Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = high-density fiberboards

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2861 KiB  
Article
Strength Properties and Numerical Modeling of Cellular Panels with a Thermoplastic Shaped Core
by Piotr Borysiuk, Izabela Burawska, Karol Szymanowski and Radosław Auriga
Forests 2025, 16(6), 1002; https://doi.org/10.3390/f16061002 - 13 Jun 2025
Viewed by 277
Abstract
Lightweight, layered wood-based panels are gaining attention due to favorable mechanical and physical properties. This study examined numerical modeling as a method to predict the strength of innovative three-layer sandwich panels with thermoplastic cores containing wood particles as the filler. Two core geometries [...] Read more.
Lightweight, layered wood-based panels are gaining attention due to favorable mechanical and physical properties. This study examined numerical modeling as a method to predict the strength of innovative three-layer sandwich panels with thermoplastic cores containing wood particles as the filler. Two core geometries (F and S) and two material formulations (60% HDPE + 40% sawdust, and 40% HDPE + 60% sawdust) were tested. The panels were produced without additional adhesives; bonding with high-density fiberboard (HDF) facings was achieved through the thermoplastic properties of the core. Mechanical properties such as bending strength (MOR), modulus of elasticity (MOE), and compressive strength perpendicular to the surface were measured. Results showed that both core geometry and material composition significantly influenced structural performance. Panels with the F profile showed better bending strength and stiffness (MOR—13.2 N/mm2, MOE—2017 N/mm2), while the S profile had higher compressive strength (0.62 N/mm2). Numerical simulations using SolidWorks Simulation confirmed the experimental data, with stress and displacement distributions matching laboratory results. These findings demonstrate the potential of thermoplastically formed cores for creating lightweight, recyclable wood-based composites with tailored mechanical properties. Full article
(This article belongs to the Special Issue Wood Quality and Mechanical Properties: 2nd Edition)
Show Figures

Figure 1

18 pages, 2918 KiB  
Article
Assessment of the Possibility of Implementing a Circular Economy by Environmental Evaluating the Life Cycle of Products Derived from Bulky Municipal Waste
by Agnieszka Generowicz, Anna Gronba-Chyła, Piotr Godula, Joanna Kulczycka, Anna Lewandowska, Aneta Dorosz, Józef Ciuła and Paweł Kwaśnicki
Sustainability 2025, 17(8), 3377; https://doi.org/10.3390/su17083377 - 10 Apr 2025
Viewed by 641
Abstract
Current wood waste recycling processes need to be improved to prioritize material recovery over energy recovery by cascading the use of wood waste and limiting as much as possible non-recyclable batches that may contain even partially highly contaminated grade C wood and/or Medium [...] Read more.
Current wood waste recycling processes need to be improved to prioritize material recovery over energy recovery by cascading the use of wood waste and limiting as much as possible non-recyclable batches that may contain even partially highly contaminated grade C wood and/or Medium Density Fiberboard. In the presented research, a life cycle assessment has been carried out for a new product recovered from bulky waste. The Environmental Footprint 3.1 (adapted) method has been used to assess the potential environmental impact. The results may support a quality assessment of new products undertaken from the perspective of the circular economy and environmental management in the waste sector. The study aimed at the identification of environmental hotspots in the life cycle of the secondary wooden blocks (from cradle to market analysis). Bulky waste was subjected to recovery and recycling processes (a laboratory scale), and by adding starch and water a new product was obtained. The study has demonstrated that the production of blocks has the greatest impact on the life cycle in the following categories: Resource use, fossils (24%), Climate change (23.9%), Eutrophication, freshwater (13.3%), and Resource use, minerals and metals (11.8%). This is due to the high electricity consumption of electricity by equipment and machinery used for the processing of waste and the fabrication of the blocks. Full article
Show Figures

Figure 1

19 pages, 5398 KiB  
Article
Activated Carbon from Selected Wood-Based Waste Materials
by Małgorzata Kajda-Szcześniak, Anna Mainka, Waldemar Ścierski, Mirosława Pawlyta, Dariusz Łukowiec, Krzysztof Matus, Kalina Turyła, Daniel Lot, Weronika Barańska and Anna Jabłońska
Sustainability 2025, 17(7), 2995; https://doi.org/10.3390/su17072995 - 27 Mar 2025
Viewed by 526
Abstract
Extended producer responsibility (EPR) and the circular economy can address the growing challenge of managing wood-based waste in the context of sustainability. This research explores pyrolysis as an effective method for converting wood-based waste, i.e., bamboo flooring (BF) and high-density fiberboard floor panels [...] Read more.
Extended producer responsibility (EPR) and the circular economy can address the growing challenge of managing wood-based waste in the context of sustainability. This research explores pyrolysis as an effective method for converting wood-based waste, i.e., bamboo flooring (BF) and high-density fiberboard floor panels (HDF), into valuable products, particularly char. Char samples were activated through two distinct methods: (1) thermal activation at 700 and 850 °C and (2) chemical activation with KOH. Analytical techniques, including elemental and heavy metals analysis, FTIR, Raman spectroscopy, SEM, and TEM were used to assess the chemical composition and surface characteristics of the produced chars. Elemental analysis showed a notable rise in the amount of carbon to 81% and 75% in BF and HDF, respectively. The nitrogen content was relatively high in HDF at 5.12%. Heavy metals analysis revealed total metal contents ranging from 3632 to 9494 ppm in BF chars and 1717 to 7426 ppm in HDF chars. Raman spectra exhibited characteristic D and G bands, with ID/IG ratios of 0.83 for BF and 0.85 for HDF after activation. SEM and TEM analyses revealed heterogeneous porous structures with dominant carbon elements. The high carbon content, low toxicity, and advantageous elemental composition of the chars make them suitable for environmental applications. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Environmental Sustainability)
Show Figures

Figure 1

21 pages, 3836 KiB  
Review
Current Trends in Monitoring and Analysis of Tool Wear and Delamination in Wood-Based Panels Drilling
by Tomasz Trzepieciński, Krzysztof Szwajka, Joanna Zielińska-Szwajka and Marek Szewczyk
Machines 2025, 13(3), 249; https://doi.org/10.3390/machines13030249 - 20 Mar 2025
Cited by 2 | Viewed by 769
Abstract
Wood-based panels (WBPs) have versatile structural applications and are a suitable alternative to plastic panels and metallic materials. They have appropriate strength parameters that provide the required stiffness and strength for furniture products and construction applications. WBPs are usually processed by cutting, milling [...] Read more.
Wood-based panels (WBPs) have versatile structural applications and are a suitable alternative to plastic panels and metallic materials. They have appropriate strength parameters that provide the required stiffness and strength for furniture products and construction applications. WBPs are usually processed by cutting, milling and drilling. Especially in the furniture industry, the accuracy of processing is crucial for aesthetic reasons. Ensuring the WBP surface’s high quality in the production cycle is associated with the appropriate selection of processing parameters and tools adapted to the specificity of the processed material (properties of wood, glue, type of resin and possible contamination). Therefore, expert assessment of the durability of WBPs is difficult. The interest in the automatic monitoring of cutting tools in sustainable production, according to the concept of Industry 4.0, is constantly growing. The use of flexible automation in the machining of WBPs is related to the provision of tools monitoring the state of tool wear and surface quality. Drilling is the most common machining process that prepares panels for assembly operations and directly affects the surface quality of holes and the aesthetic appearance of products. This paper aimed to synthesize research findings across Medium-Density Fiberboards (MDFs), particleboards and oriented strand boards (OSBs), highlighting the impact of processing parameters and identifying areas for future investigation. This article presents the research trend in the adoption of the new general methodological assumptions that allow one to define both the drill condition and delamination monitoring in the drilling of the most commonly used wood-based boards, i.e., particleboards, MDFs and OSBs. Full article
(This article belongs to the Special Issue Tool Wear in Machining, 2nd Edition)
Show Figures

Figure 1

14 pages, 4358 KiB  
Article
Challenges and Opportunities in Recycling Upholstery Textiles: Enhancing High-Density Fiberboards with Recycled Fibers
by Matylda Wojciechowska and Grzegorz Kowaluk
Fibers 2024, 12(12), 105; https://doi.org/10.3390/fib12120105 - 5 Dec 2024
Viewed by 1615
Abstract
Recycling upholstery textiles is challenging due to the complexity of materials, which often include a mix of fabrics, foams, and adhesives that are difficult to separate. The intricate designs and layers in upholstered furniture make it labor-intensive and costly to dismantle for recycling. [...] Read more.
Recycling upholstery textiles is challenging due to the complexity of materials, which often include a mix of fabrics, foams, and adhesives that are difficult to separate. The intricate designs and layers in upholstered furniture make it labor-intensive and costly to dismantle for recycling. Additionally, contaminants like stains, finishes, and flame retardants complicate recycling. Despite these difficulties, recycling upholstery textiles is crucial to reducing landfill waste and conserving resources by reusing valuable materials. It also helps mitigate environmental pollution and carbon emissions associated with producing new textiles from virgin resources. The presented research aimed to establish the feasibility of incorporating textile fibers from waste artificial leather fibers from the upholstery furniture industry into the structure of high-density fiberboards. The bulk density of samples with wood fiber was 28.30 kg m−3, while it was 25.77 kg m−3 for textile fiber samples. The lowest modulus of elasticity (MOE) was 2430 N mm−2, and it was 3123 N mm−2 for the reference sample. The highest bending strength (MOR) was 42 N mm−2, and the lowest was 27.2 N mm−2. Screw withdrawal resistance decreased from 162 N mm−1 in the reference sample to 92 N mm−1 with 25% artificial leather fibers. The internal bond (IB) strength ranged from 1.70 N mm−2 (reference) to 0.70 N mm−2 (25% of artificial leather fibers content). Water absorption ranged from 81.8% (1% of artificial leather fibers) to 66% (25% of artificial leather fibers content). It has been concluded that it is possible to meet the European standard requirements with 10% addition of the artificial leather fiber content. This approach positively contributes to carbon capture and storage (CCS) policy and mitigates the problem of such waste being sent to landfills. The research shows that while selected mechanical and physical parameters of the panels decrease with a rising content of recycled textile fibers, it is possible to meet proper European standard requirements by adjusting technological parameters such as nominal density. Full article
Show Figures

Figure 1

22 pages, 19501 KiB  
Article
Effect of UV Top Coating Microcapsules on the Coating Properties of Fiberboard Surfaces
by Yuming Zou, Yongxin Xia and Xiaoxing Yan
Polymers 2024, 16(15), 2098; https://doi.org/10.3390/polym16152098 - 23 Jul 2024
Cited by 6 | Viewed by 1495
Abstract
The commonly used ultraviolet ray (UV) curing coatings have the characteristics of fast curing speed, high hardness, strong abrasion resistance, etc. However, the self-healing properties of UV coatings after being damaged still need to be improved. Self-healing microcapsules can alleviate this problem. The [...] Read more.
The commonly used ultraviolet ray (UV) curing coatings have the characteristics of fast curing speed, high hardness, strong abrasion resistance, etc. However, the self-healing properties of UV coatings after being damaged still need to be improved. Self-healing microcapsules can alleviate this problem. The UV top coating itself has good properties, so it can be directly chosen as the core material of microcapsules. UV top coating microcapsules can be added to the UV top coating to increase the self-healing properties of the UV coating to achieve the purpose of better protection of the UV coating and fiberboards. UV top coating microcapsules were prepared and added in different contents to characterize the effect on the physical, chemical, and self-healing properties of the UV coating on a fiberboard surface. The 1#, 2#, and 3# UV top coating microcapsules that were prepared with emulsifier HLB values of 10.04, 10.88, and 11.72, respectively, were added to the UV top coating at contents of 2.0%, 4.0%, 6.0%, 8.0%, and 10.0%. The UV coatings were applied to the fiberboard using a method of two primers and two top coatings, in which no microcapsule was added in the primer, and were tested and analyzed. The results showed that when the content of microcapsules was greater than 6.0%, close to 8.0%, the excessive density of microcapsules produced stacking and extrusion between the microcapsules. As a result, the core material could not flow out smoothly when part of the microcapsule was ruptured. The outflow of the core material was not efficiently utilized, thus leading to a decrease in the self-healing rate. The 2# UV top coating microcapsules of 4.0% made the UV coatings reach the self-healing rate of 26.41%. The self-healing rate of the UV coatings prepared with the 3# UV top coating microcapsules with 6.0% was up to 26.58%. The UV coatings prepared with the 1# UV top coating microcapsules of 6.0% had the highest self-healing rate among the three groups, up to 27.32%. The UV coatings of this group had the best comprehensive properties with a chromatic aberration ΔE of 4.08, a gloss of 1.10 GU, a reflectance of 17.13%, an adhesion grade of 3, a hardness of 3H, a grade 3 of impact resistance, and a roughness of 1.677 μm. An investigation of the UV coatings on fiberboard surfaces with the content of UV top coating microcapsules can provide support for the optimization of the self-healing properties of UV coatings and can also provide innovative ideas for the preparation of the self-healing coatings on fiberboard surfaces. Full article
(This article belongs to the Special Issue Advances in Wood Composites V)
Show Figures

Figure 1

27 pages, 8802 KiB  
Article
Automated Shape Correction for Wood Composites in Continuous Pressing
by Yunlei Lv, Yaqiu Liu, Xiang Li, Lina Lu and Adil Malik
Forests 2024, 15(7), 1118; https://doi.org/10.3390/f15071118 - 27 Jun 2024
Viewed by 1074
Abstract
The effective and comprehensive utilization of forest resources has become the theme of the global “dual-carbon strategy”. Forestry restructured wood is a kind of wood-based panel made of wood-based fiber composite material by high-temperature and high-pressure restructuring–molding, and has become an important material [...] Read more.
The effective and comprehensive utilization of forest resources has become the theme of the global “dual-carbon strategy”. Forestry restructured wood is a kind of wood-based panel made of wood-based fiber composite material by high-temperature and high-pressure restructuring–molding, and has become an important material in the field of construction, furniture manufacturing, as well as derivative processing for its excellent physical and mechanical properties, decorative properties, and processing performance. Taking Medium Density Fiberboard (MDF) as the recombinant material as the research object, an event-triggered synergetic control mechanism based on interventional three-way decision making is proposed for the viscoelastic multi-field coupling-distributed agile control of the “fixed thickness section” in the MDF continuous flat-pressing process, where some typical quality control problems of complex plate shape deviations including thickness, slope, depression, and bump tend to occur. Firstly, the idea of constructing the industrial event information of continuous hot pressing based on information granulation is proposed, and the information granulation model of the viscoelastic plate shape process mechanism is established by combining the multi-field coupling effect. Secondly, an FMEA-based cyber granular method for diagnosing and controlling the plate thickness diagnosis and control failure information expression of continuous flat pressing is proposed for the problems of plate thickness control failure and plate thickness deviation defect elimination that are prone to occur in the continuous flat-pressing process. The precise control of the plate thickness in the production process is realized based on event-triggered control to achieve the intelligent identification and processing of the various types of faults. The application test is conducted in the international mainstream production line of a certain type of continuous hot-pressing equipment for the production of 18 mm plate thickness; the synergistic effect is basically synchronized after 3 s, the control accuracy reaches 30%, and the average value of the internal bond strength is 1.40, which ensures the integrity of the slab. Practical tests show that the method in the actual production is feasible and effective, with detection and control accuracy of up to ±0.05 mm, indicating that in the production of E0- and E1-level products, the rate of superior products can reach more than 95%. Full article
(This article belongs to the Special Issue New Development of Smart Forestry: Machine and Automation)
Show Figures

Figure 1

12 pages, 2535 KiB  
Article
The Vibration Dynamic Model for Blister Detection in Medium-Density Fiberboard
by Zhaojun Xu, Yuxuan Wang, Tian Qiu, Xinzhou Wang and Nanfeng Zhu
Forests 2024, 15(6), 1058; https://doi.org/10.3390/f15061058 - 19 Jun 2024
Viewed by 1087
Abstract
Ultrasonic detection is currently used in the industry of medium-density fiberboard to detect blister defects. Due to the small detection area of a single sensor, multiple sensors need to be used, which results in high costs. Starting from elastic thin plate vibration theory, [...] Read more.
Ultrasonic detection is currently used in the industry of medium-density fiberboard to detect blister defects. Due to the small detection area of a single sensor, multiple sensors need to be used, which results in high costs. Starting from elastic thin plate vibration theory, this paper builds a vibration dynamic model to detect blisters. The size and depth of the blister area can be established by determining the natural frequency of the thin plate vibration in the blister area. In this model, if the elastic modulus and density are known, the natural frequency of the thin plate vibration at the blister place is directly proportional to the blister depth and inversely proportional to the square of the blister radius. The size and depth of the blister can be determined by measuring the first third-order natural frequency of this area of research. A total of 25 specimens with blister sizes and depths were simulated, and the natural frequencies of the specimens were measured. Subsequently, the detection model was verified by comparing its experimental data with theoretical values. The theoretical value was highly consistent with the measured data. The measured values of the first, second, and third-order natural frequencies were slightly smaller than the theoretical calculated values, with average relative deviations of −1.6%, −1.34%, and −1.03%, respectively. As the order progressed, the deviation exhibited a downward trend, and the third-order natural frequency displayed the smallest deviation and highest accuracy. The proposed vibration dynamic model can detect larger blister areas by measuring the natural frequency, which can overcome the shortcomings of small ultrasonic detection areas in current actual industries. Thus, the practical online blister detection device is expected to be further developed. Full article
(This article belongs to the Special Issue Recent Advances in Wood Identification, Evaluation and Modification)
Show Figures

Figure 1

26 pages, 7473 KiB  
Article
Experimental Analysis of Smart Drilling for the Furniture Industry in the Era of Industry 4.0
by Krzysztof Szwajka, Joanna Zielińska-Szwajka and Tomasz Trzepieciński
Materials 2024, 17(9), 2033; https://doi.org/10.3390/ma17092033 - 26 Apr 2024
Cited by 6 | Viewed by 1338
Abstract
The fact is that hundreds of holes are drilled in the assembly process of furniture sets, so intelligent drilling is a key element in maximizing efficiency. Increasing the feed rate or the cutting speed in materials characterized by a higher machinability index is [...] Read more.
The fact is that hundreds of holes are drilled in the assembly process of furniture sets, so intelligent drilling is a key element in maximizing efficiency. Increasing the feed rate or the cutting speed in materials characterized by a higher machinability index is necessary. Smart drilling, that is, the real-time adjustment of the cutting parameters, requires the evolution of cutting process variables. In addition, it is necessary to control and adjust the processing parameters in real time. Machinability is one of the most important technological properties in the machining process, enabling the determination of the material’s susceptibility to machining. One of the machinability indicators is the unit cutting resistance. This article proposes a method of material identification using the short-time Fourier transform in order to automatically adjust cutting parameters during drilling based on force signals, cutting torque and acceleration signals. In the tests, four types of wood-based materials were used as the processed material: medium-density fiberboard, chipboard, plywood board and high-pressure laminate. Holes with a diameter of 10 mm were drilled in the test materials, with variable feed rate, cutting speed and thickness of cutting layer. An innovative method for determining the value of unit cutting resistance was proposed. The results obtained were used to determine the machinability index. Based on the test results, it was shown that both the selected signal measures in the time and frequency domains and the unit cutting resistance are constant for a given material of a workpiece and do not depend on the drilling process parameters. In this article, the methodology is proposed, which can be used as an intelligent technique to support the drilling process to detect the material being machined using data from sensors installed on the machine tool. The work proposes the fundamentals for material identification based on the analysis of force signals and the magnitude of force derivatives. The proposed methodology shows effectiveness, which proves that it can be used in intelligent drilling processes. Hybrid wood-based material structures consisting of different materials are becoming more and more common in building structures for strength, economic and environmental reasons. Due to the difference in the machinability of interconnected materials, cutting parameters must be optimized in real time during machining. Currently, with the rapid development of Industry 4.0, the on-line identification of parameters is becoming necessary to improve the process flow in industrial reality. The proposed methodology can be used as an intelligent technique to support the drilling process in order to detect the material being processed using data from sensors installed on the machine tool. Full article
(This article belongs to the Special Issue Study of Timber and Wood Related Materials—2nd Edition)
Show Figures

Figure 1

30 pages, 5887 KiB  
Article
Thermo-Hydric Study of Wood-Based Materials under Thermal Comfort Conditions
by Mohamed Haddouche, Fahed Martini, Mounir Chaouch and Adrian Ilinca
Materials 2024, 17(5), 1177; https://doi.org/10.3390/ma17051177 - 2 Mar 2024
Cited by 1 | Viewed by 1462
Abstract
This paper tackles the issue of moisture variation in wood-based materials, explicitly focusing on melamine-coated particleboard (hereafter referred to as melamine) and medium-density fiberboard (MDF) used in the third phase of wood industry transformation. The approach involves a comprehensive strategy for predicting moisture [...] Read more.
This paper tackles the issue of moisture variation in wood-based materials, explicitly focusing on melamine-coated particleboard (hereafter referred to as melamine) and medium-density fiberboard (MDF) used in the third phase of wood industry transformation. The approach involves a comprehensive strategy for predicting moisture content variation, incorporating numerical simulation, experimental testing, and the application of artificial neural network (ANN) technology to enhance accuracy in furniture manufacturing. The developed ANN models are tailored to predict moisture content changes under specific thermal comfort conditions. Remarkably, these models demonstrate high precision, with an average error margin of only 1.40% for 8% moisture content (MC) and 2.85% for 12% MC in melamine, as well as 1.42% for 8% MC and 2.25% for 12% MC in MDF. These levels of precision surpass traditional models, emphasizing this study’s novelty and practical relevance to the industrial context. The findings indicate that ANN models adapt to diverse environmental conditions, presenting a robust tool for optimizing moisture management in wood-based materials. This research contributes valuable insights for improving the reliability and efficiency of moisture content predictions in the wood industry. Full article
Show Figures

Figure 1

13 pages, 3642 KiB  
Article
Sustainable WPC Production: A Novel Method Using Recycled High-Density Polyethylene and Wood Veneer
by Leslie Cristell Canto-Borges, Julio César Cruz, Javier Rodrigo Nahuat-Sansores, José Antonio Domínguez-Lepe and Mayra Polett Gurrola
Recycling 2024, 9(1), 1; https://doi.org/10.3390/recycling9010001 - 28 Dec 2023
Cited by 1 | Viewed by 3166
Abstract
This research work is focused on the development of an alternative method for manufacturing Wood Plastic Composite (WPC) panels based on Wood Veneers (WVs) and High-Density Polyethylene (HDPE) through compression molding, which enhances the physical properties, particularly, water absorption and moisture content. The [...] Read more.
This research work is focused on the development of an alternative method for manufacturing Wood Plastic Composite (WPC) panels based on Wood Veneers (WVs) and High-Density Polyethylene (HDPE) through compression molding, which enhances the physical properties, particularly, water absorption and moisture content. The aim of the present research was to develop alternative panels to replace commercial ones, which are heavily affected by hot, humid climates. In this context, the study began with the design process, which consisted of the collection and processing of primary material, production of the additional components necessary for the manufacturing process, determination of the WV ratio, and preparation of the samples. Thereafter, physical and mechanical tests were carried out on WPC, HDPE (control), commercial gypsum boards (GBs), plywood (PW), and medium density fiberboard (MDF) samples. The results indicate that the method applied to manufacture the WPC samples improved physical properties, achieving a water uptake of less than 4% in both proportions of replacement tested, in contrast to commercial panels, which reached values between 10% and 40%. In addition, a greater load capacity was achieved for lower thick elements. Full article
Show Figures

Figure 1

27 pages, 4452 KiB  
Article
Mechanical and Chemical Resistance of UV Coating Systems Prepared under Industrial Conditions Using LED Radiation
by Milena Henke, Barbara Lis and Tomasz Krystofiak
Polymers 2023, 15(23), 4550; https://doi.org/10.3390/polym15234550 - 27 Nov 2023
Cited by 1 | Viewed by 4249
Abstract
The furniture industry constantly strives to search for ecological and cost-effective solutions in the production of wood-based composites. It is anticipated that furniture with a honeycomb core and HDF-facing will gain market share. Understanding how specific technical and procedural factors on the finishing [...] Read more.
The furniture industry constantly strives to search for ecological and cost-effective solutions in the production of wood-based composites. It is anticipated that furniture with a honeycomb core and HDF-facing will gain market share. Understanding how specific technical and procedural factors on the finishing line affect the resistance of coatings on furniture elements made of honeycomb boards was the main goal of the study. With the use of a digital microscope, the roughness of two different types of HDF was tested. On the industrial UV LED+Hg finishing line, 198 different surface coating variations were produced by applying five or six layers of varnish applied, ranging from 3 to 30 g/m2 and hardening them with various surface power densities. On the basis of statistical tests, the influence of individual factors on abrasion, impact, and scratch resistance was determined. The nanointendence test of the coatings was used to measure the hardness and elasticity modulus. The coloring caused by coffee traces was checked using a colorimeter. The findings confirm the conception that LED+Hg lamp modules can replace mercury and gallium-doped mercury lamps. Full article
(This article belongs to the Special Issue Wood-Based Composites: Materials, Manufacturing and Engineering)
Show Figures

Figure 1

16 pages, 9877 KiB  
Article
Properties of Un-Torrefied and Torrefied Poplar Plywood (PW) and Medium-Density Fiberboard (MDF)
by Cosmin Spîrchez, Aurel Lunguleasa, Carmen-Mihaela Popescu, Anamaria Avram and Constantin Stefan Ionescu
Appl. Sci. 2023, 13(21), 11950; https://doi.org/10.3390/app132111950 - 1 Nov 2023
Cited by 3 | Viewed by 1512
Abstract
In a context where there is an increasing need for thermal treatments of wooden products, the current research contributes a description of the torrefaction treatment of two of the composite wood materials available on the international market. The present paper presents the importance [...] Read more.
In a context where there is an increasing need for thermal treatments of wooden products, the current research contributes a description of the torrefaction treatment of two of the composite wood materials available on the international market. The present paper presents the importance of the torrefaction process for poplar plywood and medium-density fiberboard. In this paper, the positive aspects of the torrefaction process (decrease in water absorption, thickness swelling and shrinkage, and color) but also the negative aspects of mechanical resistance to static bending are presented. Poplar plywood (PW) and medium-density fiberboard (MDF) panels, with the initial dimensions of 2000 × 1250 mm, were used. From these, 300 × 300 mm samples were cut and torrefied using two different temperatures (170 and 190 °C) and two different periods (for 1 and 2 h). After the treatment, the samples were cut in different sizes (as necessary for each type of evaluation method) from different zones of the panels and used to evaluate the water absorption and thickness swelling, to determine their modulus of rupture, roughness, and color changes. The obtained results emphasize that the mass loses increase at high temperature as the main disadvantageous characteristics of torrefaction. Also, while the calorific power increases with the increase in the parameters of the torrefaction regime, the hygroscopicity and some mechanical properties of the material simultaneously decrease. Full article
Show Figures

Figure 1

15 pages, 3037 KiB  
Article
Impregnation of Medium-Density Fiberboard Residues with Phase Change Materials for Efficient Thermal Energy Storage
by Gustavo E. Rodríguez, Cecilia Bustos Ávila, Romina Romero and Alain Cloutier
Forests 2023, 14(11), 2175; https://doi.org/10.3390/f14112175 - 1 Nov 2023
Cited by 2 | Viewed by 2682
Abstract
The wood-based panel industry generates a significant amount of solid residues in its production activities, including medium-density fiberboard (MDF) molding manufacturing. These residues consist of fine fibers measuring between 0.15 mm and 1.19 mm in length. A large proportion of them currently needs [...] Read more.
The wood-based panel industry generates a significant amount of solid residues in its production activities, including medium-density fiberboard (MDF) molding manufacturing. These residues consist of fine fibers measuring between 0.15 mm and 1.19 mm in length. A large proportion of them currently needs to be utilized, mainly due to the problem of excessive accumulation. They can be reused as raw material for manufacturing new products by adopting a circular economy approach. Their thermal properties can also be enhanced by impregnating them with phase change materials (PCMs). This research aims to develop a process for impregnating MDF panel residues (R) with PCMs to obtain shape-stabilized compounds capable of storing thermal energy. Three different commercially available PCMs were used. They were incorporated in the MDF residues by vacuum impregnation. The morphology, chemical structure, thermal stability, and phase change properties of the compounds obtained were studied by scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectrometry, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC), respectively. The SEM images indicated the PCM filled the empty spaces in the porous surface of the residue fibers to form shape-stabilized compounds. The FTIR spectrometry results indicated the compounds still exhibited characteristic peaks corresponding to both the MDF residues and the PCMs. No chemical reaction was observed between the two components. Moreover, according to the TGA results, the compounds produced exhibit high thermal stability. The R+PCM1 compound had the highest latent heat capacity of all the compounds developed in this study, reaching a maximum of 57.8 J⋅g−1, and a phase change temperature comparable to that of PCM1. This better thermal performance could be attributed to the compounds having a higher encapsulation ratio (31.4%) than the other compounds developed. Furthermore, the R+PCM1 compound had an absorption capacity of 142.8%. This study, therefore, unveiled a promising alternative for storing thermal energy and valorizing solid MDF residues. Full article
Show Figures

Figure 1

14 pages, 2479 KiB  
Article
Innovative Smart Drilling with Critical Event Detection and Material Classification
by Kantawatchr Chaiprabha and Ratchatin Chancharoen
J. Manuf. Mater. Process. 2023, 7(5), 155; https://doi.org/10.3390/jmmp7050155 - 23 Aug 2023
Cited by 2 | Viewed by 2922
Abstract
This work presents a cyber-physical drilling machine that incorporates technologies discovered in the fourth industrial revolution. The machine is designed to realize its state by detecting whether it hits or breaks through the workpiece, without the need for additional sensors apart from the [...] Read more.
This work presents a cyber-physical drilling machine that incorporates technologies discovered in the fourth industrial revolution. The machine is designed to realize its state by detecting whether it hits or breaks through the workpiece, without the need for additional sensors apart from the position sensor. Such self-recognition enables the machine to adapt and shift the controllers that handle position, velocity, and force, based on the workpiece and the drilling environment. In the experiment, the machine can detect and switch controls that follow the drilling events (HIT and BREAKHTROUGH) within 0.1 and 0.5 s, respectively. The machine’s high visibility design is beneficial for classification of the workpiece material. By using a support-vector-machine (SVM) on thrust force and feed rate, the authors are seen to achieve 92.86% accuracy for classification of material, such as medium-density fiberboard (MDF), acrylic, and glass. Full article
Show Figures

Figure 1

Back to TopTop