Emerging New-Generation Semiconductor Single Crystals of Metal Halide Perovskites for Radiation Detection
Abstract
:1. Introduction
2. Perovskite Single Crystals for Direct Detection of X-Ray and γ-Ray
2.1. Organic–Inorganic Lead Halide Perovskite Single Crystals for Direct Detection of X-Ray and γ-Ray
2.2. All-Inorganic Lead Halide Perovskite Single Crystals for Direct Detection of X-Ray and γ-Ray
2.3. All-Inorganic Lead-Free Perovskite Single Crystals for Direct Detection of X-Ray and γ-Ray
3. Perovskite Single-Crystal Scintillators for Indirect Detection of X-Ray and γ-Ray
4. Perovskite Single Crystal for Detection of α-Particle/β-Particle/Neutron
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nagaosa, N.; Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 2013, 8, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Bruno, A.; Bazilevskaya, G.A.; Boezio, M.; Christian, E.R.; Nolfo, G.A.d.; Martucci, M.; Merge’, M.; Mikhailov, V.V.; Munini, R.; Richardson, I.G.; et al. Solar Energetic Particle Events Observed by the PAMELA Mission. Astrophys. J. 2018, 862, 97. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Peters, J.A.; Liu, Z.; Sebastian, M.; Im, J.; Chasapis, T.C.; Wibowo, A.C.; Chung, D.Y.; Freeman, A.J.; et al. Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection. Cryst. Growth Des. 2013, 13, 2722–2727. [Google Scholar] [CrossRef]
- Kim, J.; Pearton, S.J.; Fares, C.; Yang, J.; Ren, F.; Kim, S.; Polyakov, A.Y. Radiation damage effects in Ga2O3 materials and devices. J. Mater. Chem. C 2019, 7, 10–24. [Google Scholar] [CrossRef]
- Dionigi, F.; Zeng, Z.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M.B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D.; et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 2522. [Google Scholar] [CrossRef]
- Chen, V.B.; Arendall, W.B., 3rd; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 12–21. [Google Scholar] [CrossRef]
- Kang, Y.; Zhou, X.E.; Gao, X.; He, Y.; Liu, W.; Ishchenko, A.; Barty, A.; White, T.A.; Yefanov, O.; Han, G.W.; et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 2015, 523, 561–567. [Google Scholar] [CrossRef]
- D’Avanzo, P. Short gamma-ray bursts: A review. J. High Energy Astrophys. 2015, 7, 73–80. [Google Scholar] [CrossRef]
- Khan, A.I.; Shah, J.L.; Bhat, M.M. CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput. Methods Programs Biomed. 2020, 196, 105581. [Google Scholar] [CrossRef]
- Wildenschild, D.; Sheppard, A.P. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 2013, 51, 217–246. [Google Scholar] [CrossRef]
- Wells, K.; Bradley, D.A. A review of X-ray explosives detection techniques for checked baggage. Appl. Radiat. Isot. 2012, 70, 1729–1746. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, J.; Bakr, O.M.; Mohammed, O.F. Metal Halide Perovskites for X-ray Imaging Scintillators and Detectors. ACS Energy Lett. 2021, 6, 739–768. [Google Scholar] [CrossRef]
- Liu, F.; Wu, R.; Wei, J.; Nie, W.; Mohite, A.D.; Brovelli, S.; Manna, L.; Li, H. Recent Progress in Halide Perovskite Radiation Detectors for Gamma-Ray Spectroscopy. ACS Energy Lett. 2022, 7, 1066–1085. [Google Scholar] [CrossRef]
- Burrows, D.N.; Hill, J.E.; Nousek, J.A.; Kennea, J.A.; Wells, A.; Osborne, J.P.; Abbey, A.F.; Beardmore, A.; Mukerjee, K.; Short, A.D.T.; et al. The Swift X-Ray Telescope. Space Sci. Rev. 2005, 120, 165–195. [Google Scholar] [CrossRef]
- Nemallapudi, M.V.; Gundacker, S.; Lecoq, P.; Auffray, E.; Ferri, A.; Gola, A.; Piemonte, C. Sub-100 ps coincidence time resolution for positron emission tomography with LSO:Ce codoped with Ca. Phys. Med. Biol. 2015, 60, 4635–4649. [Google Scholar] [CrossRef]
- Zhou, G.; Su, B.; Huang, J.; Zhang, Q.; Xia, Z. Broad-band emission in metal halide perovskites: Mechanism, materials, and applications. Mater. Sci. Eng. R Rep. 2020, 141, 100548. [Google Scholar] [CrossRef]
- Steele, J.A.; Puech, P.; Keshavarz, M.; Yang, R.; Banerjee, S.; Debroye, E.; Kim, C.W.; Yuan, H.; Heo, N.H.; Vanacken, J.; et al. Giant Electron–Phonon Coupling and Deep Conduction Band Resonance in Metal Halide Double Perovskite. ACS Nano 2018, 12, 8081–8090. [Google Scholar] [CrossRef] [PubMed]
- Manser, J.S.; Christians, J.A.; Kamat, P.V. Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev. 2016, 116, 12956–13008. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef]
- Akkerman, Q.A.; Manna, L. What Defines a Halide Perovskite? ACS Energy Lett. 2020, 5, 604–610. [Google Scholar] [CrossRef]
- Stranks, S.D.; Snaith, H.J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015, 10, 391–402. [Google Scholar] [CrossRef]
- Bao, C.; Yang, J.; Bai, S.; Xu, W.; Yan, Z.; Xu, Q.; Liu, J.; Zhang, W.; Gao, F. High Performance and Stable All-Inorganic Metal Halide Perovskite-Based Photodetectors for Optical Communication Applications. Adv. Mater. 2018, 30, 1803422. [Google Scholar] [CrossRef] [PubMed]
- Steele, J.A.; Pan, W.; Martin, C.; Keshavarz, M.; Debroye, E.; Yuan, H.; Banerjee, S.; Fron, E.; Jonckheere, D.; Kim, C.W.; et al. Photophysical Pathways in Highly Sensitive Cs2AgBiBr6 Double-Perovskite Single-Crystal X-Ray Detectors. Adv. Mater. 2018, 30, 1804450. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Matei, L.; Jung, H.J.; McCall, K.M.; Chen, M.; Stoumpos, C.C.; Liu, Z.; Peters, J.A.; Chung, D.Y.; Wessels, B.W.; et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 2018, 9, 1609. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zhang, C.; Liu, X.; Yao, J.; Zhao, Y.S. Materials chemistry and engineering in metal halide perovskite lasers. Chem. Soc. Rev. 2020, 49, 951–982. [Google Scholar] [CrossRef]
- Yakunin, S.; Sytnyk, M.; Kriegner, D.; Shrestha, S.; Richter, M.; Matt, G.J.; Azimi, H.; Brabec, C.J.; Stangl, J.; Kovalenko, M.V.; et al. Detection of X-ray photons by solution-processed organic-inorganic perovskites. Nat. Photonics 2015, 9, 444–449. [Google Scholar] [CrossRef]
- Yakunin, S.; Dirin, D.N.; Shynkarenko, Y.; Morad, V.; Cherniukh, I.; Nazarenko, O.; Kreil, D.; Nauser, T.; Kovalenko, M.V. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photonics 2016, 10, 585–589. [Google Scholar] [CrossRef]
- Xu, Q.; Wei, H.; Wei, W.; Chuirazzi, W.; DeSantis, D.; Huang, J.; Cao, L. Detection of charged particles with a methylammonium lead tribromide perovskite single crystal. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 848, 106–108. [Google Scholar] [CrossRef]
- Yu, D.; Wang, P.; Cao, F.; Gu, Y.; Liu, J.; Han, Z.; Huang, B.; Zou, Y.; Xu, X.; Zeng, H. Two-dimensional halide perovskite as beta-ray scintillator for nuclear radiation monitoring. Nat. Commun. 2020, 11, 3395. [Google Scholar] [CrossRef]
- El Bouanani, L.; Keating, S.E.; Avila-Avendano, C.; Reyes-Banda, M.G.; Pintor-Monroy, M.I.; Singh, V.; Murillo, B.L.; Higgins, M.; Quevedo-Lopez, M.A. Solid-State Neutron Detection Based on Methylammonium Lead Bromide Perovskite Single Crystals. ACS Appl. Mater. Interfaces 2021, 13, 28049–28056. [Google Scholar] [CrossRef]
- Su, Y.; Ma, W.; Yang, Y. Perovskite semiconductors for direct X-ray detection and imaging. J. Semicond. 2020, 41, 051204. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A.A.; Guan, X.; Han, S.; Liang, L.; Yi, Z.; et al. All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561, 88–93. [Google Scholar] [CrossRef]
- Wei, H.; Huang, J. Halide lead perovskites for ionizing radiation detection. Nat. Commun. 2019, 10, 1066. [Google Scholar] [CrossRef] [PubMed]
- Moseley, O.D.I.; Doherty, T.A.S.; Parmee, R.; Anaya, M.; Stranks, S.D. Halide perovskites scintillators: Unique promise and current limitations. J. Mater. Chem. C Mater. 2021, 9, 11588–11604. [Google Scholar] [CrossRef]
- Liu, L.; Xu, M.; Xu, X.; Tao, X.; Gao, Z. High Sensitivity X-ray Detectors with Low Degradation Based on Deuterated Halide Perovskite Single Crystals. Adv. Mater. 2024, 2406443. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Sun, X.; Jiang, L.; Jiang, X.; Chen, H.; Cui, F.; Zhang, G.; Wang, Y.; Lu, Y.-B.; Wu, Z.; et al. Ultralow detection limit and high sensitivity X-ray detector of high-quality MAPbBr3 perovskite single crystals. J. Mater. Chem. A 2024, 12, 12467–12474. [Google Scholar] [CrossRef]
- Hua, Y.; Zhang, G.; Sun, X.; Zhang, P.; Hao, Y.; Xu, Y.; Yang, Y.; Lin, Q.; Li, X.; Zhai, Z.; et al. Suppressed ion migration for high-performance X-ray detectors based on atmosphere-controlled EFG-grown perovskite CsPbBr3 single crystals. Nat. Photonics 2024, 18, 870–877. [Google Scholar] [CrossRef]
- Zhang, P.; Hua, Y.; Xu, Y.; Sun, Q.; Li, X.; Cui, F.; Liu, L.; Bi, Y.; Zhang, G.; Tao, X. Ultrasensitive and Robust 120 keV Hard X-ray Imaging Detector based on Mixed-Halide Perovskite CsPbBr3−nIn. Adv. Mater. 2022, 34, 2106562. [Google Scholar] [CrossRef]
- Sun, Q.; Xu, Y.; Zhang, H.; Xiao, B.; Liu, X.; Dong, J.; Cheng, Y.; Zhang, B.; Jie, W.; Kanatzidis, M.G. Optical and electronic anisotropies in perovskitoid crystals of Cs3Bi2I9 studies of nuclear radiation detection. J. Mater. Chem. A 2018, 6, 23388–23395. [Google Scholar] [CrossRef]
- Zhang, P.; Huang, L.; Li, L.; Chen, Z.; Zhang, G.; Tao, X. High-Flux Hard X-ray Cs1–mRbmPbBr3 Single-Crystal Detector with Suppressed Ion Migration. ACS Mater. Lett. 2024, 6, 4810–4818. [Google Scholar] [CrossRef]
- Yin, L.; Wu, H.; Pan, W.; Yang, B.; Li, P.; Luo, J.; Niu, G.; Tang, J. Controlled Cooling for Synthesis of Cs2AgBiBr6 Single Crystals and Its Application for X-ray Detection. Adv. Opt. Mater. 2019, 7, 1900491. [Google Scholar] [CrossRef]
- Wei, Q.; Fan, X.; Xiang, P.; Qin, L.; Liu, W.; Shi, T.; Yin, H.; Cai, P.; Tong, Y.; Tang, G.; et al. Cs3Cu2I5 Single Crystal for Efficient Direct X-ray Detection. Adv. Opt. Mater. 2023, 11, 2300247. [Google Scholar] [CrossRef]
- Wei, H.; DeSantis, D.; Wei, W.; Deng, Y.; Guo, D.; Savenije, T.J.; Cao, L.; Huang, J. Dopant compensation in alloyed CH3NH3PbBr3−xClx perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 2017, 16, 826–833. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Ke, W.; Alexander, G.C.B.; McCall, K.M.; Chica, D.G.; Liu, Z.; Hadar, I.; Stoumpos, C.C.; Wessels, B.W.; Kanatzidis, M.G. Resolving the Energy of γ-Ray Photons with MAPbI3 Single Crystals. ACS Photonics 2018, 5, 4132–4138. [Google Scholar] [CrossRef]
- He, Y.; Petryk, M.; Liu, Z.; Chica, D.G.; Hadar, I.; Leak, C.; Ke, W.; Spanopoulos, I.; Lin, W.; Chung, D.Y.; et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nat. Photonics 2021, 15, 36–42. [Google Scholar] [CrossRef]
- He, Y.; Stoumpos, C.C.; Hadar, I.; Luo, Z.; McCall, K.M.; Liu, Z.; Chung, D.Y.; Wessels, B.W.; Kanatzidis, M.G. Demonstration of Energy-Resolved γ-Ray Detection at Room Temperature by the CsPbCl3 Perovskite Semiconductor. J. Am. Chem. Soc. 2021, 143, 2068–2077. [Google Scholar] [CrossRef]
- Mykhaylyk, V.B.; Kraus, H.; Kapustianyk, V.; Kim, H.J.; Mercere, P.; Rudko, M.; Da Silva, P.; Antonyak, O.; Dendebera, M. Bright and fast scintillations of an inorganic halide perovskite CsPbBr3 crystal at cryogenic temperatures. Sci. Rep. 2020, 10, 8601. [Google Scholar] [CrossRef]
- Shen, J.; Jia, R.; Hu, Y.; Zhu, W.; Yang, K.; Li, M.; Zhao, D.; Shi, J.; Lian, J. Cold-Sintered All-Inorganic Perovskite Bulk Composite Scintillators for Efficient X-ray Imaging. ACS Appl. Mater. Interfaces 2024, 16, 24703–24711. [Google Scholar] [CrossRef]
- Wang, C.; Yan, Z.-G.; Wang, Y.; Zhu, J.; Peng, C.; Qu, Y.; Yang, F.; Xiao, J.; Han, X. All-Inorganic Ruddlesden–Popper Perovskite Cs2CdCl4:Mn for Low-Dose and Flexible X-ray Imaging. ACS Mater. Lett. 2024, 6, 1429–1438. [Google Scholar] [CrossRef]
- Cheng, S.; Beitlerova, A.; Kucerkova, R.; Nikl, M.; Ren, G.; Wu, Y. Zero-Dimensional Cs3Cu2I5 Perovskite Single Crystal as Sensitive X-ray and γ-Rray Scintillator. Phys. Status Solidi (RRL)-Rapid Res. Lett. 2020, 14, 2000374. [Google Scholar] [CrossRef]
- Yao, Q.; Li, J.; Li, X.; Zheng, X.; Wang, Z.; Tao, X. High-Quality Cs3Cu2I5 Single-Crystal is a Fast-Decaying Scintillator. Adv. Opt. Mater. 2022, 10, 2201161. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, Q.; Nikl, M.; Xiao, J.; Kucerkova, R.; Beitlerova, A.; Babin, V.; Prusa, P.; Linhart, V.; Wang, J.; et al. Highly Resolved X-ray Imaging Enabled by In(I) Doped Perovskite-Like Cs3Cu2I5 Single Crystal Scintillator. Adv. Opt. Mater. 2022, 10, 2200304. [Google Scholar] [CrossRef]
- Yuan, D. Air-Stable Bulk Halide Single-Crystal Scintillator Cs3Cu2I5 by Melt Growth: Intrinsic and Tl Doped with High Light Yield. ACS Appl. Mater. Interfaces 2020, 12, 38333–38340. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Nikl, M.; Beitlerova, A.; Kucerkova, R.; Du, X.; Niu, G.; Jia, Y.; Tang, J.; Ren, G.; Wu, Y. Ultrabright and Highly Efficient All-Inorganic Zero-Dimensional Perovskite Scintillators. Adv. Opt. Mater. 2021, 9, 2100460. [Google Scholar] [CrossRef]
- Yao, Q.; Li, J.; Li, X.; Ma, Y.; Song, H.; Li, Z.; Wang, Z.; Tao, X. Achieving a Record Scintillation Performance by Micro-Doping a Heterovalent Magnetic Ion in Cs3Cu2I5 Single-Crystal. Adv. Mater. 2023, 35, 2304938. [Google Scholar] [CrossRef]
- Shimaoka, T.; Kaneko, J.H.; Tsubota, M.; Shimmyo, H.; Watanabe, H.; Chayahara, A.; Umezawa, H.; Shikata, S.-i. High-performance diamond radiation detectors produced by lift-off method. EPL (Europhys. Lett.) 2016, 113, 62001. [Google Scholar] [CrossRef]
- He, Y.; Liu, Z.; McCall, K.M.; Lin, W.; Chung, D.Y.; Wessels, B.W.; Kanatzidis, M.G. Perovskite CsPbBr3 single crystal detector for alpha-particle spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 922, 217–221. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Y.; Xia, G.; Zou, J.; Deng, W.; Tian, F.; Deng, J. Metal–Semiconductor–Metal-Nanostructured CsPbBr3 Crystal Detector for Long-Term Stable α-Particle Detection. ACS Appl. Nano Mater. 2022, 5, 16039–16044. [Google Scholar] [CrossRef]
- McCall, K.M.; Liu, Z.; Trimarchi, G.; Stoumpos, C.C.; Lin, W.; He, Y.; Hadar, I.; Kanatzidis, M.G.; Wessels, B.W. α-Particle Detection and Charge Transport Characteristics in the A3M2I9 Defect Perovskites (A = Cs, Rb; M = Bi, Sb). ACS Photonics 2018, 5, 3748–3762. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, C.; Shi, H.; Chen, J.; Yang, J.; Beitlerova, A.; Kucerkova, R.; Zhou, Z.; Li, Y.; Nikl, M.; et al. Exciton-harvesting enabled efficient charged particle detection in zero-dimensional halides. Light Sci. Appl. 2024, 13, 190. [Google Scholar] [CrossRef]
- Nayak, P.K.; Moore, D.T.; Wenger, B.; Nayak, S.; Haghighirad, A.A.; Fineberg, A.; Noel, N.K.; Reid, O.G.; Rumbles, G.; Kukura, P.; et al. Mechanism for rapid growth of organic-inorganic halide perovskite crystals. Nat. Commun. 2016, 7, 13303. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cao, H.L.; Jiao, W.B.; Wang, Q.; Wei, M.; Cantone, I.; Lu, J.; Abate, A. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nat. Commun. 2020, 11, 310. [Google Scholar] [CrossRef] [PubMed]
- McGregor, D.S. Materials for Gamma-Ray Spectrometers: Inorganic Scintillators. Annu. Rev. Mater. Res. 2018, 48, 245–277. [Google Scholar] [CrossRef]
- van Loef, E.V.D.; Dorenbos, P.; van Eijk, C.W.E.; Krämer, K.; Güdel, H.U. High-energy-resolution scintillator: Ce3+ activated LaBr3. Appl. Phys. Lett. 2001, 79, 1573–1575. [Google Scholar] [CrossRef]
- Lian, L.; Zheng, M.; Zhang, W.; Yin, L.; Du, X.; Zhang, P.; Zhang, X.; Gao, J.; Zhang, D.; Gao, L.; et al. Efficient and Reabsorption-Free Radioluminescence in Cs3Cu2I5 Nanocrystals with Self-Trapped Excitons. Adv. Sci. 2020, 7, 2000195. [Google Scholar] [CrossRef]
- Li, J.; Du, X.; Niu, G.; Xie, H.; Chen, Y.; Yuan, Y.; Gao, Y.; Xiao, H.; Tang, J.; Pan, A.; et al. Rubidium Doping to Enhance Carrier Transport in CsPbBr3 Single Crystals for High-Performance X-Ray Detection. ACS Appl. Mater. Interfaces 2020, 12, 989–996. [Google Scholar] [CrossRef]
Materials | Growth Method α | Device Structure | μτ Product (cm2 V−1) | Sensitivity (μC Gy−1 cm−2) | Detection Limit (nGyair s−1) | Voltage or Electric Field | Energy Resolution | Ref. |
---|---|---|---|---|---|---|---|---|
X-ray detectors (120 keV) | ||||||||
DxMAPbI3 | ITC method | Au/DxMAPbI3/Au | 5.39 × 10−2 | 2.18 × 106 | 4.8 | 40 V/mm | [35] | |
MAPbBr3 | ITC method | Pt/MAPbBr3/Pt | 1.49 × 10−4 | 24,522 | 54 | 80 V/cm | [36] | |
CsPbBr3 | EFG method | EGaIn/CsPbBr3/Au | 8.11 × 10−4 | 46,180 | 10.81 | 5000 V/cm | [37] | |
CsPbBr2.9I0.1 | Bridgman | Au/CsPbBr2.9I0.1/Au | 5.06 × 10−3 | 62,748 | 117 | 5000 V/cm | [38] | |
Cs3Bi2I9 | Bridgman | Au/Cs3Bi2I9/Au | 2.03 × 10−5 | 111.9 | 2800 V/cm | [39] | ||
Cs0.7Rb0.3PbBr3 | Bridgman | InGa/Cs0.7Rb0.3PbBr3/Au | 33,631 | 148 | 5000 V/cm | [40] | ||
Cs2AgBiBr6 | Solution | Au/Cs2AgBiBr6/Au | 5.95 × 10−3 | 1947 | 45.7 | 500 V/cm | [41] | |
Cs3Cu2I5:Li | Bridgman | Au/Cs3Cu2I5:Li/PCBM/Au | 2.9 × 10−4 | 831.1 | 34.8 | 450 V/cm | [42] | |
γ-ray detectors | ||||||||
MAPbBr2.94Cl0.06 | ITC method | Cr/MAPbBr2.94Cl0.06/C60/BCP/Cr | 1.8 × 10−2 | 10 V | 6.5% (137Cs 662 keV) | [43] | ||
MAPbI3 | TRM method | Ga/MAPbI3/Au | 8.1 × 10−4 (h) | 70 V, 460 V/cm | 6.8% (57Co 122 keV) | [44] | ||
7.4 × 10−4 (e) | 12% (241Am 59.5 keV) | |||||||
CsPbBr3 | Bridgman | Ga/CsPbBr3/Au | 1.34 × 10−3 | 150 V | 3.9% (57Co 122 keV) | [24] | ||
900 V | 3.8% (137Cs 662 keV) | |||||||
CsPbBr3 | Bridgman | EGaIn/CsPbBr3/Au | 8 × 10−3 | 5500 V/cm | 1.4% (137Cs 662 keV) | [45] | ||
CsPbCl3 | Bridgman | Ga/CsPbCl3/Au | 3.2 × 10−4 | 300 V | ~16% (57Co 122 keV) | [46] |
Materials | Growth Method | Maximum Emission (nm) | Light Yield (Photons/MeV) | Decay Time (ns) | Detection Limit (nGyair s−1) | Energy Resolution or Spatial Resolution (X-Ray) (lp mm−1) | Radiation Source | Ref. |
---|---|---|---|---|---|---|---|---|
CsPbBr3 | Bridgman | 535, 545 | ~50,000 (7 K) | ~1 | X-ray | [47] | ||
CsPbBr3/Cs4PbBr6 | Cold sintering | 515 | 33,800 | 9.8 | 79 | 19.3% | 241Am 59.6 keV | [48] |
8.9 lp mm−1 | X-ray | |||||||
Cs2CdCl4:Mn | Hydrothermal method | 585 | 88,138 | 31.04 | 16.1 lp mm−1 | X-ray | [49] | |
Cs3Cu2I5 | Bridgman | 440 | 32,000 | 967 | X-ray 137Cs 662 keV | [50] | ||
29,000 | 3.4% | |||||||
Cs3Cu2I5 | Solution method | 445 | 32,695 | 39 | 4.45% | 137Cs 662 keV | [51] | |
3.03% | 60Co 1332 keV | |||||||
8.15% | 152Eu 334 keV | |||||||
Cs3Cu2I5:In | Bridgman | 460, 620 | 53,000 | 3700 | 96.2 | 18 lp mm−1 | X-ray | [52] |
44,000 | 137Cs 662 keV | |||||||
Cs3Cu2I5:Tl | Bridgman | ~450, 517 | 51,000 | 893 | 4.5% | 137Cs 662 keV | [53] | |
Cs3Cu2I5:Tl | Bridgman | 440, 510 | 87,000 | 717 | 66.3 | 3.4% | 137Cs 662 keV | [54] |
Cs3Cu2I5:Mn | Solution | 445 | 95,772 | 3 | 3.79% | 137Cs 662 keV | [55] | |
2.63% | 60Co 1332 keV |
Direct Conversion | Growth Method | Device Structure | μτ Product (cm2 V−1) | Energy Resolution | Radiation Source | Ref. | |
---|---|---|---|---|---|---|---|
Diamond | CVD β | Al/diamond/TiC/Au | 3.1 × 10−4 (h) | 0.3% | α-particle (241Am 5.5 MeV) | [56] | |
MAPbI3 | TRM method | Ga/MAPbI3/Au | 8.1 × 10−4 (h) | α-particle (241Am 5.5 MeV) | [44] | ||
7.4 × 10−4 (e) | |||||||
CsPbBr3 | Bridgman | In/CsPbBr3/Au | 4.5 × 10−4 (e) | α-particle (241Am 5.5 MeV) | [57] | ||
9.5 × 10−4 (h) | |||||||
CsPbBr3 | Bridgman | Ti/Ni/CsPbBr3/Ni/Ti | 6.4 × 10−3 (e) | 5.70% (700 V) | α-particle (241Am 5.5 MeV) | [58] | |
Cs3Bi2I9 | Bridgman | Au/Cs3Bi2I9/Au | 5.4 × 10−5 (e) | α-particle (241Am 5.5 MeV) | [59] | ||
MAPbBr3 | ITC method | Ag/In/Ga2O3/MAPbBr3/Au | Efficiency 3.92% | Neutron(252Cf) | [30] | ||
Scintillator | Growth Method | Light Yield (Photons/MeV) | Wavelength (nm) | Decay Time (ns) | Energy Resolution | Radiation Source | Ref. |
STA2PbBr4:Mn | Solution | ~24,000 | 610 | 500 | β-particle(63Ni 66.7 keV) | [29] | |
Cs3Cu2I5:Tl | Bridgman | 26,000 | 445, 510 | 708 | 10.5% | α-particle (241Am 5.5 MeV) | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, G.; Peng, M.; Yang, Z.; Chu, C.P.; Deng, Z. Emerging New-Generation Semiconductor Single Crystals of Metal Halide Perovskites for Radiation Detection. Inorganics 2024, 12, 278. https://doi.org/10.3390/inorganics12110278
Luo G, Peng M, Yang Z, Chu CP, Deng Z. Emerging New-Generation Semiconductor Single Crystals of Metal Halide Perovskites for Radiation Detection. Inorganics. 2024; 12(11):278. https://doi.org/10.3390/inorganics12110278
Chicago/Turabian StyleLuo, Guigen, Min Peng, Zhibin Yang, Chungming Paul Chu, and Zhengtao Deng. 2024. "Emerging New-Generation Semiconductor Single Crystals of Metal Halide Perovskites for Radiation Detection" Inorganics 12, no. 11: 278. https://doi.org/10.3390/inorganics12110278
APA StyleLuo, G., Peng, M., Yang, Z., Chu, C. P., & Deng, Z. (2024). Emerging New-Generation Semiconductor Single Crystals of Metal Halide Perovskites for Radiation Detection. Inorganics, 12(11), 278. https://doi.org/10.3390/inorganics12110278