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Abstract: Radio-echo sounding (RES) is widely used for polar ice sheet detection due to its wide
coverage and high efficiency. The multivariate variational mode decomposition (MVMD) algorithm
for the processing of RES data is an improvement to the variational mode decomposition (VMD)
algorithm. It processes data encompassing multiple channels. Determining the most effective
component combination of the penalty parameter (α) and the number of intrinsic mode functions
(IMFs) (K) is fundamental and affects the decomposition results. α and K in traditional MVMD are
provided by subjective experience. We integrated the particle swarm optimization (PSO) algorithm
to iteratively optimize these parameters—specifically, α and K—with high precision. This was then
combined with the four quantitative parameters: energy entropy, signal-to-noise ratio (SNR), peak
signal-to-noise ratio (PSNR), and root-mean-square error (RMSE). The RES signal decomposition
results were judged, and the most effective component combination for noise suppression was
selected. We processed the airborne RES data from the East Antarctic ice sheet using the combined
PSO–MVMD method. The results confirmed the quality of the proposed method in attenuating the
RES signal noise, enhancing the weak signal of the ice base, and improving the SNR. This combined
PSO–MVMD method may help to enhance weak signals in deeper parts of ice sheets and may be an
effective tool for RES data interpretation.

Keywords: radio-echo sounding (RES); multivariate variational mode decomposition (MVMD);
intrinsic mode functions (IMFs); particle swarm optimization (PSO); East Antarctic ice sheet

1. Introduction

Rapid climate change has led to a significant loss of mass of the Antarctic ice sheet
(AIS) [1]. Research has revealed that the East Antarctic ice sheet may be more vulnerable
than expected; parts of it may be as unstable as parts of the West Antarctic ice sheet [2–4].
Determining the stability of different regions of the AIS is crucial. An important factor
limiting the ability of ice sheet models to understand and predict future ice sheet behavior
is a lack of understanding of the englacial structure of the AIS [5,6]. A radio-echo sounding
(RES) survey is an effective way to quantify the englacial information of the AIS, as well
as the basal conditions [7,8]. RES is a tool with a high penetration depth that can be
used to obtain high-resolution ice layer information. RES has been widely used to obtain
the geometric characteristics of the ice bed, the ice internal layer structure of the ice
sheet, information regarding the past subglacial landscape beneath the AIS, ice dynamics,
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and to locate old ice cores [9–16]. Although significant progress has been achieved in
the application of ice radar in Antarctica, substantial limitations remain. These include
widespread noise interference and signal attenuation, which limit the characterization of
ice layer structures and subglacial morphology features in radar images. This affects the
accuracy of the feature extraction of ice sheets [17,18].

The attenuation of RES signals is mainly caused by the dielectric constant and conduc-
tivity of the ice [19]. The electrical conductivity of ice is affected by the content of impurities,
intra-ice ions, and gas bubbles produced by the deposition of sea salt and acids emitted
into the atmosphere by volcanic eruptions [15,20–22]. The dielectric constant is related to
ice chemistry variations, ice fabrics, and the pressure and temperature of ice [23,24]. All
these factors result in the corresponding attenuation of electromagnetic waves propagating
within the ice. Airborne RES is usually emitted in the form of a pulse modulation. The
geometric diffusion of the radar wave also causes attenuation [25]. The interaction between
an aircraft and the antenna, the thermal noise of the system, and the clutter all produce
noise interference [26–28]. These factors can result in a lack of valid information in the
radar-reflected echo, which reduces the signal quality. Thus, the geological information
cannot be reconstructed and restored. Identifying and eliminating noise and clutter, as well
as improving the extraction accuracy of geometric features, are important aspects of RES
signal processing. Many denoising methods based on the characteristics of radar detec-
tion have been proposed; these focus on radar signal principles such as filtering, wavelet
transform, Fourier transform, low-rank approximation, and deep learning [29–33]. Fourier
transform and wavelet analysis are suitable for the decomposition of linear stationary sig-
nals. The basis of decomposition is limited by the time–frequency resolution, which cannot
be fully applied to non-linear, non-stationary signals [30]. The low-rank approximation
is essentially single-channel denoising; it does not effectively use the inter-channel coher-
ence of the signal [34]. Methods such as convolutional neural networks (CNNs), which
denoise signals using deep learning, rely on a large number of labeled training samples.
This limits their application [33]. As the pursuit of novel signal processing methods gains
momentum, such issues require urgent attention. Traditional approaches are inadequate
for contemporary demands.

We theorized that the decomposition of airborne RES data into intrinsic mode function
(IMF) components may be a more effective method to process stochastic non-smooth sig-
nals [35]. In 1998, the empirical mode decomposition (EMD) method was established. This
decomposes a signal into multiple IMFs of different frequencies and applies the Hilbert
transform (N. E. Huang). Parameters such as an instantaneous frequency and an instan-
taneous phase can be obtained through EMD processing; thus, this method has a high
adaptability and time–frequency resolution. It is mainly used to process non-linear, non-
stationary signals, which are useful in navigation, meteorology, seismic record analyses,
ground-penetrating radar data processing, mechanical fault diagnosis, and biomedical
applications [36–44]. The EMD method has been improved over time, but this decom-
position method continues to encounter challenges, such as the mathematical model not
being rigorous enough and noise sensitivity [45]. In 2014, Dragomiretskiy et al. introduced
the variational mode decomposition (VMD) algorithm [46]. VMD decomposes the signal
into non-recursive variational modes; it possesses improved noise robustness. Through
the iterative pursuit of optimal solutions within the variational model, each signal com-
ponent becomes stationary, solving the mode-mixing phenomenon. However, it lacks
self-adaptability; the degree of freedom of the parameters is also significant. The stripe
problem also remains. In 2019, Rehman et al. introduced multivariate variational mode
decomposition (MVMD) [47], an adaptive frequency–domain division method that decom-
poses several IMFs from a signal. MVMD extends the variational model of VMD to process
multivariate data. The algorithmic process is based on common frequency components
across all channels to construct a variational optimization problem. It extracts a multivariate
modulation oscillation finite bandwidth mode set. The center frequency and bandwidth of
the IMF can then be determined by the optimal set, which is then searched by the variational
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model. MVMD has the advantages of VMD while extending it from a single channel to a
multichannel with good modal alignment. This method avoids both the stripe problem of
VMD and the drawbacks of multivariate empirical mode decomposition (MEMD) [47,48].
It possesses the obvious advantage of a high resolution in the time–frequency analysis of
data. MVMD shares a parameter reliance with VMD; this requires manual input for the
penalty parameter (α) and the number of IMFs (K).

To overcome the problem that MVMD needs to rely on manual experience to select
parameters, we propose an MVMD denoising method that incorporates particle swarm
optimization (PSO) [49–56]. As a global search procedure, PSO has the advantages of higher
accuracy, higher operability, fewer parameter settings, and faster convergence; it has been
widely used in engineering and geophysical fields [57]. First, the airborne RES data are
read, and the PSO algorithm determines the optimal parameter combinations for MVMD.
Next, by computing the energy entropy of the decomposed IMFs, ineffective components
are removed. Finally, the effective components are optimally combined according to the
signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), and root-mean-square error
(RMSE) and are then accumulated to obtain the denoised reconstructed radar signal, thus
achieving a denoising effect. The contributions of this method are as follows: (1) it provides
a new MVMD method for airborne RES data processing of the East Antarctic ice sheet,
which realizes the sequential decomposition of the signal from a low frequency to a high
frequency; (2) combining MVMD with the PSO algorithm (PSO–MVMD) solves the problem
of the reliance of MVMD on manual experience to set the parameters; (3) it produces a
reliable denoising effect that enables a focus on deep glaciers and reveals high-resolution
subglacial basement structures, improves the extraction accuracy of the geometric features,
and obtains accurate geological boundary conditions in Antarctica.

2. Materials and Methods
2.1. Principles of MVMD

Compared with VMD, MVMD serves as an extension. It transitions multivariate
data from a one-dimensional space to multidimensional spaces, which is convenient when
using multivariate or multichannel signals. It ensures the consistency of the frequency of
multichannel decomposition. The decomposition steps are as follows. First, a multivariate
constrained variational model is constructed. This results in the emergence of an associated
optimization problem, as articulated in Equation (1). Second, the multivariate constrained
variational model is solved; this adaptively decomposes the frequency bands of the signals
by updating the relationship to obtain the K of the IMFs [47].

For the input multivariate signal x(t), MVMD can extract the K multivariate modula-
tion oscillation signals Uk(t) from x(t), which contains C channel data. This is expressed as

x(t) = ∑K
k=1 Uk(t) (1)

where Uk(t) = [U1(t), U2(t), . . . , Uc(t)].
MVMD extracts the set {U k(t)|k = 1, 2, . . . , K} of multimodulated oscillation signals

in the input data. The total bandwidths of all modes are minimized. The raw signal can
then be accurately reconstructed. The L2 norm of the gradient function of its analytic vector
Uk
+ is used to estimate the bandwidth of Uk(t). The L2 norm is defined as the open square

of the sum of the squares of all elements of the vector. The multivariate function in MVMD
that requires optimization is

f = ∑k

∣∣∣∣∣∣∂t

[
e−jωktUk

+ (t)
∣∣∣|22 (2)

where ωk is the center frequency of the extracted mode, which is a single-frequency compo-
nent for the harmonic mixing of all Uk

+(t). The bandwidth of the modulated multivariate
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oscillation is estimated in two parts: one shifts the unilateral frequency spectrum of each
channel of Uk

+(t) by ωk and the other takes the Frobenius norm of the matrix. Thus, f is

f = ∑k ∑c||∂t

[
Uk,c
+ (t)e−jωkt

∣∣∣|22 (3)

where Uk,c
+ is the mode in channel c, and k is the analytic modulated signal. The constrained

optimization problem of MVMD is then
min

{uk,c ,(t)},{ωt}
∑
k

∑
c

∥∥∥∂t

[
Uk,c
+ (t)e−jωkt

]∥∥∥2

2

∑
k

Uk,c(t) = xt(t)c = 1, 2, · · · , C
(4)

where
{

Uk,c(t)
}

is an ensemble of multivariate modulated oscillations in channel c and
{ωk} is the ensemble of the center frequencies of

{
Uk,c(t)

}
. The corresponding augmented

Lagrangian function is

L({Uk,c(t), {ωk}, λ(c)(t) = α∑k ∑c

∥∥∥∂t

[
e−jωktUk,c

+ (t)
∥∥∥2

2
+ ‖xt(t)−∑k Uk,c(t)‖2

2

+∑c
〈
λc(t), xc(t)−∑k Uk,c(t)

〉 (5)

where α is the penalty factor, λc(t) is the Lagrange multiplier, and < > is the inner product.
In contrast to VMD, MVMD demonstrates a pronounced mode alignment property.

This is particularly advantageous when dealing with multivariate signals. The mode align-
ment property of multivariate signals signifies that the signal components of a multivariate
signal that are in the same frequency band as the modal component can be simultaneously
decomposed into that modal. This is extremely important for the parallel analysis of mul-
tivariate data, especially in geophysical signal processing, where the decomposed mode
components must be applied to enable the signal reconstruction. If there are oscillating sig-
nals in different frequency bands on the same mode component, the extracted multivariate
signal features lose their significance if there are oscillating signals in different frequency
bands on the same mode component.

As an illustrative example, we considered an analysis of a dual-channel composite
input signal, as shown in Equations (6) and (7). In Figure 1, channel 1 is represented
by the blue curve and encompasses signal components of 80 Hz and 40 Hz; channel 2,
shown in red, consists of signal components at 80 Hz and 120 Hz. In decomposing the
synthesized signal, the number of IMFs of K was uniformly set to 3 for both algorithms.
Figure 2 reveals the VMD decomposition results; the 40 Hz component in channel 1 and the
80 Hz component in channel 2 were decomposed to IMF1 (Figure 2a,d). The same problem
existed for IMF2. In the MVMD decomposition results (Figure 3), the common component
of 80 Hz in both channels was extracted to IMF1, which verified that the MVMD method
was equivalent to VMD in multivariate signal processing for the superiority of its mode
alignment property.

a1 = 1.2 · cos(2π · 80 · t)+0.8 · cos(2π · 40 · t) (6)

a2 = 1.2 · cos(2π · 80 · t)+0.8 · cos(2π · 120 · t) (7)
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2.2. The PSO–MVMD Algorithm for Optimal Parameters of α

The number of IMFs, K, and the penalty factor, α, are required to be set by virtue
of manual experience when the MVMD algorithm decomposes the signal. K affects the
decomposition effect of the signal; a large K over-decomposes the mode, whereas a small
K may result in under-decomposition. The penalty factor α affects the IMF bandwidth
and the speed of convergence; larger α values correspond with narrower bandwidths of
IMFs [58]. We introduced the PSO algorithm to automate the optimization of K and α.

The PSO algorithm, which was proposed by Kennedy et al. in 1995 [49], simulates
the unconscious foraging behavior of a flock of birds for its own state optimization. Each
particle represents a bird, and the optimal solution equates to a food source. The particle
swarm determines the distance and direction of the flight according to its individual experi-
ence and neighbor experiences. It updates the two attributes of the particle—position, and
velocity—and continuously iterates to discover the optimal solution, thereby completing
the search process.

If the number of particles is n, D-dimensional space can be searched by composing
the set X = {X1, X2, · · ·Xn}. The position of the i-th particle in the solution space in the
D-dimensional space is as follows (Equation (8)):

XI = {Xi1, Xi2 · · ·Xid} (8)

The velocity of the i-th particle in the D-dimensional space is as follows (Equation (9)):

VI = {Vi1, Vi2 · · ·Vid} (9)

The optimal position of the i-th particle, which is searched in the D-dimensional space
(i.e., the best fitness value of the particle), is shown in Equation (10):

Pbest = {Pi1, Pi2 · · · Pid} (10)

The optimal position that the particle population historically searches for in D-
dimensional space (i.e., the best fitness value of the population) is shown in Equation (11):

gbest = {gi1, gi2 · · · gid} (11)
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The particle swarm updates the position and velocity through the best fitness value of
the particle and the population. It continuously iterates to discover the optimal prob-
lem solution. k is the number of current iterations; this was set to 10 in this paper.
At the (k + 1)th generation, the velocity and position of the particle are updated using
Equations (12) and (13), respectively:

Vk+1
id = ωVk

id + C1r1

(
Pk

id − Xk
id

)
+ C2r2

(
gk

id − Xk
id

)
(12)

Xk+1
id = Xk

id + Vk
id (13)

where i = 1, 2, · · · , n; d = 1, 2, · · · , D; and ω is the inertia weighting factor, which deter-
mines the amount that the velocity is preserved in the last iteration. This is used to regulate
the search range of the solution space. If the inertia weight value is large, the algorithm
has a strong global search ability. It was set to 1.5 in this paper. C1 and C2 are acceleration
constants, which determine the size of the amount of learning by the particle for the optimal
position and control the search step for the individual and the population, respectively.
This is tested by a benchmark function set; the optimal interval for the acceleration constant
ranges from 0.5 to 2.5 [59]. In this paper, it was set to 1.5 and 1.0. r1 and r2 are random
numbers within [0, 1]. Pk

iD, Xk
iD, gk

iD, and Vk
iD are generated in the kth iteration.

The envelope entropy Ep is the fitness function; the envelope entropy Ep of the
envelope signal a(j) is then obtained after signal x(j)(j = 1, 2, · · · , N) through Hilbert
demodulation. This is calculated as follows:Ep = −∑N

j=1 pjlog10 pj

pj =
a(j)

∑N
j=1 a(j)

(14)

where a(j) is the envelope signal, pj is the normalized form of a(j), and Ep is used to
quantitatively describe the sparsity of the raw signal. A smaller value of Ep represents
sparser signals (i.e., less noise).

At this time, the process of selecting a group of [k, α] as the parameters for the MVMD
algorithm by the PSO algorithm is that the signal is decomposed by MVMD at a certain
particle position to obtain K IMFs. The Ep value of each IMF is calculated to discover its
minimum value as the local minimal entropy value (i.e., if the fitness function is Ep, the
search target is the local minimal entropy value). The optimal parameter combination [k, α]
search flowchart of the MVMD algorithm is presented in Figure 4.

To test the combined PSO–MVMD method, we used a composite input signal com-
posed of a 50 Hz sine wave, cosine waves ranging from 0.1 to 0.2 s, 0.4 to 0.5 s, and 0.7 to
0.8 s, and a 0.5 to 1.0 s cosine wave along with Gaussian white noise. The composite input
signals of the time–domain and frequency–domain waveforms of this example are shown
in Figure 5. Its constituent frequencies were 50 Hz, 100 Hz, and 250 Hz, respectively. In the
process of particle swarm optimization, the local minimal entropy value varies with the evo-
lution algebra of the population. Figure 6a illustrates the distribution of the particle swarm
following evolution; each solid circle is the distribution of a particle, and the color indicates
its corresponding entropy value. Figure 6b reveals that the 5th generation demonstrated
a local minimal entropy value of 6.417. The best parameter combination derived from
this optimization process [9, 2761] is displayed in Figure 6c; the circled red portion is the
ultimate selected point (i.e., K = 9 and α = 2761). PSO–MVMD was performed on the noisy
composite input signal to obtain nine IMFs. Figure 7a–i are waveform diagrams; Figure 7j–r
are spectrum diagrams. The sine wave of 50 Hz was mainly decomposed into IMF2; the
cosine waves of 0.1–0.2 s, 0.4–0.5 s, and 0.7–0.8 s of 100 Hz were mainly decomposed into
IMF3; the cosine wave of 0.5–1.0 s of 250 Hz was mainly decomposed into IMF5; and the
other IMFs were noise components. We observed that IMF2 was in good agreement with
x1. The IMF3 frequency was in the range of 96–106 Hz for 0.1–0.2 s, 0.4–0.5 s, and 0.7–0.8 s.
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There were a few small disparities compared with x2. IMF5 was basically in agreement with
the x3 frequency. This was an acceptable result for MVMD [47]. PSO–MVMD sequentially
decomposed the signal from low to high frequencies and achieved an effective separation
of the components with a high time–frequency resolution and accuracy, thus proving the
effectiveness of the method.
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Figure 7. Decomposed IMFs using MVMD for the composite input signal ((a–i): waveform diagrams;
(j–r): spectrum diagrams).

2.3. Energy Entropy Used to Select the Effective IMF

In this paper, we computed the energy entropy to efficiently select the IMFs that
contained useful information [56]. We defined the energy of the i IMF as Ei. The ratio
between the energy of the i IMF and the total energy is as follows:

Pi = Ei/
k

∑
i=1

Ei (15)

The energy entropy of the i IMF is

Hi = −Pilog Pi (16)
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Energy entropy values are a valuable tool to quantify the regularity of IMFs. The
relationship is straightforward; higher entropy values indicate more dispersed energy
distributions, signaling greater instability and increased signal complexity. The higher the
energy entropy, the more noise is contained in the signal.

2.4. The SNR, PSNR, and RMSE for the Evaluation of the Denoising Effect

Three parameters, SNR, PSNR, and RMSE, were used to measure the denoising effect
of the method proposed in this paper before and after signal denoising to evaluate the
degree of noise reduction. The SNR, PSNR, and RMSE are calculated as follows:

SNR = 10log10

(
∑N

n=1 a(n)2

∑N
n=1(a(n)− b(n))2

)
(17)

PSNR = 10log10

(
max(b(n))2

1
N ∑N

n=1(a(n)− b(n))2

)
(18)

RMSE =

√
1
N ∑N

n=1(a(n)− b(n))2 (19)

where a(n) is a raw signal with noise, b(n) is the denoising signal, and N is the number
of samples. An elevated SNR signifies a greater presence of informative signal contents
within the overall signal, underscoring an enhanced noise reduction outcome. The PSNR is
an objective evaluation metric used to evaluate noise levels. An elevated PSNR indicates
more effective noise reduction. The RMSE serves as a gauge to measure the extent of the
deviation between the signal and the mean value of the initial data after noise reduction.
A smaller RMSE indicates more effective noise reduction.

3. Results
3.1. Radio-Echo Sounding Data

The airborne RES data used were survey lines that were collected by the 32nd Chinese
National Antarctic Research Expedition (CHINARE 32) using the Snow Eagle 601 aero-
geophysical platform (The Snow Eagle 601 is a modified DC-3 aircraft by Basler Turbo
Conversions in Wisconsin, USA and Lake Central Air Services in Ontario, Canada.) to
perform aerial surveys. This dataset was obtained from 19 geophysical survey flights from
15 December 2015 to 29 January 2016 in Princess Elizabeth Land (PEL) of East Antarctica,
which covered 866,000 square kilometers. The system was a phase-coherent RES system
that was similar to the High-Capability Airborne Radar System (HiCARS) [60]. The central
frequency of the antenna was 60 MHz, and the sampling frequency was 50 MHz.

The East Antarctic RES data lines used in this paper were located between 78◦S~79◦S
and 74◦E~75◦E (X: 1000~1300 km; Y: −200~220 km). Figure 8 presents the location of the
survey line in Antarctica. The background image in Figure 8 is the Bedmap2 elevation [61].
The data used in this paper are 6334 traces, with 3200 samples in each trace. The average
track space was approximately 20 m. This data was, therefore, a two-dimensional matrix of
3200 × 6334. The data format was a binary mat file compiled using MATLAB (2021b). The
data size was 53.9 MB.
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method was applied to the RES data. 

Figure 8. Location of the survey line AB in the Antarctic (background image is the Bedmap2
elevation).

The raw data were processed using down-conversion, DC offset removal, pulse com-
pression, filtering, coherent stacking (10 times), and non-coherent stacking (5 times) to
produce a field data product, “pik1”, which is easy to use in other applications [62]. As
shown in Figure 9, a clear ice surface and bedrock cross-section could be seen. The denoising
process was applied to the airborne RES data.
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3.2. Data-Processing Procedure

On the basis of the above research, we proposed a PSO–MVMD denoising method.
This method entailed the optimization of parameters and the strategic selection of IMFs for
an efficient reconstruction. The general framework is presented in Figure 10. This method
was applied to the RES data.
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3.3. Parameter Settings

Figure 11a presents the distribution of the particle swarm following evolution. Each
solid circle signifies the distribution of an individual particle, and colors represent the
entropy values. In Figure 11b, the evolution of the local minimal entropy values with popu-
lation evolution is depicted during the particle swarm optimization process. Figure 11b
highlights that the 4th generation yielded a local minimal entropy value of 8.487. The
optimal parameter combination obtained from the optimization is presented in Figure 11c;
this was [k, α] = [7, 3336]. The circled red portion is the ultimate selection point.
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3.4. Data Reconstruction

Figure 12 presents the seven IMFs obtained by MVMD decomposition. To quantita-
tively determine the effective IMF, the energy entropy of the seven IMFs was calculated, as
shown in Table 1. IMF1, IMF2, and IMF4 had lower energy entropy values; therefore, we
focused on different combinations of IMF1, IMF2, and IMF4. According to the combination
results (Table 2), the combination of IMF1, IMF2, and IMF4 had the highest SNR of 77.89
and PSNR of 11.35, and the smallest RMSE of 2096.91. Figure 13 presents a reconstruction
of the combination.
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Table 1. Energy entropy of each IMF.

IMF IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

Energy entropy 0.2777 0.2776 0.2784 0.2777 0.2780 0.2781 0.2784

Table 2. IMF1, IMF2, and IMF4 combination test results.

No. IMFs SNR RMSE PSNR Note

1 1, 2, and 4 77.89 2096.91 11.35 Selected
2 2 and 4 0.05 102,490.64 10.21
3 1 and 2 73.80 2571.34 11.08
4 1 and 4 56.80 6020.48 10.24
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4. Discussion

Figure 12 demonstrates that IMF1 and IMF2 contained the main bedrock interface.
IMF1 and IMF2 contained a large amount of internal reflection information from the ice
layer, but the judgment based on manual experience was not rigorous enough. When
comparing the energy entropy values of every component in Table 1, IMF2, IMF1, and
IMF4 had lower energy entropy values and contained more useful information, whereas
IMF7, IMF3, and IMF6 had higher energy entropy values and contained a significant
amount of noise and less useful information. To confirm the accuracy of the energy entropy,
we reconstructed the two combinations of IMF1, IMF2, and IMF4 (the combination with
lower energy entropy) and IMF7, IMF3, and IMF6 (the combination with higher energy
entropy), as shown in Figure 14. We calculated the RMSE, PSNR, and SNR (Table 3),
which highlighted notable distinctions between the two ensembles. The combination of
IMF7, IMF3, and IMF6 failed to effectively extract useful signals, and the internal reflection
information of the ice layer could not be seen. The bedrock interface and ice surface could
not be clearly seen, as presented in Figure 14a. In contrast, the IMF1, IMF2, and IMF4
combination clearly defined the bedrock interface, and the geological characteristics were
preserved. When comparing the magnitude of the SNR, PSNR, and RMSE, we observed
that the higher energy entropy combination had a very low SNR and PSNR and a very large
RMSE, which retained a lot of noise and removed the effective signal. The SNR and PSNR
of the higher energy entropy combination were high, and the RMSE was small, which
proved the effectiveness of discriminating IMFs by energy entropy.
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Table 3. Test results of the energy entropy higher combinations and energy entropy lower combina-
tions.

Combination SNR RMSE PSNR

IMF3, IMF6, and IMF7 0.01 102,720.86 9.16
IMF1, IMF2, and IMF4 77.89 2096.91 11.35

As shown in Table 1, the differences in the energy entropy values of the IMFs were on
the order of 10−5. The highest energy entropy value differed from the lowest energy entropy
value by 0.0008. This was because the raw data already contained fewer noise signals and
were of good quality. The raw data could already visualize the general orientation of the
ice surface as well as the bedrock interface, and no obvious high-frequency noise was seen.

Based on the results listed in Table 2, we obtained a profile of the best combination re-
construction, as shown in Figure 13. For a clearer comparison with the raw data, we created
a detailed figure (Figure 15). Figure 15a reveals the raw data profile, and Figure 15b reveals
the profile after the PSO–MVMD reconstruction. A comparison between Figure 15a,b
revealed three obvious effects. Red rectangular frame I indicates the enhanced continuity
of the bedrock interface; there was a weak signal enhancement in the deep glacier, and
the horizontal resolution was improved. A greater number of reflective layer surfaces in



Remote Sens. 2023, 15, 5041 16 of 20

the deep layers are identified in red rectangular frame II; the bedrock interface was more
prominent and reflected hidden basement environment information. Red rectangular frame
III demonstrates that a greater number of subglacial bedrock structures were revealed,
including signals from the deep layers and the bed. The geometry of the bedrock interface
was more accurate. The results indicated more complex geometrical characteristics of the
subglacial basement topography, which helped to reveal further bedrock properties as well
as basement sediments, subglacial water units, geological structures, etc. [63,64].
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We used the same parameter settings for VMD as for MVMD; i.e., we decomposed the
RES data into seven IMFs and compared the computational efficiencies of the two methods.
MVMD ran for 3534.086 s and VMD ran for 9459.076 s (Figure 16). This was because VMD
is a single-channel processing method, and MVMD is a multichannel processing method;
in comparison, MVMD has a higher computational efficiency. The method produced a
sequential signal decomposition from low to high frequencies. This could overcome the
limitation of single-radar signal processing, presenting a high-efficiency, adaptive, and
multichannel simultaneous-processing denoising method. MVMD has been applied in the
field of geophysics, but the K value is usually selected by constant testing. In this paper,
MVMD was combined with the PSO algorithm, which automatically selected K and α.
This resulted in a more intelligent denoising effect [65–69]. The fundamental objectives
of airborne RES data processing are to suppress noise, accentuate effective signals, and
accurately reflect the internal characteristics of an ice sheet. The combined PSO–MVMD



Remote Sens. 2023, 15, 5041 17 of 20

method proposed in this paper focused on the enhancement of weak signals in deep
ice layers. This effectively improved the SNR and PSNR of the radar signals as well
as the recognition accuracy of bedrock interfaces. This method requires refinement and
advancement in the future to more effectively expose complex geographic environments
under the ice by processing RES data and to provide a basis for the interpretation of ice
sheet flows and the stability of the water circulation system under the ice.
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5. Conclusions

In this paper, we proposed a joint denoising method that combined PSO with MVMD.
We selected the best combination of four parameters according to the energy entropy, SNR,
PSNR, and RMSE. We applied this method to the denoising of RES signals, achieving an
ideal denoising effect. As a powerful tool, MVMD can sequentially decompose signals in the
frequency domain from low to high frequencies with very high time–frequency resolution
and accuracy. Using multivariate signal processing, we demonstrated the superiority of
MVMD over VMD for higher computational efficiency. Regarding the parameter setting of
MVMD, the use of PSO realized an optimal automated search for the parameters of MVMD.
This solved the problem of the two parameters, K and α, requiring experience. The method
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was accurate and effective. In the selection of IMFs, energy entropy was used to identify
the effective IMFs. The best combination of reconstructed signals was then determined
based on the SNR, PSNR, and RMSE. This reduced subjective judgments and improved the
efficiency of data processing as well as the SNR. We applied this joint denoising method
to an airborne RES data survey of the East Antarctic ice sheet; this method enhanced the
continuity of the weak basal signal and the bedrock interface. The accuracy of the ice sheet
structure and deep valley morphometric features was improved. In the future, we will
enhance the quantitative treatment of RES data by improving the method. This method
could be widely used to denoise RES data and restore hidden information in the bedrock
interface, facilitating the further interpretation of ice dynamics.
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