Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = high-energy α-particle detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2861 KiB  
Review
Emerging New-Generation Semiconductor Single Crystals of Metal Halide Perovskites for Radiation Detection
by Guigen Luo, Min Peng, Zhibin Yang, Chungming Paul Chu and Zhengtao Deng
Inorganics 2024, 12(11), 278; https://doi.org/10.3390/inorganics12110278 - 30 Oct 2024
Cited by 3 | Viewed by 1985
Abstract
Radiation detection uses semiconductor materials to convert high-energy photons into charge (direct detection) or low-energy photons (indirect detection), and it has a wide range of applications in nuclear physics, medical imaging, astronomical detection, homeland security, and other fields. Metal halide perovskites have the [...] Read more.
Radiation detection uses semiconductor materials to convert high-energy photons into charge (direct detection) or low-energy photons (indirect detection), and it has a wide range of applications in nuclear physics, medical imaging, astronomical detection, homeland security, and other fields. Metal halide perovskites have the advantages of high frequency number, high carrier mobility, high defect tolerance, low defect density, adjustable band gap, and fast light response, and they have wide application prospects in the field of radiation detection. However, the research is still in its infancy stage, and it is far from meeting the requirements of industrial application. This paper focuses on the advantages of metal halide perovskite single-crystal materials in both semiconductors-based direct conversion detection and scintillator-based indirect detection as well as the latest progress in this promising field. This paper not only introduces the latest application of lead halide perovskite monocrystalline materials in high-energy electromagnetic radiation detection (X-ray and γ-rays), but it also introduces the latest development of α-particle/β-particle/neutron detection. Finally, this paper points out the challenges and future prospects of metal halide perovskite single-crystal materials in radiation detection. Full article
(This article belongs to the Section Inorganic Solid-State Chemistry)
Show Figures

Figure 1

20 pages, 3905 KiB  
Review
Preparation and Application of Nanostructured ZnO in Radiation Detection
by Jingkun Chen, Xuechun Yang, Yuandong Ning, Xue Yang, Yifei Huang, Zeqing Zhang, Jian Tang, Pu Zheng, Jie Yan, Jingtai Zhao and Qianli Li
Materials 2024, 17(14), 3549; https://doi.org/10.3390/ma17143549 - 18 Jul 2024
Cited by 6 | Viewed by 1700
Abstract
In order to adapt to the rapid development of high-speed imaging technology in recent years, it is very important to develop scintillators with an ultrafast time response. Because of its radiation-induced ultrafast decay time, ZnO has become an important material for radiation detection [...] Read more.
In order to adapt to the rapid development of high-speed imaging technology in recent years, it is very important to develop scintillators with an ultrafast time response. Because of its radiation-induced ultrafast decay time, ZnO has become an important material for radiation detection and dosimetry. According to different detection sources and application scenarios, ZnO is used in various radiation detectors in different structures, including nanoarrays and nanocomposites. In this paper, the synthesis methods and research status of various nanostructured ZnO-based materials and their applications in the detection of high-energy rays (X-rays, γ-rays) and high-energy particles (α, β and neutron) are reviewed. The performance discussion mainly includes spatial resolution, decay time and detection efficiency. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

11 pages, 5012 KiB  
Article
Research on a Neutron Detector with a Boron-Lined Multilayer Converter
by Chao Deng, Qin Hu, Pengcheng Li, Qibiao Wang, Bo Xie, Jianbo Yang and Xianguo Tuo
Appl. Sci. 2024, 14(10), 4269; https://doi.org/10.3390/app14104269 - 17 May 2024
Cited by 1 | Viewed by 1832
Abstract
3He is a splendid neutron detection material due to its high neutron reaction cross section, gaseous state, and nonelectronegative and nonpoisonous nature. With the worldwide problem of the “3He supply crisis” arising, boron-lined gaseous neutron detectors are being widely used [...] Read more.
3He is a splendid neutron detection material due to its high neutron reaction cross section, gaseous state, and nonelectronegative and nonpoisonous nature. With the worldwide problem of the “3He supply crisis” arising, boron-lined gaseous neutron detectors are being widely used in neutron detection to replace 3He neutron detectors. In this work, to reduce the scattering neutron background coming from the substrate of a boron-lined neutron detector in the application of neutron scattering, a new design of the boron-lined gaseous neutron detector composed of a boron-lined multichip converter and a multiwire proportional chamber was proposed. The electron drift efficiency matrix simulated by Garfield++ (Version 2023.4) and the values and positions of electron energy deposition simulated by Geant4 were obtained. The α, 7Li, and total charged particle energy deposition spectra were acquired via coupling calculations of the electron drift efficiency matrix and the values and positions of electron energy deposition, and the width of the slit was selected as 3 mm. The boron-lined multilayer converter neutron detector (BMCND) was tested using a 241Am–239Pu mixture α source, and the total count rate of α charged particles was measured as 599.5 s−1, which is 89% of the theoretical α particle emission rate of 672.9 s−1. The drift voltage experiments showed that 1200 V is enough to acquire a relatively ideal count, and a 2500 V drift voltage was confirmed, considering the higher count and instrument safety. We also performed the neutron detection experiments using a photo-neutron source, and a characteristic spectrum shape of “two stairs” was measured. When borated polyethylene was used to shield the BMCND, the detected total count decreased while keeping the characteristic spectrum shape, demonstrating that the BMCND was equipped with the ability to detect neurons, indicating that BMCNDs have the potential to be an outstanding 3He alternative neutron detector. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

20 pages, 9365 KiB  
Article
Airborne Radio-Echo Sounding Data Denoising Using Particle Swarm Optimization and Multivariate Variational Mode Decomposition
by Yuhan Chen, Sixin Liu, Kun Luo, Lijuan Wang and Xueyuan Tang
Remote Sens. 2023, 15(20), 5041; https://doi.org/10.3390/rs15205041 - 20 Oct 2023
Cited by 7 | Viewed by 1686
Abstract
Radio-echo sounding (RES) is widely used for polar ice sheet detection due to its wide coverage and high efficiency. The multivariate variational mode decomposition (MVMD) algorithm for the processing of RES data is an improvement to the variational mode decomposition (VMD) algorithm. It [...] Read more.
Radio-echo sounding (RES) is widely used for polar ice sheet detection due to its wide coverage and high efficiency. The multivariate variational mode decomposition (MVMD) algorithm for the processing of RES data is an improvement to the variational mode decomposition (VMD) algorithm. It processes data encompassing multiple channels. Determining the most effective component combination of the penalty parameter (α) and the number of intrinsic mode functions (IMFs) (K) is fundamental and affects the decomposition results. α and K in traditional MVMD are provided by subjective experience. We integrated the particle swarm optimization (PSO) algorithm to iteratively optimize these parameters—specifically, α and K—with high precision. This was then combined with the four quantitative parameters: energy entropy, signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), and root-mean-square error (RMSE). The RES signal decomposition results were judged, and the most effective component combination for noise suppression was selected. We processed the airborne RES data from the East Antarctic ice sheet using the combined PSO–MVMD method. The results confirmed the quality of the proposed method in attenuating the RES signal noise, enhancing the weak signal of the ice base, and improving the SNR. This combined PSO–MVMD method may help to enhance weak signals in deeper parts of ice sheets and may be an effective tool for RES data interpretation. Full article
Show Figures

Figure 1

16 pages, 5022 KiB  
Article
Investigation of the Microstructure of Sintered Ti–Al–C Composite Powder Materials under High-Voltage Electrical Discharge
by Rasa Kandrotaitė Janutienė, Darius Mažeika, Jaromír Dlouhý, Olha Syzonenko, Andrii Torpakov, Evgenii Lipian and Arūnas Baltušnikas
Materials 2023, 16(17), 5894; https://doi.org/10.3390/ma16175894 - 29 Aug 2023
Cited by 3 | Viewed by 1649
Abstract
Dispersion-hardened materials based on TiC–AlnCn are alloys with high heat resistance, strength, and durability that can be used in aircraft and rocket technology as a hard lubricant. The titanium-rich composites of the Ti–Al–C system were synthesized via the spark plasma sintering process. Composite [...] Read more.
Dispersion-hardened materials based on TiC–AlnCn are alloys with high heat resistance, strength, and durability that can be used in aircraft and rocket technology as a hard lubricant. The titanium-rich composites of the Ti–Al–C system were synthesized via the spark plasma sintering process. Composite powder with 85% of Ti, 15% of Al, and MAX-phases was processed using high-voltage electrical discharge in kerosene at a specific energy of 25 MJ kg−1 to obtain nanosized particles. This method allows us to analyze the most efficient, energy saving, and less waste-generating technological processes producing materials with improved mechanical and physical properties. An Innova test indentation machine was used to determine the hardness of the synthesized composites. The microhardness of Ti–Al–C system samples was determined as approximately 500–600 HV. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were performed to identify the hard titanium matrix reinforced by intermetallic phases and the clusters of carbides. Three types of reinforcing phases were detected existing in the composites—TiC, Al4C3, and Al3Ti, as well as a matrix consisting of α- and β-titanium. The lattice parameters of all phases detected in the composites were calculated using Rietveld analysis. It was determined that by increasing the temperature of sintering, the amount of aluminum and carbon increases in the carbides and intermetallic phases, while the amount of titanium decreases. Full article
Show Figures

Figure 1

16 pages, 6771 KiB  
Article
Electrochemical Determination of Ascorbic Acid by Mechanically Alloyed Super Duplex Stainless Steel Powders
by Rayappa Shrinivas Mahale, Shamanth Vasanth, Sharath Peramenahalli Chikkegouda, Shashanka Rajendrachari, Damanapeta Narsimhachary and Nagaraj Basavegowda
Metals 2023, 13(8), 1430; https://doi.org/10.3390/met13081430 - 9 Aug 2023
Cited by 13 | Viewed by 2026
Abstract
SAF-2507 super duplex stainless steel powders (SDSS) were prepared using a high-energy planetary ball milling process. The X-ray diffraction (XRD) shows peak broadening after 20 h of ball milling and revealed a phase transformation resulting in a two-phase alloy mixture containing nearly equal [...] Read more.
SAF-2507 super duplex stainless steel powders (SDSS) were prepared using a high-energy planetary ball milling process. The X-ray diffraction (XRD) shows peak broadening after 20 h of ball milling and revealed a phase transformation resulting in a two-phase alloy mixture containing nearly equal amounts of ferrite (α) and austenite (γ). After 20 h of ball milling the particle size was reduced to ~201 nm. Scanning electron microscope (SEM) micrographs showed small-size irregular grains with an average particle size ranging from 5–7 µm. The high-resolution transmission microscope (HRTEM) analysis confirmed the presence of nanocrystalline particles with sizes ranging from 10 to 50 nm. The presence of ferrite phase is visible in the corresponding diffraction pattern as well. In this paper, we have discussed the electrochemical sensor application of mechanically alloyed nano-structured duplex stainless steel powders. The fabricated 4 mg duplex stainless steel modified carbon paste electrode (SDSS-MCPE) has shown excellent current sensitivity in comparison with 2, 6, 8, and 10 mg SDSS-MCPEs during the detection of ascorbic acid (AA) in a phosphate buffer solution with a pH of 6.8. The calculated electrode active surface area of SDSS-MCPE was found to be almost two times larger than the surface area of the bare carbon paste electrode (BCPE). The limit of detection (LD) and limit of quantification (LQ) were found to be 0.206 × 10−8 M and 0.688 × 10−8 M, respectively, for the fabricated 4 mg SDSS-MCPE. Full article
(This article belongs to the Special Issue New Advances in Powder Metallurgy Technology)
Show Figures

Figure 1

17 pages, 3769 KiB  
Article
Microstructural and Mechanical Behavior Investigations of Nb-Reinforced Mg–Sn–Al–Zn–Mn Matrix Magnesium Composites
by Ali Ercetin, Özgür Özgün, Kubilay Aslantaş, Oguzhan Der, Bekir Yalçın, Ercan Şimşir and Muhammad Aamir
Metals 2023, 13(6), 1097; https://doi.org/10.3390/met13061097 - 10 Jun 2023
Cited by 18 | Viewed by 2123
Abstract
This research focuses on the fabrication and characterization of TAZ532-xNb composites, employing high-purity, micron-sized powders of Mg, Sn, Al, Zn, Mn, and Nb as the raw materials. These powders were subjected to a paraffin coating process aimed at mitigating oxidation. The formation of [...] Read more.
This research focuses on the fabrication and characterization of TAZ532-xNb composites, employing high-purity, micron-sized powders of Mg, Sn, Al, Zn, Mn, and Nb as the raw materials. These powders were subjected to a paraffin coating process aimed at mitigating oxidation. The formation of composites was achieved via hot pressing and was followed by surface preparation and analysis using scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). An X-ray diffraction (XRD) study was conducted to identify the microstructural phases. Quantitative assessments including the theoretical density, actual density, and relative density were computed, and their fluctuations in relation to the increasing Nb reinforcement ratio were scrutinized. Furthermore, the mechanical attributes of the composites, such as hardness and tensile strength, were assessed via experimental procedures. The absence of oxygen-related peaks in the XRD patterns endorsed the successful execution of the paraffin coating technique and protective gas atmosphere during sintering. The detection of α-Mg, Mg2Sn, MgZn, Mg17Al12, and Nb phases within the Nb-reinforced composite patterns authenticated the formation of the intended phases. Notably, the relative density values of the composites surpassed 95%, indicating efficient sintering. SEM results disclosed a densely packed microstructure, with Nb reinforcement particles evenly distributed along the grain boundaries, devoid of particle clustering or significant grain growth. These composites manifested exceptional wetting characteristics, which can be attributed to the employment of Mg alloy as the matrix material. EDS data confirmed the proportions of Nb within the composites, aligning with the quantities incorporated during fabrication. The composites showcased an increase in microhardness values with the escalating Nb reinforcement ratio, credited to the harder constitution of Nb particles in comparison to the matrix alloy. Concurrently, tensile strength showed a significant improvement with the increment in Nb reinforcement, while elongation values peaked at a specific Nb reinforcement level. The positive evolution of tensile strength properties was ascribed to the escalated Nb reinforcement ratio, grain size, and consequent higher sample densities. Full article
Show Figures

Figure 1

15 pages, 4834 KiB  
Article
Hybrid Method for Detecting Anomalies in Cosmic ray Variations Using Neural Networks Autoencoder
by Oksana Mandrikova and Bogdana Mandrikova
Symmetry 2022, 14(4), 744; https://doi.org/10.3390/sym14040744 - 4 Apr 2022
Cited by 11 | Viewed by 2349
Abstract
Cosmic rays were discovered by the Austrian physicist Victor Hess in 1912 in a series of balloon experiments performed between 1911 and 1912. Cosmic rays are an integral part of fundamental and applied research in the field of solar–terrestrial physics and space weather. [...] Read more.
Cosmic rays were discovered by the Austrian physicist Victor Hess in 1912 in a series of balloon experiments performed between 1911 and 1912. Cosmic rays are an integral part of fundamental and applied research in the field of solar–terrestrial physics and space weather. Cosmic ray data are applied in different fields from the discovery of high-energy particles coming to Earth from space, and new fundamental symmetries in the laws of nature, to the knowledge of residual matter and magnetic fields in interstellar space. The properties of interplanetary space are determined from intensity variations, angular distribution, and other characteristics of galactic cosmic rays. The measure of cosmic ray flux intensity variability is used as one of the significant space weather factors. The negative impact of cosmic rays is also known. The negative impact can significantly increase the level of radiation hazard and pose a threat to astronauts, crews, and passengers of high-altitude aircraft on polar routes and to modern space equipment. Therefore, methods aimed at timely detection and identification of anomalous manifestations in cosmic rays are of particular practical relevance. The article proposes a method for analyzing cosmic ray variations and detecting anomalous changes in the rate of galactic cosmic ray arrival to the Earth. The method is based on a combination of the Autoencoder neural network with wavelet transform. The use of non-linear activation functions and the ability to flexibly change the structure of the network provide the ability of the Autoencoder to approximate complex dependencies in the recorded variations of cosmic rays. The article describes the numerical operations of the method implementation. Verification of the adequacy of the neural network model is based on the use of Box–Ljung Q-statistics. On the basis of the wavelet transform constructions, data-adaptive operations for detecting complex singular structures are constructed. The parameters of the applied threshold functions are estimated with a given confidence probability based on the α-quantiles of Student’s distribution. Using data from high-latitude neutron monitor stations, it is shown that the proposed method provides efficient detection of anomalies in cosmic rays during increased solar activity and magnetic storms. Using the example of a moderate magnetic storm on 10–11 May 2019, the necessity of applying different methods and approaches to the study of cosmic ray variations is confirmed, and the importance of taking them into account when making space weather forecast is shown. Full article
(This article belongs to the Special Issue Cosmic Rays: From Fundamental Symmetry Tests to Civil Applications)
Show Figures

Figure 1

13 pages, 8702 KiB  
Article
Effect of Ce Content on Microstructure-Toughness Relationship in the Simulated Coarse-Grained Heat-Affected Zone of High-Strength Low-Alloy Steels
by Yuxin Cao, Xiangliang Wan, Feng Zhou, Yong Wang, Xinbin Liu, Kaiming Wu and Guangqiang Li
Metals 2021, 11(12), 2003; https://doi.org/10.3390/met11122003 - 11 Dec 2021
Cited by 5 | Viewed by 2479
Abstract
The study aimed to identify a moderate degree of Ce addition to improve the toughness in the simulated coarse-grained heat-affected zone (CGHAZ) of high-strength low-alloy steels, based on the effect of the Ce content on particle characteristics, microstructure and impact toughness. Three steels [...] Read more.
The study aimed to identify a moderate degree of Ce addition to improve the toughness in the simulated coarse-grained heat-affected zone (CGHAZ) of high-strength low-alloy steels, based on the effect of the Ce content on particle characteristics, microstructure and impact toughness. Three steels with 0.012 wt.%, 0.050 wt.% and 0.086 wt.% Ce content were subjected to 100 kJ/cm heat input in their thermal welding cycles. The particles and microstructures in the simulated CGHAZ of each steel were characterized and the impact-absorbance energy levels were measured at −20 °C. The results indicated that Ce2O2S inclusion compounds were gradually modified to CexSy-CeP and CeP with the increasing of the Ce content. A higher fraction of acicular ferrite was formed in the 0.012 wt.%-Ce-treated steel due to the lower mismatch between Ce2O2S and α-Fe. Furthermore, a lower fraction of M-A constituent was obtained in the 0.012 wt.%-Ce-treated steel. As a result, superior toughness and a typical amount of ductile fracture were detected in the simulated CGHAZ of the 0.012 wt.%-Ce-treated steel. Compared with the 0.012 wt.%-Ce-treated steel, a smaller prior austenite grain was observed in the 0.086 wt.%-Ce-treated steel because of the segregation of CeP at the grain boundary. However, the larger size and density of CeP led to poor toughness in the CGHAZ of the 0.086 wt.%-Ce-treated steel. Full article
(This article belongs to the Special Issue Advances in High-Strength Low-Alloy Steels)
Show Figures

Figure 1

23 pages, 728 KiB  
Article
Biological Impact of Target Fragments on Proton Treatment Plans: An Analysis Based on the Current Cross-Section Data and a Full Mixed Field Approach
by Elettra Valentina Bellinzona, Leszek Grzanka, Andrea Attili, Francesco Tommasino, Thomas Friedrich, Michael Krämer, Michael Scholz, Giuseppe Battistoni, Alessia Embriaco, Davide Chiappara, Giuseppe A. P. Cirrone, Giada Petringa, Marco Durante and Emanuele Scifoni
Cancers 2021, 13(19), 4768; https://doi.org/10.3390/cancers13194768 - 24 Sep 2021
Cited by 9 | Viewed by 3106
Abstract
Clinical routine in proton therapy currently neglects the radiobiological impact of nuclear target fragments generated by proton beams. This is partially due to the difficult characterization of the irradiation field. The detection of low energetic fragments, secondary protons and fragments, is in fact [...] Read more.
Clinical routine in proton therapy currently neglects the radiobiological impact of nuclear target fragments generated by proton beams. This is partially due to the difficult characterization of the irradiation field. The detection of low energetic fragments, secondary protons and fragments, is in fact challenging due to their very short range. However, considering their low residual energy and therefore high LET, the possible contribution of such heavy particles to the overall biological effect could be not negligible. In this context, we performed a systematic analysis aimed at an explicit assessment of the RBE (relative biological effectiveness, i.e., the ratio of photon to proton physical dose needed to achieve the same biological effect) contribution of target fragments in the biological dose calculations of proton fields. The TOPAS Monte Carlo code has been used to characterize the radiation field, i.e., for the scoring of primary protons and fragments in an exemplary water target. TRiP98, in combination with LEM IV RBE tables, was then employed to evaluate the RBE with a mixed field approach accounting for fragments’ contributions. The results were compared with that obtained by considering only primary protons for the pristine beam and spread out Bragg peak (SOBP) irradiations, in order to estimate the relative weight of target fragments to the overall RBE. A sensitivity analysis of the secondary particles production cross-sections to the biological dose has been also carried out in this study. Finally, our modeling approach was applied to the analysis of a selection of cell survival and RBE data extracted from published in vitro studies. Our results indicate that, for high energy proton beams, the main contribution to the biological effect due to the secondary particles can be attributed to secondary protons, while the contribution of heavier fragments is mainly due to helium. The impact of target fragments on the biological dose is maximized in the entrance channels and for small α/β values. When applied to the description of survival data, model predictions including all fragments allowed better agreement to experimental data at high energies, while a minor effect was observed in the peak region. An improved description was also obtained when including the fragments’ contribution to describe RBE data. Overall, this analysis indicates that a minor contribution can be expected to the overall RBE resulting from target fragments. However, considering the fragmentation effects can improve the agreement with experimental data for high energy proton beams. Full article
Show Figures

Figure 1

32 pages, 43555 KiB  
Review
Gene Signatures Induced by Ionizing Radiation as Prognostic Tools in an In Vitro Experimental Breast Cancer Model
by Gloria M. Calaf, Leodan A. Crispin, Debasish Roy, Francisco Aguayo, Juan P. Muñoz and Tammy C. Bleak
Cancers 2021, 13(18), 4571; https://doi.org/10.3390/cancers13184571 - 12 Sep 2021
Cited by 3 | Viewed by 4304
Abstract
This study aimed to analyze the expression of genes involved in radiation, using an Affymetrix system with an in vitro experimental breast cancer model developed by the combined treatment of low doses of high linear energy transfer (LET) radiation α particle radiation and [...] Read more.
This study aimed to analyze the expression of genes involved in radiation, using an Affymetrix system with an in vitro experimental breast cancer model developed by the combined treatment of low doses of high linear energy transfer (LET) radiation α particle radiation and estrogen yielding different stages in a malignantly transformed breast cancer cell model called Alpha model. Altered expression of different molecules was detected in the non-tumorigenic Alpha3, a malignant cell line transformed only by radiation and originally derived from the parental MCF-10F human cell line; that was compared with the Alpha 5 cell line, another cell line exposed to radiation and subsequently grown in the presence 17β-estradiol. This Alpha5, a tumorigenic cell line, originated the Tumor2 cell line. It can be summarized that the Alpha 3 cell line was characterized by greater gene expression of ATM and IL7R than control, Alpha5, and Tumor2 cell lines, it presented higher selenoprotein gene expression than control and Tumor2; epsin 3 gene expression was higher than control; stefin A gene expression was higher than Alpha5; and metallothionein was higher than control and Tumor2 cell line. Therefore, radiation, independently of estrogen, induced increased ATM, IL7R, selenoprotein, GABA receptor, epsin, stefin, and metallothioneins gene expression in comparison with the control. Results showed important findings of genes involved in cancers of the breast, lung, nervous system, and others. Most genes analyzed in these studies can be used for new prognostic tools and future therapies since they affect cancer progression and metastasis. Most of all, it was revealed that in the Alpha model, a breast cancer model developed by the authors, the cell line transformed only by radiation, independently of estrogen, was characterized by greater gene expression than other cell lines. Understanding the effect of radiotherapy in different cells will help us improve the clinical outcome of radiotherapies. Thus, gene signature has been demonstrated to be specific to tumor types, hence cell-dependency must be considered in future treatment planning. Molecular and clinical features affect the results of radiotherapy. Thus, using gene technology and molecular information is possible to improve therapies and reduction of side effects while providing new insights into breast cancer-related fields. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

16 pages, 3420 KiB  
Article
Strong Shift to ATR-Dependent Regulation of the G2-Checkpoint after Exposure to High-LET Radiation
by Veronika Mladenova, Emil Mladenov, Michael Scholz, Martin Stuschke and George Iliakis
Life 2021, 11(6), 560; https://doi.org/10.3390/life11060560 - 14 Jun 2021
Cited by 12 | Viewed by 3688
Abstract
The utilization of high linear-energy-transfer (LET) ionizing radiation (IR) modalities is rapidly growing worldwide, causing excitement but also raising concerns, because our understanding of their biological effects is incomplete. Charged particles such as protons and heavy ions have increasing potential in cancer therapy, [...] Read more.
The utilization of high linear-energy-transfer (LET) ionizing radiation (IR) modalities is rapidly growing worldwide, causing excitement but also raising concerns, because our understanding of their biological effects is incomplete. Charged particles such as protons and heavy ions have increasing potential in cancer therapy, due to their advantageous physical properties over X-rays (photons), but are also present in the space environment, adding to the health risks of space missions. Therapy improvements and the protection of humans during space travel will benefit from a better understanding of the mechanisms underpinning the biological effects of high-LET IR. There is evidence that high-LET IR induces DNA double-strand breaks (DSBs) of increasing complexity, causing enhanced cell killing, owing, at least partly, to the frequent engagement of a low-fidelity DSB-repair pathway: alternative end-joining (alt-EJ), which is known to frequently induce severe structural chromosomal abnormalities (SCAs). Here, we evaluate the radiosensitivity of A549 lung adenocarcinoma cells to X-rays, α-particles and 56Fe ions, as well as of HCT116 colorectal cancer cells to X-rays and α-particles. We observe the expected increase in cell killing following high-LET irradiation that correlates with the increased formation of SCAs as detected by mFISH. Furthermore, we report that cells exposed to low doses of α-particles and 56Fe ions show an enhanced G2-checkpoint response which is mainly regulated by ATR, rather than the coordinated ATM/ATR-dependent regulation observed after exposure to low doses of X-rays. These observations advance our understanding of the mechanisms underpinning high-LET IR effects, and suggest the potential utility for ATR inhibitors in high-LET radiation therapy. Full article
(This article belongs to the Special Issue Radiobiology in Space)
Show Figures

Graphical abstract

20 pages, 5217 KiB  
Article
Correlation between Microstructure and Magnetism in Ball-Milled SmCo5/α-Fe (5%wt. α-Fe) Nanocomposite Magnets
by Anna Bajorek, Paweł Łopadczak, Krystian Prusik and Maciej Zubko
Materials 2021, 14(4), 805; https://doi.org/10.3390/ma14040805 - 8 Feb 2021
Cited by 8 | Viewed by 3274
Abstract
Magnetic nanocomposites SmCo5/α-Fe were synthesized mechanically by high-energy ball milling (HEBM) from SmCo5 and 5%wt. of α-Fe powders. The X-ray diffraction analysis reveals the hexagonal 1:5 phase as the main one accompanied by the cubic α-Fe phase and 2:17 rhombohedral [...] Read more.
Magnetic nanocomposites SmCo5/α-Fe were synthesized mechanically by high-energy ball milling (HEBM) from SmCo5 and 5%wt. of α-Fe powders. The X-ray diffraction analysis reveals the hexagonal 1:5 phase as the main one accompanied by the cubic α-Fe phase and 2:17 rhombohedral as the secondary phase. The content of each detected phase is modified throughout the synthesis duration. A significant decrease in crystallite size with a simultaneous increase in lattice straining is observed. A simultaneous gradual reduction in particle size is noted from the microstructural analysis. Magnetic properties reveal non-linear modification of magnetic parameters associated with the strength of the exchange coupling induced by various duration times of mechanical synthesis. The highest value of the maximum energy product (BH)max at room temperature is estimated for samples milled for 1 and 6 h. The intermediate mixed-valence state of Sm ions is confirmed by electronic structure analysis. An increase in the Co magnetic moment versus the milling time is evidenced based on the performed fitting of the Co3s core level lines. Full article
Show Figures

Figure 1

8 pages, 7348 KiB  
Article
Microstructural Study of Al-Ag-Cu-Si Filler Metal for Brazing High-Strength Aluminum Alloys to Stainless Steel
by Vasilii Fedorov, Thomas Uhlig, Harry Podlesak and Guntram Wagner
Metals 2020, 10(12), 1563; https://doi.org/10.3390/met10121563 - 24 Nov 2020
Cited by 7 | Viewed by 2664
Abstract
The study deals with the investigation of the microstructural constituents of the brazing filler Al-Ag-Cu-Si and the microstructure of brazed aluminum/stainless steel joints. The low liquidus temperature of the Al-Ag-Cu-Si filler of 497 °C allows the joining of the stainless steel and high-strength, [...] Read more.
The study deals with the investigation of the microstructural constituents of the brazing filler Al-Ag-Cu-Si and the microstructure of brazed aluminum/stainless steel joints. The low liquidus temperature of the Al-Ag-Cu-Si filler of 497 °C allows the joining of the stainless steel and high-strength, thus far non-brazeable aluminum alloys. Brazing was carried out at a temperature of 520 °C in a vacuum furnace. Due to the lower heat input into the liquid brazing filler, the Fe-Al intermetallic layer in the reaction zone of the brazed joints is thin, which is required for good mechanical properties of the joints. The microstructure was studied by scanning electron microscopy (SEM) as well as transmission electron microscopy (TEM) in combination with selected area electron diffraction (SAED). The chemical compositions of the microstructural constituents were analyzed by energy-dispersive X-ray spectroscopy (EDXS). The results have shown that the ternary eutectic microstructure of the brazing filler consists of the α-Al solid solution phase, the θ-Al2Cu phase and a lamelled Ag-Al constituent. During the cooling of the solid filler metal, the Ag2Al phase forms lamellar segregates of μ-Ag3Al with a lamellae thickness of a few nanometers. Thus, the third eutectic constituent is a composition of two phases. The silicon content of the filler metal forms precipitates embedded inside the eutectic cells and in small dimensions inside the cell walls. Moreover, the silicon content prefers the wetting of the stainless steel surface and the formation of the Al7Fe2Si reaction layer with a thickness of 8 µm. The microstructure of the brazing zone is modified in comparison to the solidified pure filler metal. α-Al cells dominate the hypoeutectic structure. Intermetallic phases appear inside the α-cells as well as in the cell walls. Additionally, particles of the reaction phase occur inside the cell walls near the stainless steel. At the interface to the stainless steel in the reaction layer, no cracks or microcracks were detected. Full article
(This article belongs to the Section Metal Failure Analysis)
Show Figures

Figure 1

21 pages, 8089 KiB  
Review
Vertical GaN-on-GaN Schottky Diodes as α-Particle Radiation Sensors
by Abhinay Sandupatla, Subramaniam Arulkumaran, Ng Geok Ing, Shugo Nitta, John Kennedy and Hiroshi Amano
Micromachines 2020, 11(5), 519; https://doi.org/10.3390/mi11050519 - 20 May 2020
Cited by 24 | Viewed by 6239
Abstract
Among the different semiconductors, GaN provides advantages over Si, SiC and GaAs in radiation hardness, resulting in researchers exploring the development of GaN-based radiation sensors to be used in particle physics, astronomic and nuclear science applications. Several reports have demonstrated the usefulness of [...] Read more.
Among the different semiconductors, GaN provides advantages over Si, SiC and GaAs in radiation hardness, resulting in researchers exploring the development of GaN-based radiation sensors to be used in particle physics, astronomic and nuclear science applications. Several reports have demonstrated the usefulness of GaN as an α-particle detector. Work in developing GaN-based radiation sensors are still evolving and GaN sensors have successfully detected α-particles, neutrons, ultraviolet rays, x-rays, electrons and γ-rays. This review elaborates on the design of a good radiation detector along with the state-of-the-art α-particle detectors using GaN. Successful improvement in the growth of GaN drift layers (DL) with 2 order of magnitude lower in charge carrier density (CCD) (7.6 × 1014/cm3) on low threading dislocation density (3.1 × 106/cm2) hydride vapor phase epitaxy (HVPE) grown free-standing GaN substrate, which helped ~3 orders of magnitude lower reverse leakage current (IR) with 3-times increase of reverse breakdown voltages. The highest reverse breakdown voltage of −2400 V was also realized from Schottky barrier diodes (SBDs) on a free-standing GaN substrate with 30 μm DL. The formation of thick depletion width (DW) with low CCD resulted in improving high-energy (5.48 MeV) α-particle detection with the charge collection efficiency (CCE) of 62% even at lower bias voltages (−20 V). The detectors also detected 5.48 MeV α-particle with CCE of 100% from SBDs with 30-μm DL at −750 V. Full article
(This article belongs to the Special Issue Wide Bandgap Based Devices: Design, Fabrication and Applications)
Show Figures

Figure 1

Back to TopTop