Integrating UAV and USV for Elaboration of High-Resolution Coastal Elevation Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Measurement Equipment
2.2.1. UAV DJI Mini 2
2.2.2. Leica Zeno FLX100 GNSS Antenna
2.2.3. USV Apache 3
2.3. Data Acquisition and Processing
2.3.1. Aerial Campaign and Cloud Point Creation
2.3.2. Navigation Campaign and Seabed Data Creation
2.3.3. Topographic Field Campaign
2.4. Creation of Coastal SBT-DSM
3. Results
3.1. UAV, USV and GNSS Survey Performance
3.2. Coastal SBT-DSM
3.2.1. Data Processing Performance
3.2.2. Coastal SBT-DSM Dataset
3.3. Accuracy of the Results
4. Discussion
4.1. Analysis of the Limitations of the Proposed Method
4.2. Adaptability of the Methodology
4.3. Contribution to the Understanding of Coastal Dynamics
4.4. Efficiency and Cost-Effectiveness
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Young, S.S.; Rao, S.; Dorey, K. Monitoring the erosion and accretion of a human-built living shoreline with drone technology. Environ. Chall. 2021, 5, 100383. [Google Scholar] [CrossRef]
- Chisholm, L.; Talbot, T.; Appleby, W.; Tam, B.; Rong, R. Projected changes to air temperature, sea-level rise, and storms for the Gulf of Maine region in 2050. Elem. Sci. Anthr. 2021, 9, 00059. [Google Scholar] [CrossRef]
- Passeri, D.L.; Hagen, S.C.; Medeiros, S.C.; Bilskie, M.V.; Alizad, K.; Wang, D. The dynamic effects of sea level rise on low-gradient coastal landscapes: A review. Earth’s Future 2015, 3, 159–181. [Google Scholar] [CrossRef]
- Gonçalves, J.A.; Henriques, R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Holman, R.A.; Holland, K.T.; Lalejini, D.M.; Spansel, S.D. Surf zone characterization from Unmanned Aerial Vehicle imagery. Ocean Dyn. 2011, 61, 1927–1935. [Google Scholar] [CrossRef]
- Tsukada, F.; Shimozono, T.; Matsuba, Y. UAV-based mapping of nearshore bathymetry over broad areas. Coast. Eng. J. 2020, 62, 285–298. [Google Scholar] [CrossRef]
- Toodesh, R.; Verhagen, S.; Dagla, A. Prediction of Changes in Seafloor Depths Based on Time Series of Bathymetry Observations: Dutch North Sea Case. J. Mar. Sci. Eng. 2021, 9, 931. [Google Scholar] [CrossRef]
- Angnuureng, D.B.; Jayson-Quashigah, P.-N.; Almar, R.; Stieglitz, T.C.; Anthony, E.J.; Aheto, D.W.; Appeaning Addo, K. Application of Shore-Based Video and Unmanned Aerial Vehicles (Drones): Complementary Tools for Beach Studies. Remote Sens. 2020, 12, 394. [Google Scholar] [CrossRef]
- Di Paola, G.; Minervino Amodio, A.; Dilauro, G.; Rodriguez, G.; Rosskopf, C.M. Shoreline Evolution and Erosion Vulnerability Assessment along the Central Adriatic Coast with the Contribution of UAV Beach Monitoring. Geosciences 2022, 12, 353. [Google Scholar] [CrossRef]
- Del Savio, A.A.; Luna Torres, A.; Vergara Olivera, M.A.; Llimpe Rojas, S.R.; Urday Ibarra, G.T.; Neckel, A. Using UAVs and Photogrammetry in Bathymetric Surveys in Shallow Waters. Appl. Sci. 2023, 13, 3420. [Google Scholar] [CrossRef]
- Papakonstantinou, A.; Topouzelis, K.; Pavlogeorgatos, G. Coastline Zones Identification and 3D Coastal Mapping Using UAV Spatial Data. ISPRS Int. J. Geo-Inf. 2016, 5, 75. [Google Scholar] [CrossRef]
- Śledziowski, J.; Terefenko, P.; Giza, A.; Forczmański, P.; Łysko, A.; Maćków, W.; Stępień, G.; Tomczak, A.; Kurylczyk, A. Application of Unmanned Aerial Vehicles and Image Processing Techniques in Monitoring Underwater Coastal Protection Measures. Remote Sens. 2022, 14, 458. [Google Scholar] [CrossRef]
- Dai, W.; Qian, W.; Liu, A.; Wang, C.; Yang, X.; Hu, G.; Tang, G. Monitoring and modeling sediment transport in space in small loess catchments using UAV-SfM photogrammetry. Catena 2022, 214, 106244. [Google Scholar] [CrossRef]
- Pagán, J.I.; Bañón, L.; López, I.; Bañón, C.; Aragonés, L. Monitoring the dune-beach system of Guardamar del Segura (Spain) using UAV, SfM and GIS techniques. Sci. Total Environ. 2019, 687, 1034–1045. [Google Scholar] [CrossRef]
- Bañón, L.; Pagán, J.I.; López, I.; Banon, C.; Aragonés, L. Validating UAS-Based Photogrammetry with Traditional Topographic Methods for Surveying Dune Ecosystems in the Spanish Mediterranean Coast. J. Mar. Sci. Eng. 2019, 7, 297. [Google Scholar] [CrossRef]
- Huang, Z.-C.; Yeh, C.-Y.; Tseng, K.-H.; Hsu, W.-Y. A UAV–RTK Lidar System for Wave and Tide Measurements in Coastal Zones. J. Atmos. Ocean. Technol. 2018, 35, 1557–1570. [Google Scholar] [CrossRef]
- Jaud, M.; Letortu, P.; Théry, C.; Grandjean, P.; Costa, S.; Maquaire, O.; Davidson, R.; Le Dantec, N. UAV survey of a coastal cliff face—Selection of the best imaging angle. Measurement 2019, 139, 10–20. [Google Scholar] [CrossRef]
- Alevizos, E.; Oikonomou, D.; Argyriou, A.V.; Alexakis, D.D. Fusion of Drone-Based RGB and Multi-Spectral Imagery for Shallow Water Bathymetry Inversion. Remote Sens. 2022, 14, 1127. [Google Scholar] [CrossRef]
- Alevizos, E.; Nicodemou, V.C.; Makris, A.; Oikonomidis, I.; Roussos, A.; Alexakis, D.D. Integration of Photogrammetric and Spectral Techniques for Advanced Drone-Based Bathymetry Retrieval Using a Deep Learning Approach. Remote Sens. 2022, 14, 4160. [Google Scholar] [CrossRef]
- Casella, E.; Collin, A.; Harris, D.; Ferse, S.; Bejarano, S.; Parravicini, V.; Hench, J.L.; Rovere, A. Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs 2017, 36, 269–275. [Google Scholar] [CrossRef]
- Ramnath, V.; Feygels, V.; Kalluri, H.; Smith, B. CZMIL (Coastal Zone Mapping and Imaging Lidar) bathymetric performance in diverse littoral zones. In Proceedings of the OCEANS 2015—MTS/IEEE, Washington, DC, USA, 19–22 October 2015; pp. 1–10. [Google Scholar] [CrossRef]
- Jessin, J.; Heinzlef, C.; Long, N.; Serre, D. A Systematic Review of UAVs for Island Coastal Environment and Risk Monitoring: Towards a Resilience Assessment. Drones 2023, 7, 206. [Google Scholar] [CrossRef]
- Agrafiotis, P.; Karantzalos, K.; Georgopoulos, A.; Skarlatos, D. Correcting Image Refraction: Towards Accurate Aerial Image-Based Bathymetry Mapping in Shallow Waters. Remote Sens. 2020, 12, 322. [Google Scholar] [CrossRef]
- Kum, B.-C.; Shin, D.-H.; Jang, S.; Lee, S.Y.; Lee, J.H.; Moh, T.; Lim, D.G.; Do, J.-D.; Cho, J.H. Application of Unmanned Surface Vehicles in Coastal Environments: Bathymetric Survey using a Multibeam Echosounder. J. Coast. Res. 2020, 95, 1152–1156. [Google Scholar] [CrossRef]
- Cao, B.; Gao, Z.; Shang, W. Methodology for fine-scale seamless elevation model construction using unoccupied aerial and surface vehicles. Estuar. Coast. Shelf Sci. 2023, 282, 108229. [Google Scholar] [CrossRef]
- Specht, C.; Lewicka, O.; Specht, M.; Dąbrowski, P.; Burdziakowski, P. Methodology for Carrying out Measurements of the Tombolo Geomorphic Landform Using Unmanned Aerial and Surface Vehicles near Sopot Pier, Poland. J. Mar. Sci. Eng. 2020, 8, 384. [Google Scholar] [CrossRef]
- Puertos del Estado. Clima medio de oleaje, Nodo SIMAR 2077097. Available online: https://bancodatos.puertos.es/BD/informes/medios/MED_1_8_2077097.pdf (accessed on 1 May 2025).
- Puertos del Estado. Clima medio de viento, Nodo SIMAR 2077097. Available online: https://bancodatos.puertos.es/BD/informes/medios/MED_3_8_2077097.pdf (accessed on 1 May 2025).
- Specht, C.; Śliwińska, D. Hydrographic Inspection Using a USV of a Harbour Bottom Deepened by the Periodic Actuation of SAR Vessel Propellers. Remote Sens. 2024, 16, 2522. [Google Scholar] [CrossRef]
- Jaud, M.; Grasso, F.; Le Dantec, N.; Verney, R.; Delacourt, C.; Ammann, J.; Deloffre, J.; Grandjean, P. Potential of UAVs for Monitoring Mudflat Morphodynamics (Application to the Seine Estuary, France). ISPRS Int. J. Geo-Inf. 2016, 5, 50. [Google Scholar] [CrossRef]
- Otero, V.; Van De Kerchove, R.; Satyanarayana, B.; Martínez-Espinosa, C.; Fisol, M.A.B.; Ibrahim, M.R.B.; Sulong, I.; Mohd-Lokman, H.; Lucas, R.; Dahdouh-Guebas, F. Managing mangrove forests from the sky: Forest inventory using field data and Unmanned Aerial Vehicle (UAV) imagery in the Matang Mangrove Forest Reserve, peninsular Malaysia. For. Ecol. Manag. 2018, 411, 35–45. [Google Scholar] [CrossRef]
- Cousineau, J.; Murphy, E. Numerical Investigation of Climate Change Effects on Storm Surges and Extreme Waves on Canada’s Pacific Coast. Atmosphere 2022, 13, 311. [Google Scholar] [CrossRef]
- Brodie, K.L.; Palmsten, M.L.; Hesser, T.J.; Dickhudt, P.J.; Raubenheimer, B.; Ladner, H.; Elgar, S. Evaluation of video-based linear depth inversion performance and applications using altimeters and hydrographic surveys in a wide range of environmental conditions. Coast. Eng. 2018, 136, 147–160. [Google Scholar] [CrossRef]
- Francis, H.; Traykovski, P. Development of a Highly Portable Unmanned Surface Vehicle for Surf Zone Bathymetric Surveying. J. Coast. Res. 2021, 37, 933–945. [Google Scholar] [CrossRef]
- Grządziel, A. Method of Time Estimation for the Bathymetric Surveys Conducted with a Multi-Beam Echosounder System. Appl. Sci. 2023, 13, 10139. [Google Scholar] [CrossRef]
- Risbøl, O.; Gustavsen, L. LiDAR from drones employed for mapping archaeology—Potential, benefits and challenges. Archaeol. Prospect. 2018, 25, 329–338. [Google Scholar] [CrossRef]
Method | UAV Survey | USV Survey | GNSS Survey |
---|---|---|---|
Data | Topography | Bathymetry | Ground Control Point (GCP) and intertidal and swash zone data |
Equipment | DJI Mini 2 quadcopter | CHCNAV Apache 3 USV | Leica FLX100 GNSS antenna |
Total time | Flight 1: 19 min Flight 2: 16 min Total: 1 h (incl. take-off, landing, & displacement) | 2.5 h (incl. preparation & battery change) | 4 h |
Distance | Flight 1: 3.75 km Flight 2: 4.68 km | 13.34 km | Not applicable (point-based); approx. 6.23 km traversed |
Covered Area | 0.257 km2 | 0.607 km2 | 0.100 km2 |
Number of control points | 36 (12 on beach, 24 on dune) | 912 of points surveyed (10% sample) | 720 points |
Comparison Issue | Integrated Methodology (UAV/USV/GNSS) | Traditional Methods |
---|---|---|
Spatial resolution | High to very high (sub-meter to centimeter) | Variable:
|
Temporal efficiency | Very high | Low, especially to obtain high density |
Topo-bathymetric integration | Excellent (seamless and smooth integration) | Low, significant data gap in the shallow intertidal and swash area |
Cost (Operation vs. Initial Investment) | Higher initial investment, but more profitable in the long term | Lower initial investment, but high operating costs |
Personnel Safety | High (remote operation, reduces exposure) | Low (may involve significant risk to personnel) |
Environmental Conditions | High sensitivity to wind, rain, and water visibility | Low sensitivity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López, I.; Bañón, L.; Pagán, J.I. Integrating UAV and USV for Elaboration of High-Resolution Coastal Elevation Models. J. Mar. Sci. Eng. 2025, 13, 1464. https://doi.org/10.3390/jmse13081464
López I, Bañón L, Pagán JI. Integrating UAV and USV for Elaboration of High-Resolution Coastal Elevation Models. Journal of Marine Science and Engineering. 2025; 13(8):1464. https://doi.org/10.3390/jmse13081464
Chicago/Turabian StyleLópez, Isabel, Luis Bañón, and José I. Pagán. 2025. "Integrating UAV and USV for Elaboration of High-Resolution Coastal Elevation Models" Journal of Marine Science and Engineering 13, no. 8: 1464. https://doi.org/10.3390/jmse13081464
APA StyleLópez, I., Bañón, L., & Pagán, J. I. (2025). Integrating UAV and USV for Elaboration of High-Resolution Coastal Elevation Models. Journal of Marine Science and Engineering, 13(8), 1464. https://doi.org/10.3390/jmse13081464