Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (257)

Search Parameters:
Keywords = high-filled ground

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3666 KiB  
Article
Integrating UAV and USV for Elaboration of High-Resolution Coastal Elevation Models
by Isabel López, Luis Bañón and José I. Pagán
J. Mar. Sci. Eng. 2025, 13(8), 1464; https://doi.org/10.3390/jmse13081464 - 30 Jul 2025
Viewed by 192
Abstract
Coastal erosion, exacerbated by climate change, poses a critical global threat to both the environment and human livelihoods. Acquiring accurate, high-resolution topo-bathymetric data is vital for understanding these dynamic environments, without underestimating the hydrodynamic and meteo-oceanographic conditions. However, traditional methods often present significant [...] Read more.
Coastal erosion, exacerbated by climate change, poses a critical global threat to both the environment and human livelihoods. Acquiring accurate, high-resolution topo-bathymetric data is vital for understanding these dynamic environments, without underestimating the hydrodynamic and meteo-oceanographic conditions. However, traditional methods often present significant challenges in achieving comprehensive, high-resolution topo-bathymetric coverage efficiently in shallow coastal zones, leading to a notable ”white ribbon” data gap. This study introduces a novel, integrated methodology combining unmanned aerial vehicles (UAVs) for terrestrial surveys, unmanned surface vehicles (USVs) for bathymetry, and the Global Navigation Satellite System (GNSS) for ground control and intertidal gap-filling. Through this technologically rigorous approach, a seamless Bathymetry-Topography Digital Surface Model for the Guardamar del Segura dune system (Spain) was successfully elaborated using a DJI Mini 2 UAV, Leica Zeno FLX100 GNSS, and Apache 3 USV. The method demonstrated a substantial time reduction of at least 50–75% for comparable high-resolution coverage, efficiently completing the 86.4 ha field campaign in approximately 4 h. This integrated approach offers an accessible and highly efficient solution for generating detailed coastal elevation models crucial for coastal management and research. Full article
(This article belongs to the Special Issue Monitoring Coastal Systems and Improving Climate Change Resilience)
Show Figures

Figure 1

31 pages, 10410 KiB  
Article
Integrated Prospectivity Mapping for Copper Mineralization in the Koldar Massif, Kazakhstan
by Dinara Talgarbayeva, Andrey Vilayev, Elmira Serikbayeva, Elmira Orynbassarova, Hemayatullah Ahmadi, Zhanibek Saurykov, Nurmakhambet Sydyk, Aigerim Bermukhanova and Berik Iskakov
Minerals 2025, 15(8), 805; https://doi.org/10.3390/min15080805 - 30 Jul 2025
Viewed by 362
Abstract
This study developed a copper mineral prospectivity map for the Koldar massif, Kazakhstan, using an integrated approach combining geophysical and satellite methods. A strong spatialgenetic link was identified between faults and hydrothermal mineralization, with faults acting as key conduits for ore-bearing fluids. Lineament [...] Read more.
This study developed a copper mineral prospectivity map for the Koldar massif, Kazakhstan, using an integrated approach combining geophysical and satellite methods. A strong spatialgenetic link was identified between faults and hydrothermal mineralization, with faults acting as key conduits for ore-bearing fluids. Lineament analysis and density mapping confirmed the high permeability of the Koldar massif, indicating its structural prospectivity. Hyperspectral and multispectral data (ASTER, PRISMA, WorldView-3) were applied for detailed mapping of hydrothermal alteration (phyllic, propylitic, argillic zones), which are critical for discovering porphyry copper deposits. In particular, WorldView-3 imagery facilitated the identification of new prospective zones. The transformation of magnetic and gravity data successfully delineated geological features and structural boundaries, confirming the fractured nature of the massif, a key structural factor for mineralization. The resulting map of prospective zones, created by normalizing and integrating four evidential layers (lineament density, PRISMA-derived hydrothermal alteration, magnetic, and gravity anomalies), is thoroughly validated, successfully outlining the known Aktogay, Aidarly, and Kyzylkiya deposits. Furthermore, new, previously underestimated prospective areas were identified. This work fills a significant knowledge gap concerning the Koldar massif, which had not been extensively studied using satellite methods previously. The key advantage of this research lies in its comprehensive approach and the successful application of high-quality hyperspectral imagery for mapping new prospective zones, offering a cost-effective and efficient alternative to traditional ground-based investigations. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

27 pages, 9975 KiB  
Article
Study on the Hydrogeological Characteristics of Roof Limestone Aquifers After Mining Damage in Karst Mining Areas
by Xianzhi Shi, Guosheng Xu, Ziwei Qian and Weiqiang Zhang
Water 2025, 17(15), 2264; https://doi.org/10.3390/w17152264 - 30 Jul 2025
Viewed by 232
Abstract
To study hydrogeological characteristics after the occurrence of abnormal water bursts from the weak water-rich (permeable) aquifer of the Changxing Formation limestone overlying deep working faces during production in Guizhou karst landform mining areas, hydrogeological data covering the exploration and production periods of [...] Read more.
To study hydrogeological characteristics after the occurrence of abnormal water bursts from the weak water-rich (permeable) aquifer of the Changxing Formation limestone overlying deep working faces during production in Guizhou karst landform mining areas, hydrogeological data covering the exploration and production periods of the Xinhua mining region in Jinsha County, Guizhou Province, were collected. On the basis of surface and underground drilling, geophysical exploration techniques, empirical equations, and indoor material simulation methods, the hydrogeological evolution characteristics of the Changxing Formation limestone in the mining region after mining damage to coalbed 9 were studied. The research results indicated that the ratio of the height of the roof failure fracture zone (as obtained via numerical simulation and ground borehole detection) to the mining height exceeded 25.78, which is far greater than the empirical model calculation values (from 13.0 to 15.8). After mining the underlying coalbed 9, an abnormal water-rich area developed in the Changxing Formation limestone, and mining damage fractures led to the connection of the original dissolution fissures and karst caves within the limestone, resulting in the weak water-rich (permeable) aquifer of the Changxing Formation limestone becoming a strong water-rich (permeable) aquifer, which served as the water source for mine water bursts. Over time, after mining damage occurrence, the voids in the Changxing Formation limestone were gradually filled with various substances, yielding water storage space and connectivity decreases. The specific yield decreased with an increasing water burst time and interval after the cessation of mining in the supply area, and the correlation coefficient R was 0.964, indicating a high degree of correlation between the two parameters. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

22 pages, 15042 KiB  
Article
Study on Optimization of Downward Mining Schemes of Sanshandao Gold Mine
by Weijun Liu, Zhixiang Liu and Zaiyong Li
Appl. Sci. 2025, 15(15), 8296; https://doi.org/10.3390/app15158296 - 25 Jul 2025
Viewed by 122
Abstract
To address the challenges associated with deep ground pressure control at the Sanshandao Gold Mine, a pre-controlled top-to-middle and deep-hole upper and lower-wall goaf subsequent filling mining method was proposed. Three distinct downward mining schemes were designed, the excavation procedure is systematically designed [...] Read more.
To address the challenges associated with deep ground pressure control at the Sanshandao Gold Mine, a pre-controlled top-to-middle and deep-hole upper and lower-wall goaf subsequent filling mining method was proposed. Three distinct downward mining schemes were designed, the excavation procedure is systematically designed with 18 steps, and the temporal and spatial evolution characteristics of stress and displacement were analyzed using FLAC3D. The results revealed that stress concentration occurred during excavation steps 1–3. As excavation progressed to steps 4–9, the stress concentration area shifted primarily to the filling zones of partially excavated and filled sections. By steps 10–12, the stress concentration in these areas was alleviated. Upon completion of all excavation and filling steps, a small plastic zone was observed, accompanied by an alternating distribution of high and low stress within the backfill. Throughout the excavation process, vertical displacement ranged from 4.42 to 22.73 mm, while horizontal displacement ranged from 1.72 to 3.69 mm, indicating that vertical displacement had a more significant impact on stope stability than horizontal displacement. Furthermore, the fuzzy comprehensive evaluation method was applied to optimize the selection among the three schemes, with Scheme 2 identified as the optimal. Field industrial trials subsequently confirmed the technical rationality and practical applicability of Scheme 2 under actual mining conditions. Full article
(This article belongs to the Special Issue Recent Advances in Rock Mass Engineering)
Show Figures

Figure 1

24 pages, 1237 KiB  
Article
Tourist Health Responses to Therapeutic Landscapes in Urbanizing Contexts
by Qing Feng, Ruwen Tan, Han Yang and Bingqian Wei
Sustainability 2025, 17(14), 6456; https://doi.org/10.3390/su17146456 - 15 Jul 2025
Viewed by 364
Abstract
Urbanization drives spatial restructuring that transforms landscapes to prioritize human health. Grounded in therapeutic landscape theory and tourism involvement theory, this study employs PLS-SEM and CMV to examine how landscapes affect individual health amid urbanization. Key findings reveal the following: (1) A model [...] Read more.
Urbanization drives spatial restructuring that transforms landscapes to prioritize human health. Grounded in therapeutic landscape theory and tourism involvement theory, this study employs PLS-SEM and CMV to examine how landscapes affect individual health amid urbanization. Key findings reveal the following: (1) A model of urbanization for tourists’ perceived health confirms urbanization enhances health perceptions via therapeutic landscapes. (2) Therapeutic landscape perceptions exert an indirect effect on health perception through the mediating variable of tourism involvement, where tourism psychological involvement demonstrates a complete mediating effect, while tourism behavioral involvement exhibits a partial mediating role. (3) High urbanization exerts a more pronounced positive influence on natural and social landscapes compared to symbolic landscapes. Notably, elevated urbanization levels significantly strengthen the positive association between natural/social landscapes and perceived health benefits. Under low urbanization, health perception does not demonstrate significant enhancement with elevated landscape perception. This study fills a critical research gap by quantitatively investigating, from a micro-scale perspective, how therapeutic landscapes enhance tourists’ health within urbanization contexts in Eastern settings. Furthermore, it extends the theoretical framework of tourism involvement in health tourism contexts, advances tourism and leisure research, and provides scientific support for sustainable tourism development and tourists’ well-being enhancement. Full article
Show Figures

Figure 1

17 pages, 5238 KiB  
Article
Study on Reinforcement Technology of Shield Tunnel End and Ground Deformation Law in Shallow Buried Silt Stratum
by Jia Zhang and Xiankai Bao
Appl. Sci. 2025, 15(14), 7657; https://doi.org/10.3390/app15147657 - 8 Jul 2025
Viewed by 322
Abstract
With the rapid advancement of urban underground space development, shield tunnel construction has seen a significant increase. However, at the initial launching stage of shield tunnels in shallow-buried weak strata, engineering risks such as face instability and sudden surface settlement frequently occur. At [...] Read more.
With the rapid advancement of urban underground space development, shield tunnel construction has seen a significant increase. However, at the initial launching stage of shield tunnels in shallow-buried weak strata, engineering risks such as face instability and sudden surface settlement frequently occur. At present, there are relatively few studies on the reinforcement technology of the initial section of shield tunnel in shallow soft ground and the evolution law of ground disturbance. This study takes the launching section of the Guanggang New City depot access tunnel on Guangzhou Metro Line 10 as the engineering background. By applying MIDAS/GTS numerical simulation, settlement monitoring, and theoretical analysis, the reinforcement technology at the tunnel face, the spatiotemporal evolution of ground settlement, and the mechanism of soil disturbance transmission during the launching process in muddy soil layer are revealed. The results show that: (1) the reinforcement scheme combining replacement filling, high-pressure jet grouting piles, and soil overburden counterpressure significantly improves surface settlement control. The primary influence zone is concentrated directly above the shield machine and in the forward excavation area. (2) When the shield machine reaches the junction between the reinforced and unreinforced zones, a large settlement area forms, with the maximum ground settlement reaching −26.94 mm. During excavation in the unreinforced zone, ground deformation mainly occurs beneath the rear reinforced section, with subsidence at the crown and uplift at the invert. (3) The transverse settlement trough exhibits a typical Gaussian distribution and the discrepancy between the measured maximum settlement and the numerical and theoretical values is only 3.33% and 1.76%, respectively. (4) The longitudinal settlement follows a trend of initial increase, subsequent decrease, and gradual stabilization, reaching a maximum when the excavation passes directly beneath the monitoring point. The findings can provide theoretical reference and engineering guidance for similar projects. Full article
Show Figures

Figure 1

26 pages, 7645 KiB  
Article
Prediction of Rice Chlorophyll Index (CHI) Using Nighttime Multi-Source Spectral Data
by Cong Liu, Lin Wang, Xuetong Fu, Junzhe Zhang, Ran Wang, Xiaofeng Wang, Nan Chai, Longfeng Guan, Qingshan Chen and Zhongchen Zhang
Agriculture 2025, 15(13), 1425; https://doi.org/10.3390/agriculture15131425 - 1 Jul 2025
Viewed by 459
Abstract
The chlorophyll index (CHI) is a crucial indicator for assessing the photosynthetic capacity and nutritional status of crops. However, traditional methods for measuring CHI, such as chemical extraction and handheld instruments, fall short in meeting the requirements for efficient, non-destructive, and continuous monitoring [...] Read more.
The chlorophyll index (CHI) is a crucial indicator for assessing the photosynthetic capacity and nutritional status of crops. However, traditional methods for measuring CHI, such as chemical extraction and handheld instruments, fall short in meeting the requirements for efficient, non-destructive, and continuous monitoring at the canopy level. This study aimed to explore the feasibility of predicting rice canopy CHI using nighttime multi-source spectral data combined with machine learning models. In this study, ground truth CHI values were obtained using a SPAD-502 chlorophyll meter. Canopy spectral data were acquired under nighttime conditions using a high-throughput phenotyping platform (HTTP) equipped with active light sources in a greenhouse environment. Three types of sensors—multispectral (MS), visible light (RGB), and chlorophyll fluorescence (ChlF)—were employed to collect data across different growth stages of rice, ranging from tillering to maturity. PCA and LASSO regression were applied for dimensionality reduction and feature selection of multi-source spectral variables. Subsequently, CHI prediction models were developed using four machine learning algorithms: support vector regression (SVR), random forest (RF), back-propagation neural network (BPNN), and k-nearest neighbors (KNNs). The predictive performance of individual sensors (MS, RGB, and ChlF) and sensor fusion strategies was evaluated across multiple growth stages. The results demonstrated that sensor fusion models consistently outperformed single-sensor approaches. Notably, during tillering (TI), maturity (MT), and the full growth period (GP), fused models achieved high accuracy (R2 > 0.90, RMSE < 2.0). The fusion strategy also showed substantial advantages over single-sensor models during the jointing–heading (JH) and grain-filling (GF) stages. Among the individual sensor types, MS data achieved relatively high accuracy at certain stages, while models based on RGB and ChlF features exhibited weaker performance and lower prediction stability. Overall, the highest prediction accuracy was achieved during the full growth period (GP) using fused spectral data, with an R2 of 0.96 and an RMSE of 1.99. This study provides a valuable reference for developing CHI prediction models based on nighttime multi-source spectral data. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

24 pages, 18983 KiB  
Article
Multi-Factor Analysis and Graded Remediation Strategy for Goaf Stability in Underground Metal Mines: Fluid–Solid Coupling Simulation and Genetic Algorithm-Based Optimization Approach
by Xuzhao Yuan, Xiaoquan Li, Xuefeng Li, Tianlong Su, Han Du and Danhua Zhu
Symmetry 2025, 17(7), 1024; https://doi.org/10.3390/sym17071024 - 30 Jun 2025
Viewed by 283
Abstract
To ensure the green, safe, and efficient extraction of mineral resources and promote sustainability, the stability of mined-out areas has become a critical factor affecting safe production and ecological restoration in underground metal mines. The instability of underground goafs poses a significant threat [...] Read more.
To ensure the green, safe, and efficient extraction of mineral resources and promote sustainability, the stability of mined-out areas has become a critical factor affecting safe production and ecological restoration in underground metal mines. The instability of underground goafs poses a significant threat to mine safety, especially when irregular excavation patterns interact with high ground stress, exacerbating instability risks. Most existing studies lack a systematic and multidisciplinary integrated framework for comprehensive evaluation and management. This paper proposes a trinity research system of “assessment–optimization–governance”, integrating theoretical analysis, three-dimensional fluid–solid coupling numerical simulation, and a filling sequence optimization method based on genetic algorithms. An analysis of data measured from 243 pillars and 49 goafs indicates that approximately 20–30% of the pillars have a factor of safety (FoS) below 1.0, signaling immediate instability risks; additionally, 58% do not meet the threshold for long-term stability (FoS ≥ 1.5). Statistical and spatial analyses highlight that pillar width-to-height ratio (W/H) and cross-sectional area significantly influence stability; when W/H exceeds 1.5, FoS typically surpasses 2.0. Numerical simulations reveal pore water pressures of 1.4–1.8 MPa in deeper goafs, substantially reducing effective stress and accelerating plastic zone expansion. Stability classification categorizes the 49 goafs into 7 “poor”, 37 “moderate”, and 5 “good” zones. A genetic algorithm-optimized filling sequence prioritizes high-risk area remediation, reducing maximum principal stress by 60.96% and pore pressure by 28.6%. Cemented waste rock filling applied in high-risk areas, complemented by general waste rock filling in moderate-risk areas, significantly enhances overall stability. This integrated method provides a scientific foundation for stability assessment and dynamic remediation planning under complex hydrogeological conditions, offering a risk-informed and scenario-specific application of existing tools that improves engineering applicability. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

15 pages, 233 KiB  
Article
Envisioning the Future of Fine Dining: Insights from a Multi-Methods Study in Germany
by Yana Subbotina-Dubinski and Claus-Christian Carbon
Foods 2025, 14(13), 2294; https://doi.org/10.3390/foods14132294 - 28 Jun 2025
Viewed by 394
Abstract
This article investigates predicted future developments in fine dining using a mixed-methods approach rooted in German gastronomic culture. By conducting an inductive media content analysis and ten semi-structured expert interviews with leading figures in Germany’s high-end food sector, we applied a qualitative mixed-methods [...] Read more.
This article investigates predicted future developments in fine dining using a mixed-methods approach rooted in German gastronomic culture. By conducting an inductive media content analysis and ten semi-structured expert interviews with leading figures in Germany’s high-end food sector, we applied a qualitative mixed-methods approach. The study was based exclusively on data collected in 2018 and 2019, deliberately excluding pandemic-related developments in order to focus on long-term structural and cultural trends in fine dining. We identified two core thematic clusters: one related to sustainable food practices (ecology/sustainability, regionality, seasonality, from-farm-to-table, and vegetarianism/veganism) and the other to experiential dimensions of dining (experience, topic-based concept, and storytelling). Our findings contribute to the academic discussion on culinary futures and provide grounded insights into how fine dining is likely to evolve in response to broader societal, environmental, and cultural shifts. This study fills a significant research gap by systematically mapping emerging restaurant concepts based on non-COVID data, making it a valuable reference for scholars and practitioners alike. Full article
21 pages, 6801 KiB  
Article
Performance Evaluation of a High-Gain Axisymmetric Minkowski Fractal Reflectarray for Ku-Band Satellite Internet Communication
by Prabhat Kumar Patnaik, Harish Chandra Mohanta, Dhruba Charan Panda, Ribhu Abhusan Panda, Malijeddi Murali and Heba G. Mohamed
Fractal Fract. 2025, 9(7), 421; https://doi.org/10.3390/fractalfract9070421 - 27 Jun 2025
Viewed by 515
Abstract
In this article, a high-gain axisymmetric Minkowski fractal reflectarray is designed and fabricated for Ku-Band satellite internet communications. High gain is achieved here by carefully optimising the number of unit cells, their shape modifier, focal length, feed position and scan angle. The space-filling [...] Read more.
In this article, a high-gain axisymmetric Minkowski fractal reflectarray is designed and fabricated for Ku-Band satellite internet communications. High gain is achieved here by carefully optimising the number of unit cells, their shape modifier, focal length, feed position and scan angle. The space-filling properties of Minkowski fractals help in miniaturising the fractal. The scan angle of the reflectarray varied by adjusting the fractal scaling factor for each unit cell in the array. The reflectarray is symmetric along the X-axis in its design and configuration. Initially, a Minkowski fractal unit cell is designed using iteration-1 in the simulation software. Then, its design parameters are optimised to achieve high gain, a narrow beam, and beam scan capabilities. The sensitivity of design parameters is examined individually using the array synthesis method to achieve these performance parameters. It helps to establish the maximum range of design and performance parameters for this design. The proposed reflectarray resonates at 12 GHz, achieving a gain of over 20 dB and a narrow beamwidth of less than 15 degrees. Finally, the designed fractal reflectarray is tested in real-time simulation environments using MATLAB R2023b, and its performance is evaluated in an interference scenario involving LEO and MEO satellites, as well as a ground station, under various time conditions. For real-world applicability, it is necessary to identify, analyse, and mitigate the unwanted interference signals that degrade the desired satellite signal. The proposed reflectarray, with its performance characteristics and beam scanning capabilities, is found to be an excellent choice for Ku-band satellite internet communications. Full article
Show Figures

Figure 1

13 pages, 2867 KiB  
Article
Characterization of Space Charge Accumulations in Alternative Gas-to-Liquid Oil-Immersed Paper Insulation Under Polarity Reversal Voltage Scenarios
by Ya Wang, Yifei Xiong, Zheming Wang and Wu Lu
Energies 2025, 18(12), 3152; https://doi.org/10.3390/en18123152 - 16 Jun 2025
Viewed by 270
Abstract
Due to its advantages, such as its corrosive sulfur-free property and high purity, gas-to-liquid (GTL) oil is regarded as an excellent alternative to conventional naphthenic mineral oil in the oil/paper composite insulation of UHV converter transformers. In such application scenarios, under the condition [...] Read more.
Due to its advantages, such as its corrosive sulfur-free property and high purity, gas-to-liquid (GTL) oil is regarded as an excellent alternative to conventional naphthenic mineral oil in the oil/paper composite insulation of UHV converter transformers. In such application scenarios, under the condition of voltage polarity reversal, charge accumulation is likely to occur along the liquid/solid interface, which leads to the distortion of the electric field, consequently reducing the breakdown voltage of the insulating material, and leading to flashover in the worst case. Therefore, understanding such space charge characteristics under polarity-reversed voltage is key for the insulation optimization of GTL oil-filled converter transformers. In this paper, a typical GTL oil is taken as the research object with naphthenic oil as the benchmark. Electroacoustic pulse measurement technology is used to study the space charge accumulation characteristics and electric field distribution of different oil-impregnated paper insulations under polarity-reversed conditions. The experimental results show that under positive–negative–positive polarity reversal voltage, the gas-impregnated pressboard exhibits significantly higher rates of space charge density variation and electric field distortion compared with mineral oil-impregnated paper. In stage B, the dissipation rate of negative charges at the grounded electrode in GTL oil-impregnated paper is 140% faster than that in mineral oil-impregnated paper. In stage C, the electric field distortion rate near the electrode of GTL oil-impregnated paper reaches 54.15%. Finally, based on the bipolar charge transport model, the microscopic processes responsible for the differences in two types of oil-immersed papers are discussed. Full article
Show Figures

Figure 1

22 pages, 3331 KiB  
Article
Maize Leaf Area Index Estimation Based on Machine Learning Algorithm and Computer Vision
by Wanna Fu, Zhen Chen, Qian Cheng, Yafeng Li, Weiguang Zhai, Fan Ding, Xiaohui Kuang, Deshan Chen and Fuyi Duan
Agriculture 2025, 15(12), 1272; https://doi.org/10.3390/agriculture15121272 - 12 Jun 2025
Viewed by 701
Abstract
Precise estimation of the leaf area index (LAI) is vital in efficient maize growth monitoring and precision farming. Traditional LAI measurement methods are often destructive and labor-intensive, while techniques relying solely on spectral data suffer from limitations such as spectral saturation. To overcome [...] Read more.
Precise estimation of the leaf area index (LAI) is vital in efficient maize growth monitoring and precision farming. Traditional LAI measurement methods are often destructive and labor-intensive, while techniques relying solely on spectral data suffer from limitations such as spectral saturation. To overcome these difficulties, the study integrated computer vision techniques with UAV-based remote sensing data to establish a rapid and non-invasive method for estimating the LAI in maize. Multispectral imagery of maize was acquired via UAV platforms across various phenological stages, and vegetation features were derived based on the Excess Green (ExG) Index and the Hue–Saturation–Value (HSV) color space. LAI standardization was performed through edge detection and the cumulative distribution function. The proposed LAI estimation model, named VisLAI, based solely on visible light imagery, demonstrated high accuracy, with R2 values of 0.84, 0.75, and 0.50, and RMSE values of 0.24, 0.35, and 0.44 across the big trumpet, tasseling–silking, and grain filling stages, respectively. When HSV-based optimization was applied, VisLAI achieved even better performance, with R2 values of 0.92, 0.90, and 0.85, and RMSE values of 0.19, 0.23, and 0.22 at the respective stages. The estimation results were validated against ground-truth data collected using the LAI-2200C plant canopy analyzer and compared with six machine learning algorithms, including Gradient Boosting (GB), Random Forest (RF), Ridge Regression (RR), Support Vector Regression (SVR), and Linear Regression (LR). Among these, GB achieved the best performance, with R2 values of 0.88, 0.88, and 0.65, and RMSE values of 0.22, 0.25, and 0.34. However, VisLAI consistently outperformed all machine learning models, especially during the grain filling stage, demonstrating superior robustness and accuracy. The VisLAI model proposed in this study effectively utilizes UAV-captured visible light imagery and computer vision techniques to achieve accurate, efficient, and non-destructive estimation of maize LAI. It outperforms traditional and machine learning-based approaches and provides a reliable solution for real-world maize growth monitoring and agricultural decision-making. Full article
Show Figures

Figure 1

14 pages, 5286 KiB  
Article
A Performance Evaluation of Fly Ash–Plastic Aggregate in Hydraulic Backfilling: A Comparative Study
by Munipala Manohar, Bhanwar Singh Choudhary, Krzysztof Skrzypkowski, Krzysztof Zagórski and Anna Zagórska
Materials 2025, 18(12), 2751; https://doi.org/10.3390/ma18122751 - 12 Jun 2025
Viewed by 448
Abstract
Underground mining creates voids that require filling to prevent ground subsidence and mitigate post-mining issues. Traditionally, sand has been used as the primary backfilling material. However, the increasing demand from the construction sector and the slow natural replenishment of sand have necessitated the [...] Read more.
Underground mining creates voids that require filling to prevent ground subsidence and mitigate post-mining issues. Traditionally, sand has been used as the primary backfilling material. However, the increasing demand from the construction sector and the slow natural replenishment of sand have necessitated the search for alternative materials. Researchers have explored fly ash (FA) as a potential substitute; however, its slow settling rate and the development of hydrostatic pressure limit its effectiveness. To address these issues, this study investigated the development of fly ash–plastic aggregate (FPA) as a suitable material for hydraulic backfilling by mixing FA with high-density polyethylene (HDPE) plastic in an 80:20 ratio. Initial investigations revealed that adding plastic as a binder significantly improves the physical, mechanical, and morphological properties of FA. The results further demonstrate that FPA satisfies and exceeds the standard requirements for hydraulic backfilling, as outlined in previous studies and case reports. These findings suggest that FPA is a promising alternative to both sand and FA for hydraulic backfilling applications. Full article
Show Figures

Figure 1

13 pages, 1902 KiB  
Article
A Novel Mid-Infrared Narrowband Filter for Solar Telescopes
by Junfeng Hou
Universe 2025, 11(6), 170; https://doi.org/10.3390/universe11060170 - 27 May 2025
Viewed by 718
Abstract
The mid-infrared band is the last major observational window for the ground-based large solar telescopes in the 21st century. Achieving ultra-narrowband filter imaging is a fundamental challenge that all solar telescopes encounter as they progress towards the mid-infrared spectrum. The guided-mode resonance filtering [...] Read more.
The mid-infrared band is the last major observational window for the ground-based large solar telescopes in the 21st century. Achieving ultra-narrowband filter imaging is a fundamental challenge that all solar telescopes encounter as they progress towards the mid-infrared spectrum. The guided-mode resonance filtering (GMRF) technology provides a promising solution to this critical issue. This paper describes in detail the fundamental principles and calculation procedure of guided-mode resonance filtering. Building upon this foundation, a preliminary design and simulation of a mid-infrared guided-mode resonance filter are carried out. The results show that when the thickness of the sub-wavelength grating is an even multiple of the half-wavelength, it is feasible to attain ultra-narrowband filtering with a bandwidth below 0.03 nm by increasing the grating thickness and decreasing the grating fill factor. Nevertheless, the high sensitivity of the resonant wavelength to the angle of incidence still stands as a formidable obstacle that demands further investigation and resolution. Full article
Show Figures

Figure 1

18 pages, 2448 KiB  
Article
The History of a Pinus Stand on a Bog Degraded by Post-War Drainage and Exploitation in Southern Poland
by Anna Cedro, Bernard Cedro, Katarzyna Piotrowicz, Anna Hrynowiecka, Tomasz Mirosław Karasiewicz and Michał Mirgos
Appl. Sci. 2025, 15(9), 5172; https://doi.org/10.3390/app15095172 - 6 May 2025
Viewed by 533
Abstract
A dendrochronological study was conducted on a submontane raised bog, Bór na Czerwonem, in the Orava–Nowy Targ Basin in Southern Poland. In the past, the bog was drained to enable peat extraction. In recent years, a number of measures considered as active protection [...] Read more.
A dendrochronological study was conducted on a submontane raised bog, Bór na Czerwonem, in the Orava–Nowy Targ Basin in Southern Poland. In the past, the bog was drained to enable peat extraction. In recent years, a number of measures considered as active protection were undertaken, including the construction of ridges and locks, filling of the drainage trenches, and clearance of most of the tree stand on the bog dome. Pinus sylvestris, P. × rhaetica, and P. mugo were the focuses of the study, which aimed to determine the age of the genus stand and its age structure and to identify the factors influencing tree ring width. The age of the trees indicates a post-war succession induced by large-scale drainage in 1942, although single trees were present on the bog dome as early as the late 19th century, and probably earlier. High values of pith eccentricity at ground level testify to substratum instability and the impact of strong winds on tree ring formation. The growth–climate relationships change with the progressive climate change: the significance of insolation increases, while the significance of the absolute air temperature decreases. The thermal and pluvial conditions of the summer in the previous growth season, however, make the strongest impact on the tree ring width in the following growth season. The health of the trees left growing on the bog, due to the constantly rising water level, will likely deteriorate, and a decreasing number of seedlings will be observed. A full assessment of the conducted restoration efforts, however, will be possible after years of monitoring of the bog environment. Full article
Show Figures

Figure 1

Back to TopTop