Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (259)

Search Parameters:
Keywords = high strength filament

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5022 KiB  
Article
The Impact of Elevated Printing Speeds and Filament Color on the Dimensional Precision and Tensile Properties of FDM-Printed PLA Specimens
by Deian Dorel Ardeljan, Doina Frunzaverde, Vasile Cojocaru, Raul Rusalin Turiac, Nicoleta Bacescu, Costel Relu Ciubotariu and Gabriela Marginean
Polymers 2025, 17(15), 2090; https://doi.org/10.3390/polym17152090 - 30 Jul 2025
Viewed by 253
Abstract
This study examines the effect of elevated printing speeds (100–600 mm/s) on the dimensional accuracy and tensile strength of PLA components fabricated via fused deposition modeling (FDM). To isolate the influence of printing speed, all other parameters were kept constant, and two filament [...] Read more.
This study examines the effect of elevated printing speeds (100–600 mm/s) on the dimensional accuracy and tensile strength of PLA components fabricated via fused deposition modeling (FDM). To isolate the influence of printing speed, all other parameters were kept constant, and two filament variants—natural (unpigmented) and black PLA—were analyzed. ISO 527-2 type 1A specimens were produced and tested for dimensional deviations and ultimate tensile strength (UTS). The results indicate that printing speed has a marked impact on both geometric precision and mechanical performance. The optimal speed of 300 mm/s provided the best compromise between dimensional accuracy and tensile strength for both filaments. At speeds below 300 mm/s, under-extrusion caused weak layer bonding and air gaps, while speeds above 300 mm/s led to over-extrusion and structural defects due to thermal stress and rapid cooling. Black PLA yielded better dimensional accuracy at higher speeds, with cross-sectional deviations between 2.76% and 5.33%, while natural PLA showed larger deviations of up to 8.63%. However, natural PLA exhibited superior tensile strength, reaching up to 46.59 MPa, with black PLA showing up to 13.16% lower UTS values. The findings emphasize the importance of speed tuning and material selection for achieving high-quality, reliable, and efficient FDM prints. Full article
Show Figures

Figure 1

15 pages, 2217 KiB  
Article
Energy-Based Approach for Fatigue Life Prediction of Additively Manufactured ABS/GNP Composites
by Soran Hassanifard and Kamran Behdinan
Polymers 2025, 17(15), 2032; https://doi.org/10.3390/polym17152032 - 25 Jul 2025
Viewed by 269
Abstract
This study examines the effectiveness of energy-based models for fatigue life prediction of additively manufactured acrylonitrile butadiene styrene (ABS)/graphene nanoplatelet (GNP) composites. The effects of varying GNP weight percentages and filament raster orientations on the fatigue life of the samples were investigated theoretically. [...] Read more.
This study examines the effectiveness of energy-based models for fatigue life prediction of additively manufactured acrylonitrile butadiene styrene (ABS)/graphene nanoplatelet (GNP) composites. The effects of varying GNP weight percentages and filament raster orientations on the fatigue life of the samples were investigated theoretically. The required stress and strain values for use in energy-based models were obtained by solving two sets of Neuber and Ramberg–Osgood equations, utilizing the available values of notch strength reduction factors at each load level and the average Young modulus for each composite material. Results revealed that none of the studied energy-based models could accurately predict the fatigue life of the samples across the entire high- and low-cycle fatigue regimes, with strong dependence on the stress ratio (R). Instead, a novel fatigue life prediction model was developed by combining two existing energy-based models, incorporating stress ratio dependence for cases with negative mean stress. This model was tested for R values roughly between −0.22 and 0. Results showed that, for all samples at each raster orientation, most of the predicted fatigue lives fell within the upper and lower bounds, with a factor of ±2 across the entire range of load levels. These findings highlight the reliability of the proposed model for a wide range of R values when mean stress is negative. Full article
Show Figures

Figure 1

18 pages, 2337 KiB  
Article
Thermoplastic and Biocompatible Materials Based on Block Copolymers of Chitosan and Poly(ε-caprolactone)
by Ivan Lednev, Sergey Zaitsev, Ekaterina Maltseva, Roman Kovylin and Larisa Smirnova
Polysaccharides 2025, 6(3), 63; https://doi.org/10.3390/polysaccharides6030063 - 16 Jul 2025
Viewed by 444
Abstract
The development of materials based on chitosan and polyesters that possess thermoplastic, biocompatible, and biodegradable properties is a perspective for additive technologies in biomedicine. Research on obtaining such compositions is constrained because the polysaccharide content does not exceed 5 wt.%, which cannot ensure [...] Read more.
The development of materials based on chitosan and polyesters that possess thermoplastic, biocompatible, and biodegradable properties is a perspective for additive technologies in biomedicine. Research on obtaining such compositions is constrained because the polysaccharide content does not exceed 5 wt.%, which cannot ensure effective tissue regeneration. Herein, we propose a method for obtaining thermoplastic block copolymers based on chitosan and poly(ε-caprolactone) by ultrasonic irradiation of a homogeneous solution of a homopolymer mixture in dimethyl sulfoxide as a common solvent, achieving a yield of 99%. The distinctive feature of the method is the interaction between the components at the molecular level and provides obtaining copolymers at any component ratio. SEM images revealed a homogeneous structure without structural defects in both solvent-cast films and extruded filaments. The block copolymers were characterized by high mechanical property tensile strength of up to 60–70 MPa and elasticity of up to 35% for films and 25–40 MPa and elasticity of up to 50% for filaments. Cell adhesion of composition investigated on fibroblast cells (hTERT BJ-5TA) is at the level of chitosan and demonstrated the absence of cytotoxicity. Full article
Show Figures

Figure 1

29 pages, 2673 KiB  
Article
Process Parameters Optimization and Mechanical Properties of Additively Manufactured Ankle–Foot Orthoses Based on Polypropylene
by Sahar Swesi, Mohamed Yousfi, Nicolas Tardif and Abder Banoune
Polymers 2025, 17(14), 1921; https://doi.org/10.3390/polym17141921 - 11 Jul 2025
Viewed by 441
Abstract
Nowadays, Fused Filament Fabrication (FFF) 3D printing offers promising opportunities for the customized manufacturing of ankle–foot orthoses (AFOs) targeted towards rehabilitation purposes. Polypropylene (PP) represents an ideal candidate in orthotic applications due to its light weight and superior mechanical properties, offering an excellent [...] Read more.
Nowadays, Fused Filament Fabrication (FFF) 3D printing offers promising opportunities for the customized manufacturing of ankle–foot orthoses (AFOs) targeted towards rehabilitation purposes. Polypropylene (PP) represents an ideal candidate in orthotic applications due to its light weight and superior mechanical properties, offering an excellent balance between flexibility, chemical resistance, biocompatibility, and long-term durability. However, Additive Manufacturing (AM) of AFOs based on PP remains a major challenge due to its limited bed adhesion and high shrinkage, especially for making large parts such as AFOs. The primary innovation of the present study lies in the optimization of FFF 3D printing parameters for the fabrication of functional, patient-specific orthoses using PP, a material still underutilized in the AM of medical devices. Firstly, a thorough thermomechanical characterization was conducted, allowing the implementation of a (thermo-)elastic material model for the used PP filament. Thereafter, a Taguchi design of experiments (DOE) was established to study the influence of several printing parameters (extrusion temperature, printing speed, layer thickness, infill density, infill pattern, and part orientation) on the mechanical properties of 3D-printed specimens. Three-point bending tests were conducted to evaluate the strength and stiffness of the samples, while additional tensile tests were performed on the 3D-printed orthoses using a home-made innovative device to validate the optimal configurations. The results showed that the maximum flexural modulus of 3D-printed specimens was achieved when the printing speed was around 50 mm/s. The most significant parameter for mechanical performance and reduction in printing time was shown to be infill density, contributing 73.2% to maximum stress and 75.2% to Interlaminar Shear Strength (ILSS). Finally, the applicability of the finite element method (FEM) to simulate the FFF process-induced deflections, part distortion (warpage), and residual stresses in 3D-printed orthoses was investigated using a numerical simulation tool (Digimat-AM®). The combination of Taguchi DOE with Digimat-AM for polypropylene AFOs highlighted that the 90° orientation appeared to be the most suitable configuration, as it minimizes deformation and von Mises stress, ensuring improved quality and robustness of the printed orthoses. The findings from this study contribute by providing a reliable method for printing PP parts with improved mechanical performance, thereby opening new opportunities for its use in medical-grade additive manufacturing. Full article
(This article belongs to the Special Issue Latest Progress in the Additive Manufacturing of Polymeric Materials)
Show Figures

Figure 1

22 pages, 3012 KiB  
Article
Investigation of Color and Mechanical Properties of Parts Printed on 3D Printers After Salt Spray Testing
by İsmet Onur Ünal, Oğuz Koçar, Vahap Neccaroğlu, Erhan Baysal and Nergizhan Anaç
Polymers 2025, 17(14), 1902; https://doi.org/10.3390/polym17141902 - 9 Jul 2025
Viewed by 466
Abstract
The use of plastic materials in the maritime industry is increasing day by day. Plastics are particularly preferred in watercraft due to their lightweight, resistance to water-related damage (such as mold and wear), optical clarity, and high corrosion resistance. In recent years, plastics [...] Read more.
The use of plastic materials in the maritime industry is increasing day by day. Plastics are particularly preferred in watercraft due to their lightweight, resistance to water-related damage (such as mold and wear), optical clarity, and high corrosion resistance. In recent years, plastics produced by 3D printing have gained prominence in applications traditionally dominated by conventional plastic materials. Therefore, producing marine-grade materials—such as acrylonitrile butadiene styrene (ABS), which has long been used in the maritime sector—through 3D printing, and understanding their long-term performance, has become increasingly important. In this study, the mechanical behavior, surface roughness, and color changes of ABS+ materials in three different colors (yellow, green, and blue) and with three different infill ratios (50%, 75%, and 100%) were investigated after a salt spray test. Following the salt spray exposure, tensile and bending tests, hardness measurements, surface roughness analyses, and color measurements were conducted and compared with reference samples. The results were evaluated based on filament color and infill ratio. This study underscores the importance of color selection—along with mechanical strength—when designing 3D-printed materials for long-term use in saltwater environments. Full article
(This article belongs to the Special Issue Polymer Processing: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

15 pages, 4738 KiB  
Article
Mechanical Performance of Ceria-Coated 3D-Printed Black Zirconia Cellular Structures After Solar Thermochemical CO/H2 Fuel Production Cycles
by Fernando A. Costa Oliveira, Manuel Sardinha, Joaquim M. Justino Netto, Miguel Farinha, Marco Leite, M. Alexandra Barreiros, Stéphane Abanades and Jorge Cruz Fernandes
Crystals 2025, 15(7), 629; https://doi.org/10.3390/cryst15070629 - 8 Jul 2025
Viewed by 354
Abstract
Solar fuels production requires developing redox active materials with porous structures able to withstand thermochemical cycles with enhanced thermal stability under concentrated solar irradiation conditions. The mechanical performance of 3D-printed, macroporous black zirconia gyroid structures, coated with redox-active ceria, was assessed for their [...] Read more.
Solar fuels production requires developing redox active materials with porous structures able to withstand thermochemical cycles with enhanced thermal stability under concentrated solar irradiation conditions. The mechanical performance of 3D-printed, macroporous black zirconia gyroid structures, coated with redox-active ceria, was assessed for their suitability in solar thermochemical cycles for CO2 and H2O splitting. Experiments were conducted using a 1.5 kW solar furnace to supply the high-temperature concentrated heat to a windowed reaction chamber to carry out thermal redox cycling under realistic on-sun conditions. The ceria coating on ceramic structures improved the thermal stability and redox efficiency while minimizing the quantity of the redox material involved. Crushing strength measurements showed that samples not directly exposed to the concentrated solar flux retained their mechanical performance after thermal cycling (~10 MPa), while those near the concentrated solar beam focus exhibited significant degradation due to thermal stresses and the formation of CexZr1−xO2 solid solutions (~1.5 MPa). A Weibull modulus of 8.5 was estimated, marking the first report of such a parameter for fused filament fabrication (FFF)-manufactured black zirconia with gyroid architecture. Failure occurred via a damage accumulation mechanism at both micro- and macro-scales. These findings support the viability of ceria-coated cellular ceramics for scalable solar fuel production and highlight the need for optimized reactor designs. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

24 pages, 4087 KiB  
Article
Optimization of Nozzle Diameter and Printing Speed for Enhanced Tensile Performance of FFF 3D-Printed ABS and PLA
by I. S. ELDeeb, Ehssan Esmael, Saad Ebied, Mohamed Ragab Diab, Mohammed Dekis, Mikhail A. Petrov, Abdelhameed A. Zayed and Mohamed Egiza
J. Manuf. Mater. Process. 2025, 9(7), 221; https://doi.org/10.3390/jmmp9070221 - 1 Jul 2025
Viewed by 680
Abstract
Fused Filament Fabrication (FFF) is a widely adopted additive manufacturing technique, yet its mechanical performance is highly dependent on process parameters, particularly nozzle diameter and printing speed. This study evaluates the influence of these parameters on the tensile behavior of Acrylonitrile Butadiene Styrene [...] Read more.
Fused Filament Fabrication (FFF) is a widely adopted additive manufacturing technique, yet its mechanical performance is highly dependent on process parameters, particularly nozzle diameter and printing speed. This study evaluates the influence of these parameters on the tensile behavior of Acrylonitrile Butadiene Styrene (ABS) and Polylactic Acid (PLA), aiming to determine optimal conditions for enhanced strength. ASTM D638-Type IV specimens were printed using nozzle diameters ranging from 0.05 to 0.25 mm and speeds from 15 to 80 mm/s. For ABS, tensile strength increased from 56.46 MPa to 60.74 MPa, representing a 7.6% enhancement, as nozzle diameter increased, with the best performance observed at 0.25 mm and 45 mm/s, attributed to improved melt flow and interlayer fusion. PLA exhibited a non-linear response, reaching a maximum strength of 89.59 MPa under the same conditions, marking a 22.3% enhancement over the minimum value. The superior performance of PLA was linked to optimal thermal management that enhanced crystallinity and interlayer bonding. Fractographic analysis revealed reduced porosity and smoother fracture surfaces under optimized conditions. Overall, PLA consistently outperformed ABS across all settings, with an average tensile strength advantage of 47.5%. The results underscore the need for material-specific parameter tuning in FFF and offer practical insights for optimizing mechanical performance in applications demanding high structural integrity, including biomedical, aerospace, and functional prototyping. Full article
(This article belongs to the Special Issue Recent Advances in Optimization of Additive Manufacturing Processes)
Show Figures

Figure 1

15 pages, 7411 KiB  
Article
High-Temperature Tensile Performance of Fused Filament Fabricated Discontinuous Carbon Fiber-Reinforced Polyamide
by Theodor Florian Zach, Mircea Cristian Dudescu and Paul Bere
Polymers 2025, 17(13), 1732; https://doi.org/10.3390/polym17131732 - 21 Jun 2025
Viewed by 463
Abstract
Fused filament fabrication of thermoplastic composites has grown exponentially owing to its efficiency, thereby meeting numerous engineering demands. However, these materials have limitations owing to their structural vulnerability to elevated temperatures. To address this drawback, this study aims to investigate the tensile behavior [...] Read more.
Fused filament fabrication of thermoplastic composites has grown exponentially owing to its efficiency, thereby meeting numerous engineering demands. However, these materials have limitations owing to their structural vulnerability to elevated temperatures. To address this drawback, this study aims to investigate the tensile behavior of 3D-printed composites in a broad thermal domain from ambient temperature to the crystallization point. For this purpose, a commercial high-temperature-resilient polyamide carbon fiber was selected. To assess the optimal bead configuration and application range, the methodology includes tensile testing of five infill orientations across the four principal thermal domains of the polymers. The results highlight different bead arrangements under constant thermal conditions and demonstrate how temperature effects the tensile performance at similar raster angles, as further correlated with fracture mechanism analysis via scanning electron microscopy. The key findings indicate that raster orientation has a minor influence compared to temperature change. In accordance with the literature, a significantly decreased strength and an abrupt increase in plasticity is observed above the glass transition temperature. Nevertheless, the material retains one-third of its ambient tensile strength at 150 °C, demonstrating its potential for high-temperature applications. Full article
Show Figures

Figure 1

28 pages, 7841 KiB  
Article
Investigation of the Effect of Exposure to Liquid Chemicals on the Strength Performance of 3D-Printed Parts from Different Filament Types
by Arslan Kaptan
Polymers 2025, 17(12), 1637; https://doi.org/10.3390/polym17121637 - 12 Jun 2025
Viewed by 1138
Abstract
Additive manufacturing (AM), particularly fused deposition modeling (FDM) 3D printing, has emerged as a versatile and accessible technology for prototyping and functional part production across a wide range of industrial applications. One of the critical performance-limiting factors in AM is the chemical resistance [...] Read more.
Additive manufacturing (AM), particularly fused deposition modeling (FDM) 3D printing, has emerged as a versatile and accessible technology for prototyping and functional part production across a wide range of industrial applications. One of the critical performance-limiting factors in AM is the chemical resistance of thermoplastic materials, which directly influences their structural integrity, durability, and suitability in chemically aggressive environments. This study systematically investigates the chemical resistance of eight different widely utilized FDM filaments—acrylonitrile butadiene styrene (ABS), acrylonitrile styrene acrylate (ASA), polyamide (PA, Nylon), polycarbonate (PC), polyethylene terephthalate glycol (PETG), polylactic acid (PLA), polypropylene (PP), and polyvinyl butyral (PVB)—by examining their tensile strength and impact resistance after immersion in representative chemical agents: distilled water, ethanol (99.5%), isopropyl alcohol (75% and 99%), acetic acid (8%), hydrochloric acid (37%), hydrogen peroxide (30%), and acetone (99.5%). Quantitative mechanical testing was conducted in accordance with ASTM D638 and ASTM D256 standards, and statistical variability was accounted for using triplicate measurements with standard deviation analysis. The results reveal that PP exhibits the highest chemical resilience, retaining over 97% of its mechanical properties even after 7 days of immersion in aggressive solvents like acetone. PETG and ASA also demonstrated quite successful stability (>90% retention) in mildly corrosive environments such as alcohols and weak acids. In contrast, PLA, due to its low crystallinity and polar ester backbone, and PVB, due to its high amorphous content, showed substantial degradation: tensile strength losses exceeding 70% and impact resistance dropping below 20% in acetone. Moderate resistance was observed in ABS and PC, which maintained structural properties in neutral or weakly reactive conditions but suffered mechanical deterioration (>50% loss) in solvent-rich media. A strong correlation (r > 0.95) between tensile and impact strength reduction was found for most materials, indicating that chemical attack affects both static and dynamic mechanical performance uniformly. The findings of this study provide a robust framework for selecting appropriate 3D printing materials in applications exposed to solvents, acids, or oxidizing agents. PP is recommended for harsh chemical environments; PETG and ASA are suitable for moderate exposure scenarios, whereas PLA and PVB should be limited to low-risk, esthetic, or disposable applications. Full article
(This article belongs to the Special Issue Polymer Mechanochemistry: From Fundamentals to Applications)
Show Figures

Figure 1

36 pages, 13208 KiB  
Review
Additive Manufacturing of Metal-Infilled Polylactic Acid-Based Sustainable Biocomposites—A Review of Methods, Properties and Applications Abetted with Patent Landscape Analysis
by Sengottaiyan Sivalingam, Venkateswaran Bhuvaneswari, Lakshminarasimhan Rajeshkumar and Devarajan Balaji
Polymers 2025, 17(11), 1565; https://doi.org/10.3390/polym17111565 - 4 Jun 2025
Viewed by 1137
Abstract
Innovations in additive manufacturing (AM) methods represent a significant advancement in manufacturing technology, opening new avenues for creating objects in various shapes and sizes. Fused deposition modeling (FDM) is a specialized AM technique in which computers build layers upon each other to form [...] Read more.
Innovations in additive manufacturing (AM) methods represent a significant advancement in manufacturing technology, opening new avenues for creating objects in various shapes and sizes. Fused deposition modeling (FDM) is a specialized AM technique in which computers build layers upon each other to form a complete 3D object. The feasibility of producing metal parts using these methods has been thoroughly analyzed, but the design process has yet to catch up with manufacturing capabilities. Biodegradable aliphatic polyester PLA is derived from lactic acid. To enhance its strength, PLA is combined with metal particles, resulting in versatile property improvements and applications. While the aesthetic and functional qualities of PLA–metal composite filaments are intriguing, they also present difficulties related to extrusion, equipment wear, and maintaining consistent print quality. These challenges could be mitigated, to some extent, with careful tuning and specialized hardware. However, the inferior mechanical properties of bioresorbable PLA filaments highlight the need for the development of infilled PLA filaments to improve strength and other characteristics. This review discusses the 3D printing of PLA infilled with metal particles, various materials used, and their properties as a matter of interest in AM technology. Additionally, the applications of PLA–metal composites, along with their implications, limitations, and prospects, are comprehensively examined in this article. This sets the stage for the development of high-strength, sustainable materials for use in a range of engineering and technology fields. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

16 pages, 6146 KiB  
Article
Co-Deformation Process of Cu and Fe Phases in Cu-10Fe Alloy During Cold Rolling
by Wei Chen, Xiaona Hu, Jiawei Wang, Qiuxiang Liu, Dan Wu, Jiang Jiang, Qiang Hu, Deping Lu and Jin Zou
Materials 2025, 18(11), 2547; https://doi.org/10.3390/ma18112547 - 28 May 2025
Viewed by 387
Abstract
Cu-Fe in situ composites often face challenges in achieving high strength during cold rolling due to the inefficient transformation of partial Fe phases into fibrous structures. To uncover the underlying mechanisms, this study systematically investigates the co-deformation behavior of Cu and Fe phases [...] Read more.
Cu-Fe in situ composites often face challenges in achieving high strength during cold rolling due to the inefficient transformation of partial Fe phases into fibrous structures. To uncover the underlying mechanisms, this study systematically investigates the co-deformation behavior of Cu and Fe phases in a Cu-10Fe alloy subjected to cold rolling at various strains. Through microstructure characterization, texture analysis, and mechanical property evaluation, we reveal that the Cu matrix initially accommodates most applied strain (εvm < 1.0), forming shear bands, while Fe phases (dendrites and spherical particles) exhibit negligible deformation. At intermediate strains (1.0 < εvm < 4.0), Fe phases begin to deform: dendrites elongate along the rolling direction, and spherical particles evolve into tadpole-like morphologies under localized shear. Concurrently, dynamic recrystallization occurs near Fe phases in the Cu matrix, generating ultrafine grains. Under high strains (εvm > 4.0), Fe dendrites progressively transform into filaments, whereas spherical Fe particles develop long-tailed tadpole-like structures. Texture evolution indicates that Cu develops a typical copper-type rolling texture, while Fe forms α/γ-fiber textures, albeit with sluggish texture development in Fe. The low efficiency of Fe fiber formation is attributed to the insufficient strength of the Cu matrix and the elongation resistance of spherical Fe particles. To optimize rolled Cu-Fe in situ composites, we propose strengthening the Cu matrix (via alloying/precipitation) and suppressing spherical Fe phases through solidification control. This work provides critical insights into enhancing Fe fiber formation in rolled Cu-Fe systems for high-performance applications. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

23 pages, 9966 KiB  
Article
Study on Winding Forming Process of Glass Fiber Composite Pressure Vessel
by Run Wu, Wenlei Zeng, Fangfang Li, Haobin Tian and Xuelei Li
Materials 2025, 18(11), 2485; https://doi.org/10.3390/ma18112485 - 26 May 2025
Viewed by 623
Abstract
Composite pressure vessels offer significant advantages over traditional metal-lined designs due to their high strength-to-weight ratio, corrosion resistance, and design flexibility. This study investigates the structural design, winding process, finite element analysis, and experimental validation of a glass fiber-reinforced composite low-pressure vessel. A [...] Read more.
Composite pressure vessels offer significant advantages over traditional metal-lined designs due to their high strength-to-weight ratio, corrosion resistance, and design flexibility. This study investigates the structural design, winding process, finite element analysis, and experimental validation of a glass fiber-reinforced composite low-pressure vessel. A high-density polyethylene (HDPE) liner was designed with a nominal thickness of 1.5 mm and manufactured via blow molding. The optimal blow-up ratio was determined as 2:1, yielding a wall thickness distribution between 1.39 mm and 2.00 mm under a forming pressure of 6 bar. The filament winding process was simulated using CADWIND software (version 10.2), resulting in a three-layer winding scheme consisting of two helical layers (19.38° winding angle) and one hoop layer (89.14°). The calculated thickness of the composite winding layer was 0.375 mm, and the coverage rate reached 107%. Finite element analysis, conducted using Abaqus, revealed that stress concentrations occurred at the knuckle region connecting the dome and the cylindrical body. The vessel was predicted to fail at an internal pressure of 5.00 MPa, primarily due to fiber breakage initiated at the polar transition. Experimental hydrostatic burst tests validated the simulation, with the vessel exhibiting failure at an average pressure of 5.06 MPa, resulting in an error margin of only 1.2%. Comparative tests on vessels without adhesive sealing at the head showed early failure at 2.46 MPa, highlighting the importance of head sealing on vessel integrity. Scanning electron microscopy (SEM) analysis confirmed strong fiber–matrix adhesion and ductile fracture characteristics. The close agreement between the simulation and experimental results demonstrates the reliability of the proposed design methodology and validates the use of CADWIND and FEA in predicting the structural performance of composite pressure vessels. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

34 pages, 1192 KiB  
Review
Composite Filament Materials for 3D-Printed Drone Parts: Advancements in Mechanical Strength, Weight Optimization and Embedded Electronics
by Antreas Kantaros, Christos Drosos, Michail Papoutsidakis, Evangelos Pallis and Theodore Ganetsos
Materials 2025, 18(11), 2465; https://doi.org/10.3390/ma18112465 - 24 May 2025
Cited by 2 | Viewed by 1169
Abstract
The rapid advancement of 3D printing technologies has greatly assisted drone manufacturing, particularly through the use of composite filaments. This paper explores the impact of fiber-reinforced materials, such as carbon-fiber-infused PLA, PETG, and nylon, on the mechanical performance, weight optimization, and functionality of [...] Read more.
The rapid advancement of 3D printing technologies has greatly assisted drone manufacturing, particularly through the use of composite filaments. This paper explores the impact of fiber-reinforced materials, such as carbon-fiber-infused PLA, PETG, and nylon, on the mechanical performance, weight optimization, and functionality of unmanned aerial vehicles (UAVs). The study highlights how additive manufacturing enables the fabrication of lightweight yet structurally robust components, enhancing flight endurance, stability, and payload capacity. Key advancements in high-speed fused filament fabrication (FFF) printing, soluble support materials, and embedded electronics integration are examined, demonstrating their role in producing highly functional UAV parts. Furthermore, the challenges associated with material processing, cost, and scalability are discussed, along with solutions such as advanced extruder designs and hybrid manufacturing approaches that combine 3D printing with CNC machining. By utilizing composite filaments and innovative fabrication techniques, 3D printing continues to redefine drone production, enabling rapid prototyping and on-demand customization. The use of carbon-fiber-infused PLA, PETG, and nylon has demonstrated outstanding improvements in strength-to-weight performance, structural durability, and dimensional stability—key factors for enhancing flight endurance, maneuverability, and payload capacity in UAV applications. These composite materials also support the integration of embedded electronics and functional features, reinforcing their suitability for high-performance drone parts. Looking forward, future research should explore the potential of nanocomposite filaments not as a replacement but as a complementary advancement to existing composites. These materials offer opportunities for further enhancing multifunctionality, such as thermal/electrical conductivity and in situ sensing, which could expand UAV capabilities significantly. Full article
Show Figures

Figure 1

64 pages, 6390 KiB  
Review
Greening Fused Deposition Modeling: A Critical Review of Plant Fiber-Reinforced PLA-Based 3D-Printed Biocomposites
by Muneeb Tahir and Abdel-Fattah Seyam
Fibers 2025, 13(5), 64; https://doi.org/10.3390/fib13050064 - 14 May 2025
Cited by 1 | Viewed by 2868
Abstract
Fused deposition modeling (FDM) 3D printing (3DP) of PLA biocomposites reinforced with plant-derived cellulosic fibrous materials, including spun yarn, microcrystalline, microfibrillar, nanofibrillar cellulose, and cellulose nanocrystals, offers an environmentally sustainable solution to the mechanical limitations of polymer-only printed materials. Micron- and submicron-scale cellulosic [...] Read more.
Fused deposition modeling (FDM) 3D printing (3DP) of PLA biocomposites reinforced with plant-derived cellulosic fibrous materials, including spun yarn, microcrystalline, microfibrillar, nanofibrillar cellulose, and cellulose nanocrystals, offers an environmentally sustainable solution to the mechanical limitations of polymer-only printed materials. Micron- and submicron-scale cellulosic fibers are valued for their renewability, non-toxicity, high surface area, and favorable elastic and specific moduli; notably, micron-scale reinforcements are particularly attractive due to their ease of large-scale industrial production and commercial viability. Similarly, PLA benefits from large-scale production, contributes to CO2 sequestration through its raw material precursors, and requires less energy for production than non-biodegradable petroleum-derived polymers. Incorporating these raw materials, each of which offers attractive performance properties, complementary commercial strengths, and environmental benefits, as constituent phases in FDM 3D-printed biocomposites (FDMPBs) can further enhance the environmental responsiveness of an already low-waste FDM 3DP technology. Inspired by these compelling advantages, this paper critically reviews research on FDMPB with cellulosic reinforcements in a PLA matrix, uniquely categorizing studies based on the form of cellulosic reinforcement and its impact on the biocomposite’s structure and mechanical performance. Additionally, the review covers biocomposite filament production methods and the equipment involved, presenting an alternative framework for cataloging FDMPB research. A comprehensive literature analysis reveals that the wide variation in feedstocks, fiber–matrix compounding methods, equipment, and processing parameters used in filament production and 3DP complicates the comparison of FDMPB mechanical properties across studies, often resulting in conflicting outcomes. Key processing parameters have been compiled to bridge this gap and offer a more nuanced understanding of the cause-and-effect relationships governing biocomposite properties. Finally, targeted recommendations for future research on developing FDMPB with a PLA matrix and micron-scale cellulosic reinforcements are provided, addressing the knowledge gaps and challenges highlighted in the peer-reviewed literature. Full article
Show Figures

Figure 1

14 pages, 2116 KiB  
Article
In Vitro Characterization of 3D-Printed PLA/CPO Oxygen Releasing Scaffolds: Mechanical and Biological Properties for Bone Tissue Engineering
by Abdullah Mohammed, Alice Tirnoveanu, William Richard Webb, Ammar A. Melaibari, Adnan Memić, Mohammad Aslam, Amr Elshaer, Hany Hassanin and Khamis Essa
J. Manuf. Mater. Process. 2025, 9(5), 149; https://doi.org/10.3390/jmmp9050149 - 2 May 2025
Viewed by 732
Abstract
The addition of oxygen-releasing biomaterials into 3D-printed scaffolds presents a novel approach to enhancing bone scaffolds, yet no in vitro studies have demonstrated the effect of oxygen-generating filaments on scaffold biological and mechanical properties. This study introduces a polylactic acid (PLA)/calcium peroxide (CPO) [...] Read more.
The addition of oxygen-releasing biomaterials into 3D-printed scaffolds presents a novel approach to enhancing bone scaffolds, yet no in vitro studies have demonstrated the effect of oxygen-generating filaments on scaffold biological and mechanical properties. This study introduces a polylactic acid (PLA)/calcium peroxide (CPO) composite filament, designed for oxygen release, which is a key factor for early-stage bone regeneration. The PLA/CPO composite filament was fabricated via wet-mixing, solvent evaporation, and hot-melt extrusion, followed by fused deposition modeling (FDM) with optimized parameters to achieve high structural fidelity (25% porosity, 0.60mm pore size). In vitro characterization, including mechanical, morphological, and biological assessments, demonstrated that, post-cell culturing, mechanical strength improved, which indicates improved scaffold resilience. The scaffold exhibited gradual oxygen release over a 3-day period, and gene expression analysis confirmed notable upregulation of osteogenic markers RUNX2, SPP1, and SP7 in vitamin D-supplemented conditions. The mechanical strength improved from approximately 2.8 MPa in the control group to 5.0 MPa in scaffolds cultured with osteogenic media. This study provides the first in vitro evidence that oxygen-releasing 3D-printed filaments can improve both mechanical properties and biological response in scaffolds, demonstrating the functional integration of sustained oxygen delivery, enhanced mechanical properties, and increased osteogenic activity in a single 3D-printed scaffold. Full article
Show Figures

Figure 1

Back to TopTop