB  
Review
Advances in HVDC Systems: Aspects, Principles, and a Comprehensive Review of Signal Processing Techniques for Fault Detection
by Leyla Zafari, Yuan Liu, Abhisek Ukil and Nirmal-Kumar C. Nair
Energies 2025, 18(12), 3106; https://doi.org/10.3390/en18123106 - 12 Jun 2025
Viewed by 652
Abstract
This paper presents a comprehensive review of High-Voltage Direct-Current (HVDC) systems, focusing on their technological evolution, fault characteristics, and advanced signal processing techniques for fault detection. The paper traces the development of HVDC links globally, highlighting the transition from mercury-arc valves to Insulated [...] Read more.
This paper presents a comprehensive review of High-Voltage Direct-Current (HVDC) systems, focusing on their technological evolution, fault characteristics, and advanced signal processing techniques for fault detection. The paper traces the development of HVDC links globally, highlighting the transition from mercury-arc valves to Insulated Gate Bipolar Transistor (IGBT)-based converters and showcasing operational projects in technologically advanced countries. A detailed comparison of converter technologies including line-commutated converters (LCCs), Voltage-Source Converters (VSCs), and Modular Multilevel Converters (MMCs) and pole configurations (monopolar, bipolar, homopolar, and MMC) is provided. The paper categorizes HVDC faults into AC, converter, and DC types, focusing on their primary locations and fault characteristics. Signal processing methods, including time-domain, frequency-domain, and time–frequency-domain approaches, are systematically compared, supported by relevant case studies. The review identifies critical research gaps in enhancing the reliability of fault detection, classification, and protection under diverse fault conditions, offering insights into future advancements in HVDC system resilience. Full article
Show Figures

Figure 1

17 pages, 6717 KiB  
Article
An H-Bridge Switched Tank Converter with Reduced Inductance
by Xinxin Yang, Runquan Meng, Huajian Li, Jiahui Zhang, Xiang Bai and Ruishu Li
Electronics 2025, 14(3), 472; https://doi.org/10.3390/electronics14030472 - 24 Jan 2025
Viewed by 760
Abstract
Due to the restrictions of the operating environment and on-site space conditions, the energy routing devices used in Antarctic research stations must have a compact structure and require the internal power converter to have a high enough power density to reduce its size, [...] Read more.
Due to the restrictions of the operating environment and on-site space conditions, the energy routing devices used in Antarctic research stations must have a compact structure and require the internal power converter to have a high enough power density to reduce its size, so the internal DC/DC conversion link of the energy router adopts a two-stage voltage regulation scheme. In this paper, a Switched Tank Converter (STC) is used to realize the coarse voltage adjustment of the first stage. In order to further improve the power density of the STC, this paper integrates the half bridge with the same switching action in the STC, and several resonant slots share one inductor to obtain an H-bridge STC with reduced inductance. At the same time, an improved control method is proposed to solve the influence of passive device parameter error and the parasitic parameter on the resonant frequency by adjusting the on-time value of the switch on the rectifier side. This control method can effectively solve the influence of the passive device parameter difference on the converter without adding new devices, ensure the power density advantage of the converter, and improve efficiency. Finally, the validity and rationality of the circuit and the improved control method are verified by simulation and experiment. The experimental result shows that the H-bridge STC with reduced inductance has a power density of 1041 W/in3 at 600 W, which greatly improves the overall operating efficiency of the energy router. Full article
Show Figures

Figure 1

20 pages, 7303 KiB  
Article
Impedance Reshaping Strategy for Battery Energy Storage Systems Based on Partial Power Conversion
by Ming Li, Yucheng Wu, Xiangxin Xi, Haibo Liu, Baizheng Xu and Long Jing
Energies 2025, 18(1), 189; https://doi.org/10.3390/en18010189 - 4 Jan 2025
Viewed by 792
Abstract
To avoid additional component losses while significantly improving the energy conversion efficiency of battery energy storage systems, the application of series-connected partial power converter (S-PPC) technology in battery energy storage systems is investigated in this study. In the S-PPC battery energy storage system [...] Read more.
To avoid additional component losses while significantly improving the energy conversion efficiency of battery energy storage systems, the application of series-connected partial power converter (S-PPC) technology in battery energy storage systems is investigated in this study. In the S-PPC battery energy storage system configuration, coupling effects exist between the dc-link side and the battery-series side. The impedance modeling of a battery energy storage system is performed while taking these coupling effects into consideration. To address the instability observed during battery discharge conditions, an impedance reshaping control strategy that is suitable for the S-PPC battery energy storage system is proposed. The proposed method focuses on adjusting the input impedance of the load converter within a limited frequency band centered on the system’s oscillation frequency. This targeted approach significantly improves the stability of the system while ensuring ease of implementation and maintaining high reliability. Finally, the experimental results validate the theoretical analysis. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

22 pages, 8881 KiB  
Article
A Modular Step-Up DC/DC Converter for Electric Vehicles
by Ahmed Darwish
Energies 2024, 17(24), 6305; https://doi.org/10.3390/en17246305 - 13 Dec 2024
Cited by 3 | Viewed by 1329
Abstract
A step-up DC/DC converter is required to match the fuel cell’s stack voltage with the DC-link capacitor of the propulsion system in fuel cell-based electric vehicles (FCEVs). Typically, the nominal voltage of a single fuel cell ranges from 0.5 V to 1 V, [...] Read more.
A step-up DC/DC converter is required to match the fuel cell’s stack voltage with the DC-link capacitor of the propulsion system in fuel cell-based electric vehicles (FCEVs). Typically, the nominal voltage of a single fuel cell ranges from 0.5 V to 1 V, and the DC-link voltage usually lies between 400 V and 800 V. This article proposes a new modular step-up DC/DC converter capable of providing a wide voltage-boosting range from the input to the output side using series-connected isolated boosting submodules (SMs). Modified versions of boost and Cuk converters are designed and used as the SMs to deliver a flexible output voltage, combining the voltage-boosting capability with the ability to embed a medium/high-frequency transformer, which provides both galvanic isolation and an additional degree of voltage boosting while drawing a continuous input current from the fuel cell with minimal ripple, enhancing performance. The proposed modular converter offers the advantages of improved controllability, scalability, and greater reliability, particularly during partial faults. The feasibility of the proposed converter is demonstrated through computer simulations conducted using MATLAB/SIMULINK® R2024a software where a DC link of 400 V is created from 50 V input sources. Additionally, a 1 kW small-scale prototype is designed and controlled using a TMS320F28335 digital signal processor to validate the mathematical analysis and simulation results, where the SMs are controlled to create a DC link of 100 V from four 25 V input sources with an electrical efficiency of approximately 95%. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

19 pages, 10743 KiB  
Article
Research on Asymmetrical Operation of Multilevel Converter-Type Solid-State Transformers Based on High-Frequency Link Interconnection
by Yanfei You, Minli Yu, Xintao Fan, Lei Qi and Jiaxun Teng
Electronics 2024, 13(20), 4043; https://doi.org/10.3390/electronics13204043 - 14 Oct 2024
Viewed by 1085
Abstract
The large size of the sub-module (SM) capacitor is a typical problem in traditional modular multilevel converter-type solid-state transformers (MMC-SSTs). The MMC-SST based on high-frequency link interconnection is an effective solution for achieving lightweight capacitance. This structure can help to eliminate the symmetric [...] Read more.
The large size of the sub-module (SM) capacitor is a typical problem in traditional modular multilevel converter-type solid-state transformers (MMC-SSTs). The MMC-SST based on high-frequency link interconnection is an effective solution for achieving lightweight capacitance. This structure can help to eliminate the symmetric SM fluctuating power, thereby reducing the SM capacitance. In a three-phase interconnected MMC-SST with low capacitance, potential risks may arise during transient processes, especially in cases of three-phase voltage asymmetry, such as large fluctuations in the SM voltage and unstable DC bus voltage. Aiming to solve this problem, this article re-analyzes the internal power characteristics of the MMC-SST under asymmetric operation and re-derives the SM capacitance constraint suitable for different degrees of three-phase voltage asymmetry. The new SM capacitance constraint enhances the asymmetric voltage ride-through capability of the MMC-SST. The new capacitance constraint is higher than that in symmetric operation, but it still has significant advantages in capacitance compared with the traditional MMC-SST. Full article
(This article belongs to the Special Issue Applications of Advanced Control in Electrical Systems)
Show Figures

Figure 1

23 pages, 13512 KiB  
Article
A New Three-Phase Hybrid Multilevel Topology with Hybrid Modulation and Control Strategy for Front-End Converter Applications
by Muhammad Ali, Muhammad Talib Faiz, Muhammad Mansoor Khan, Vincent Ng and Ka-Hong Loo
Mathematics 2024, 12(13), 2116; https://doi.org/10.3390/math12132116 - 5 Jul 2024
Viewed by 1763
Abstract
This article presents a novel hybrid three-phase multilevel topology with a hybrid modulation and a control strategy for lower-medium voltage front-end converters. The proposed topology consists of a series arrangement of a three-phase full bridge and a packed U-cell. Each phase leg of [...] Read more.
This article presents a novel hybrid three-phase multilevel topology with a hybrid modulation and a control strategy for lower-medium voltage front-end converters. The proposed topology consists of a series arrangement of a three-phase full bridge and a packed U-cell. Each phase leg of the circuit comprises eight active switches and two DC link sources, which are connected to a shared DC bus voltage source, thus generating seven levels of output voltage. The active switches of the proposed topology are categorized based on voltage stresses and controlled using a low-frequency space vector PWM and high-frequency alternative phase opposition disposition PWM techniques. To validate the proposed topology and demonstrate the performance and effectiveness of the hybrid modulation and control schemes, simulations in MATLAB/Simulink and experiments on a custom-designed laboratory prototype have been carried out, and the results are discussed in detail. Moreover, a comprehensive comparison has been conducted among the relevant topologies, which reveals several advantages that include a reduced voltage and a current total harmonic distortion (THD) of 11.28% and 1.76%, respectively, minimized switch loss by 10.3 kW, improved efficiency by 0.26%, and decreased the component count with two levels increased in the output voltage. Full article
(This article belongs to the Special Issue Control, Modeling and Optimization for Multiphase Machines and Drives)
Show Figures

Figure 1

15 pages, 7261 KiB  
Article
Transformerless Partial Power AC-Link Step-Down Converter
by Rodrigo A. Bugueño, Hugues Renaudineau, Ana M. Llor and Christian A. Rojas
Mathematics 2024, 12(13), 1939; https://doi.org/10.3390/math12131939 - 22 Jun 2024
Cited by 4 | Viewed by 1785
Abstract
DC–DC power converters are essential for various applications, including photovoltaic systems, green hydrogen production, battery charging, and DC microgrids. Partial Power Converters (PPC) are notable for their efficiency, processing only a fraction of total power and reducing conversion losses, but this performance is [...] Read more.
DC–DC power converters are essential for various applications, including photovoltaic systems, green hydrogen production, battery charging, and DC microgrids. Partial Power Converters (PPC) are notable for their efficiency, processing only a fraction of total power and reducing conversion losses, but this performance is overshadowed by the high cost of its construction, associated with high-frequency transformers (HFT). This paper introduces a transformerless partial power AC-link step-down converter, eliminating the need for an HFT and reducing costs while improving power density. An experimental validation using a reduced-scale prototype demonstrates the converter’s operation with a peak efficiency of 93.2% and overall efficiency above 92%, demonstrating the experimental viability of the converter. The proposed AC-link seen as a two-port network is shown to be very attractive for DC–DC step-down operations, and as a possible replacement of traditional PPC. Full article
(This article belongs to the Special Issue Mathematical Modeling and Optimization of Energy Systems)
Show Figures

Figure 1

29 pages, 2237 KiB  
Article
Average Modeling of High Frequency AC Link Three-Port DC/DC/DC Converters
by Eduardo Vasquez Mayen and Emmanuel De Jaeger
Electricity 2024, 5(2), 397-425; https://doi.org/10.3390/electricity5020021 - 17 Jun 2024
Viewed by 1789
Abstract
The current transition towards renewable energies has led to an increased utilization of Photovoltaic (PV) sources and battery energy storage systems to complement the PV panels. To facilitate energy transfer among PVs, batteries, and loads, multiple converters are required. Thus, this transformation in [...] Read more.
The current transition towards renewable energies has led to an increased utilization of Photovoltaic (PV) sources and battery energy storage systems to complement the PV panels. To facilitate energy transfer among PVs, batteries, and loads, multiple converters are required. Thus, this transformation in the energy system has resulted in an increase in converter-interfaced elements. Within this context, three-port converters allow for replacing multiple converters with a single one. These three-port converters use a high-frequency AC resonant link for the bidirectional transfer of energy across the different ports. This architecture uses multiple switches and has a variable operating frequency. These characteristics make the simulation of these converters computationally heavy. Thus, averaged models are required, especially for simulating multiple converters connected in parallel or composing a microgrid. In this paper, an averaged model for this type of converter is developed. The methodology is first demonstrated and applied to a two-port DC/DC converter, and subsequently extended to the three-port DC/DC/DC version. Afterwards, control strategies for three-port DC/DC/DC converters are proposed based on the elements connected to their ports. The developed model for three-port DC/DC/DC converters is then implemented in an islanded DC microgrid to demonstrate their parallel operation. The proposed developed averaged models and the test DC microgrid are implemented in MATLAB/Simulink. Full article
Show Figures

Figure 1

16 pages, 6929 KiB  
Article
Single-Stage LLC Resonant Converter for Induction Heating System with Improved Power Quality
by Anand Kumar, Anik Goswami, Pradip Kumar Sadhu and Jerzy R. Szymanski
Electricity 2024, 5(2), 211-226; https://doi.org/10.3390/electricity5020011 - 26 Apr 2024
Cited by 3 | Viewed by 2450
Abstract
This paper proposes a single-stage direct AC to high-frequency (HF) AC resonant converter based on LLC configuration for induction heating (IH) systems or HF applications. Unlike conventional converters for IH systems, the proposed topology converts the utility frequency to HF AC in a [...] Read more.
This paper proposes a single-stage direct AC to high-frequency (HF) AC resonant converter based on LLC configuration for induction heating (IH) systems or HF applications. Unlike conventional converters for IH systems, the proposed topology converts the utility frequency to HF AC in a single stage without using a DC link inductor and capacitors and takes the advantages of LLC configuration. Additionally, it improves the power factor to 0.9–1, lowers the THD (3.2% experimentally), and protects against the high-frequency components. An embedded control scheme was designed to keep the HF current oscillating at a resonant frequency, ensuring zero-voltage switching. The operating principle of the proposed topology was investigated using mathematical equations and equivalent circuits. Finally, it was verified using computer simulation, and an experimental prototype of 1.1 kW was developed to demonstrate the proposed topology’s uniqueness. Full article
(This article belongs to the Topic Power Converters)
Show Figures

Figure 1

29 pages, 13610 KiB  
Article
Comparative Evaluation of Three-Phase Three-Level Flying Capacitor and Stacked Polyphase Bridge GaN Inverter Systems for Integrated Motor Drives
by Gwendolin Rohner, Jonas Huber, Spasoje Mirić and Johann W. Kolar
Electronics 2024, 13(7), 1259; https://doi.org/10.3390/electronics13071259 - 28 Mar 2024
Cited by 2 | Viewed by 2339
Abstract
This article presents a comprehensive comparative evaluation of a three-phase Three-Level (3L) Flying Capacitor Converter (FCC) and a Stacked Polyphase Bridge Inverter (SPBI), specifically a converter system formed by two Series-Stacked Two-Level three-phase Converters (2L-SSC), for the realization of a 7.5 kW Integrated [...] Read more.
This article presents a comprehensive comparative evaluation of a three-phase Three-Level (3L) Flying Capacitor Converter (FCC) and a Stacked Polyphase Bridge Inverter (SPBI), specifically a converter system formed by two Series-Stacked Two-Level three-phase Converters (2L-SSC), for the realization of a 7.5 kW Integrated Motor Drive (IMD) with a high short-term overload capability. The 2L-SSC requires a motor with two three-phase windings and a split DC-link, but uses standard six-switch, two-level transistor configurations. In contrast, the bridge legs of the 3L-FCC feature flying capacitors whose voltages must be actively balanced. Despite the 800 V DC-link voltage, both topologies employ the same set of 650 V GaN power transistors, i.e., the same total chip area, and if operated at the same switching frequency, show identical semiconductor losses. Electric Discharge Machining (EDM) damage of the motor bearings is a relevant issue caused by the common-mode (CM) voltages of the inverter stage. The high effective switching frequency of the 3L-FCC and the possibility of CM voltage canceling in the 2L-SSC facilitate mitigation of EDM by means of CM chokes, whereby a substantially smaller CM choke with lower losses suffices for the 2L-SSC; based on exemplary designs, the 2L-SSC features only about 75% of the total volume and 85% of the nominal losses of the 3L-FCC. If, alternatively, motor-friendliness is maximized by including DC-referenced sine-wave output filters, the 3L-FCC’s higher effective switching frequency and the 2L-SSC’s need for two sets of filters due to the dual-winding-set motor change the outcome. In this case, the 3L-FCC features only about 60% of the volume and only about 55% of the 2L-SSC’s nominal losses. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

13 pages, 17365 KiB  
Article
Innovative Matrix-Type AC-AC Solid-State Transformer Eliminating Ripple Power with Double-Grid Frequency
by Hui Wang, Tianshi Yu, Manlin Wang and Guangfu Ning
Energies 2024, 17(7), 1540; https://doi.org/10.3390/en17071540 - 23 Mar 2024
Cited by 1 | Viewed by 1234
Abstract
Single-phase solid-state transformers (SSTs) have the advantages of a compact structure, higher reliability, and multiple functions, and have been widely studied. However, bulky energy storage elements and inherent ripple power with double-grid frequency issues are the main disadvantages of conventional single-phase SSTs. This [...] Read more.
Single-phase solid-state transformers (SSTs) have the advantages of a compact structure, higher reliability, and multiple functions, and have been widely studied. However, bulky energy storage elements and inherent ripple power with double-grid frequency issues are the main disadvantages of conventional single-phase SSTs. This paper presents a single-phase matrix-type AC-AC SST eliminating ripple power with double-grid frequency. The presented SST consists of a line-frequency-commutated rectifier without bulky DC-link capacitors, an LLC resonant converter, a buck converter, and a line-frequency-commutated inverter. The LLC operates efficiently with a fixed voltage gain, and the buck converter provides a voltage regulation function. As a result, high conversion efficiency, high power density, and potentially high reliability are achieved. A 1 kW SST prototype is developed and tested to validate the feasibility and functionality of the proposed methods. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

Back to TopTop