Optimization of Nozzle Diameter and Printing Speed for Enhanced Tensile Performance of FFF 3D-Printed ABS and PLA
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Three-Dimensional (3D)Printing Equipment and Software
2.2.1. Three-Dimensional (3D)Printer
2.2.2. Slicing Software
2.3. Specimen Design and Preparation
2.3.1. Tensile Specimens
2.3.2. Printing Parameters
2.3.3. Layer Thickness
2.3.4. Air Gap
2.4. Sample Preparation and Conditioning
2.4.1. Specimen Preparation
2.4.2. Tensile Testing
2.5. Fractographic Analysis
3. Results
3.1. Effects of Printing Speeds on Mechanical Properties
3.1.1. Effects of Different Printing Speeds on Tensile Strength for ABS Printed Samples
3.1.2. Effect of Different Printing Speeds on Tensile Strength for PLA Printed Samples
3.2. Effects of Nozzle Diameter Variation on Mechanical Properties
3.2.1. Effects of Different Nozzle Sizes on Tensile Strength for ABS Printed Samples
3.2.2. Influence of Nozzle Diameter on PLA Tensile Properties
3.3. Comparison Between Mechanical Properties of ABS and PLA Based on Printing Nozzle Diameters and Printing Speeds
3.3.1. Tensile Strength Comparison Based on Printing Speed
3.3.2. Tensile Strength Based on Printing Nozzle Diameters at Optimal Printing Speed
3.3.3. Fractographic Assessment of ABS and PLA Based on Printing Nozzle Diameters at Optimal Printing Speed
4. Conclusions
5. Practical Implications and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charia, O.; Rajani, H.; Ferrer Real, I.; Domingo-Espin, M.; Gracias, N. Real-Time Stringing Detection for Additive Manufacturing. J. Manuf. Mater. Process. 2025, 9, 74. [Google Scholar] [CrossRef]
- Godec, D.; Gonzalez-Gutierrez, J.; Nordin, A.; Pei, E.; Ureña Alcázar, J. A Guide to Additive Manufacturing; Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Dekis, M.; Tawfik, M.; Egiza, M.; Dewidar, M. Unveiling the Characteristics of ER70S-6 low Carbon Steel Alloy Produced by wire arc Additive Manufacturing at Different Travel Speeds. Met. Mater. Int. 2024, 31, 325–338. [Google Scholar] [CrossRef]
- Rouf, S.; Malik, A.; Singh, N.; Raina, A.; Naveed, N.; Siddiqui, M.I.H.; Haq, M.I.U. Additive manufacturing technologies: Industrial and medical applications. Sustain. Oper. Comput. 2022, 3, 258–274. [Google Scholar] [CrossRef]
- Yankin, A.; Alipov, Y.; Temirgali, A.; Serik, G.; Danenova, S.; Talamona, D.; Perveen, A. Optimization of Printing Parameters to Enhance Tensile Properties of ABS and Nylon Produced by Fused Filament Fabrication. Polymers 2023, 15, 3043. [Google Scholar] [CrossRef] [PubMed]
- Popescu, D.; Zapciu, A.; Amza, C.; Baciu, F.; Marinescu, R. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym. Test. 2018, 69, 157–166. [Google Scholar] [CrossRef]
- Algarni, M.; Ghazali, S. Comparative Study of the Sensitivity of PLA, ABS, PEEK, and PETG’s Mechanical Properties to FDM Printing Process Parameters. Crystals 2021, 11, 995. [Google Scholar] [CrossRef]
- El-Deeb, I.S.; Petrov, M.A.; Grabowik, C.; Esmael, E.G.; Rashad, M.; Ebied, S. Mechanical Properties of PLA Printed Samples in Different Printing Directions and Orientations Using Fused Filament Fabrication, Part 1: Methodology. In Intelligent Systems in Production Engineering and Maintenance III; Springer: Cham, Switzerland, 2024; pp. 643–657. [Google Scholar]
- El-Deeb, I.S.; Petrov, M.A.; Grabowik, C.; Esmael, E.G.; Rashad, M.; Ebied, S. Mechanical Properties of PLA Printed Samples in Different Printing Directions and Orientations Using Fused Filament Fabrication, Part 2: Experimental Research. In Intelligent Systems in Production Engineering and Maintenance III; Springer: Cham, Switzerland, 2024; pp. 627–642. [Google Scholar]
- Tao, Y.; Kong, F.; Li, Z.; Zhang, J.; Zhao, X.; Yin, Q.; Xing, D.; Li, P. A review on voids of 3D printed parts by fused filament fabrication. J. Mater. Res. Technol. 2021, 15, 4860–4879. [Google Scholar] [CrossRef]
- Li, L.; Sun, Q.; Bellehumeur, C.; Gu, P. Composite Modeling and Analysis for Fabrication of FDM Prototypes with Locally Controlled Properties. J. Manuf. Process. 2002, 4, 129–141. [Google Scholar] [CrossRef]
- Blok, L.G.; Longana, M.L.; Yu, H.; Woods, B.K.S. An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit. Manuf. 2018, 22, 176–186. [Google Scholar] [CrossRef]
- Akhoundi, B.; Behravesh, A.H. Effect of Filling Pattern on the Tensile and Flexural Mechanical Properties of FDM 3D Printed Products. Exp. Mech. 2019, 59, 883–897. [Google Scholar] [CrossRef]
- Hsueh, M.-H.; Lai, C.-J.; Chung, C.-F.; Wang, S.-H.; Huang, W.-C.; Pan, C.-Y.; Zeng, Y.-S.; Hsieh, C.-H. Effect of Printing Parameters on the Tensile Properties of 3D-Printed Polylactic Acid (PLA) Based on Fused Deposition Modeling. Polymers 2021, 13, 2387. [Google Scholar] [CrossRef]
- Petrov, M.A.; El-Deeb, I.S.A. Experimental and numerical investigations of mechanical properties of 3D-printed polymeric samples with ideal and roughed surfaces. AIP Conf. Proc. 2019, 2113, 150021. [Google Scholar] [CrossRef]
- Mulcahy, N.; O’Sullivan, K.J.; O’Sullivan, A.; O’Sullivan, L. Preliminary assessment on the effects of line width, layer height and orientation on strength and print time for FDM printing of total contact casts for the treatment of diabetic foot ulcers. Ann. 3D Print. Med. 2023, 11, 100115. [Google Scholar] [CrossRef]
- Tezel, T.; Kovan, V. Determination of optimum production parameters for 3D printers based on nozzle diameter. Rapid Prototyp. J. 2022, 28, 185–194. [Google Scholar] [CrossRef]
- Ansari, A.A.; Kamil, M. Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process. Mater. Today Proc. 2021, 45, 5462–5468. [Google Scholar] [CrossRef]
- Wu, W.; Geng, P.; Li, G.; Zhao, D.; Zhang, H.; Zhao, J. Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS. Materials 2015, 8, 5834–5846. [Google Scholar] [CrossRef] [PubMed]
- Rajan, K.; Samykano, M.; Kadirgama, K.; Harun, W.S.W.; Rahman, M.M. Fused deposition modeling: Process, materials, parameters, properties, and applications. Int. J. Adv. Manuf. Technol. 2022, 120, 1531–1570. [Google Scholar] [CrossRef]
- Hamat, S.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Hussin, M.S.; Abd Manan, M.S. Influence of filament fabrication parameter on tensile strength and filament size of 3D printing PLA-3D850. Mater. Today Proc. 2023, 74, 457–461. [Google Scholar] [CrossRef]
- Bakhtiari, H.; Nikzad, M.; Tolouei-Rad, M. Influence of Three-Dimensional Printing Parameters on Compressive Properties and Surface Smoothness of Polylactic Acid Specimens. Polymers 2023, 15, 3827. [Google Scholar] [CrossRef]
- Bakhtiari, H.; Aamir, M.; Tolouei-Rad, M. Effect of 3D Printing Parameters on the Fatigue Properties of Parts Manufactured by Fused Filament Fabrication: A Review. Appl. Sci. 2023, 13, 904. [Google Scholar] [CrossRef]
- Bakhtiari, H.; Nouri, A.; Tolouei-Rad, M. Impact of 3D printing parameters on static and fatigue properties of polylactic acid (PLA) bone scaffolds. Int. J. Fatigue 2024, 186, 108420. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Zahedi, S.A.; Adeoye, A.O.M. 3D printing of bone scaffolds with hybrid biomaterials. Compos. Part B Eng. 2019, 158, 428–436. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Wu, B.; Cui, C.; Guo, Y.; Yan, C. A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int. J. Adv. Manuf. Technol. 2019, 102, 2877–2889. [Google Scholar] [CrossRef]
- Baca Lopez, D.M.; Ahmad, R. Tensile Mechanical Behaviour of Multi-Polymer Sandwich Structures via Fused Deposition Modelling. Polymers 2020, 12, 651. [Google Scholar] [CrossRef] [PubMed]
- Sobron, L.; Sutanto, D. Pengaruh Posisi Orientasi Objek Pada Proses Rapid Prototyping 3d Printing Terhadap Kekuatan Tarik Material Polymer. Sinergi 2016, 20, 229–238. [Google Scholar] [CrossRef]
- Qi, X.; Ren, Y.; Wang, X. New advances in the biodegradation of Poly(lactic) acid. Int. Biodeterior. Biodegrad. 2017, 117, 215–223. [Google Scholar] [CrossRef]
- Lopes, M.S.; Jardini, A.L.; Rubens Filho, M. Synthesis and characterizations of poly (lactic acid) by ring-opening polymerization for biomedical applications. Chem. Eng. Trans. 2014, 38, 331–336. [Google Scholar] [CrossRef]
- Bakar, N.S.A.; Alkahari, M.R.; Boejang, H. Analysis on fused deposition modelling performance. J. Zhejiang Univ.-Sci. A 2010, 11, 972–977. [Google Scholar] [CrossRef]
- Rajpurohit, S.R.; Dave, H.K. Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer. Int. J. Adv. Manuf. Technol. 2019, 101, 1525–1536. [Google Scholar] [CrossRef]
- Srinivasan, R.; Pridhar, T.; Ramprasath, L.S.; Charan, N.S.; Ruban, W. Prediction of tensile strength in FDM printed ABS parts using response surface methodology (RSM). Mater. Today Proc. 2020, 27, 1827–1832. [Google Scholar] [CrossRef]
- Gebisa, A.W.; Lemu, H.G. Investigating Effects of Fused-Deposition Modeling (FDM) Processing Parameters on Flexural Properties of ULTEM 9085 using Designed Experiment. Materials 2018, 11, 500. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.F.; Kumar, S.; Varadarajan, K.M.; Cantwell, W.J. Performance of biocompatible PEEK processed by fused deposition additive manufacturing. Mater. Des. 2018, 146, 249–259. [Google Scholar] [CrossRef]
- Cantrell, J.T.; Rohde, S.; Damiani, D.; Gurnani, R.; DiSandro, L.; Anton, J.; Young, A.; Jerez, A.; Steinbach, D.; Kroese, C. Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyp. J. 2017, 23, 811–824. [Google Scholar] [CrossRef]
- Rayegani, F.; Onwubolu, G.C. Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int. J. Adv. Manuf. Technol. 2014, 73, 509–519. [Google Scholar] [CrossRef]
- Akande, S.O. Dimensional accuracy and surface finish optimization of fused deposition modelling parts using desirability function analysis. Int. J. Eng. Res. Technol 2015, 4, 196–202. [Google Scholar] [CrossRef]
- Rao, R.V.; Rai, D.P. Optimization of fused deposition modeling process using teaching-learning-based optimization algorithm. Eng. Sci. Technol. Int. J. 2016, 19, 587–603. [Google Scholar] [CrossRef]
- Srivastava, V.K. A review on advances in rapid prototype 3D printing of multi-functional applications. Sci. Technol. 2017, 7, 4–24. [Google Scholar] [CrossRef]
- Dawoud, M.; Taha, I.; Ebeid, S.J. Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques. J. Manuf. Process. 2016, 21, 39–45. [Google Scholar] [CrossRef]
- Agarwal, K.M.; Shubham, P.; Bhatia, D.; Sharma, P.; Vaid, H.; Vajpeyi, R. Analyzing the Impact of Print Parameters on Dimensional Variation of ABS specimens printed using Fused Deposition Modelling (FDM). Sens. Int. 2022, 3, 100149. [Google Scholar] [CrossRef]
- El-Deeb, I.S.; Grabowik, C.; Esmael, E.; Nabhan, A.; Rashad, M.; Ebied, S. Investigation of Effect of Part-Build Directions and Build Orientations on Tension–Tension Mode Fatigue Behavior of Acrylonitrile Butadiene Styrene Material Printed Using Fused Filament Fabrication Technology. Materials 2024, 17, 5133. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications —A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.H.; Montero, M.; Odell, D.; Roundy, S.; Wright, P.K. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 2002, 8, 248–257. [Google Scholar] [CrossRef]
- Wittbrodt, B.; Pearce, J.M. The effects of PLA color on material properties of 3-D printed components. Addit. Manuf. 2015, 8, 110–116. [Google Scholar] [CrossRef]
- Sheikh, Z.; Najeeb, S.; Khurshid, Z.; Verma, V.; Rashid, H.; Glogauer, M. Biodegradable Materials for Bone Repair and Tissue Engineering Applications. Materials 2015, 8, 5744–5794. [Google Scholar] [CrossRef]
- Mueller, B. Additive Manufacturing Technologies–Rapid Prototyping to Direct Digital Manufacturing; Springer: New York, NY, USA, 2012; Volume 32. [Google Scholar] [CrossRef]
- Rengevič, A.; Fúra, M.; Čuboňová, N. Analysis of printing parameters for production of components with Easy3DMaker printer. Adv. Sci. Technol. Res. J. 2016, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Anand Kumar, S.; Shivraj Narayan, Y. Tensile Testing and Evaluation of 3D-Printed PLA Specimens as per ASTM D638 Type IV Standard. In Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018); Springer: Singapore, 2019; pp. 79–95. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Masood, S.H.; Bhowmik, J.L. Optimization of fused deposition modeling process parameters: A review of current research and future prospects. Adv. Manuf. 2015, 3, 42–53. [Google Scholar] [CrossRef]
- Kovan, V.; Altan, G.; Topal, E.S. Effect of layer thickness and print orientation on strength of 3D printed and adhesively bonded single lap joints. J. Mech. Sci. Technol. 2017, 31, 2197–2201. [Google Scholar] [CrossRef]
- Rankouhi, B.; Javadpour, S.; Delfanian, F.; Letcher, T. Failure Analysis and Mechanical Characterization of 3D Printed ABS With Respect to Layer Thickness and Orientation. J. Fail. Anal. Prev. 2016, 16, 467–481. [Google Scholar] [CrossRef]
- Li, Z.; Chang, L. Development of Wear-Resistant Polymeric Materials Using Fused Deposition Modelling (FDM) Technologies: A Review. Lubricants 2025, 13, 98. [Google Scholar] [CrossRef]
- Garzon-Hernandez, S.; Arias, A.; Garcia-Gonzalez, D. A continuum constitutive model for FDM 3D printed thermoplastics. Compos. Part B Eng. 2020, 201, 108373. [Google Scholar] [CrossRef]
- Vasudevarao, B.; Natarajan, D.P.; Henderson, M.; Razdan, A. Sensitivity of RP surface finish to process parameter variation 251. In Proceedings of the 2000 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 8–10 August 2000. [Google Scholar] [CrossRef]
- Galantucci, L.M.; Lavecchia, F.; Percoco, G. Experimental study aiming to enhance the surface finish of fused deposition modeled parts. CIRP Ann. 2009, 58, 189–192. [Google Scholar] [CrossRef]
- Maurya, N.K.; Rastogi, V.; Singh, P. Experimental and computational investigation on mechanical properties of reinforced additive manufactured component. Evergreen 2019, 6, 207–214. [Google Scholar] [CrossRef]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Coshoshocken, PA, USA, 2003. Available online: www.astm.org (accessed on 5 May 2023).
- Štaffová, M.; Ondreáš, F.; Svatík, J.; Zbončák, M.; Jančář, J.; Lepcio, P. 3D printing and post-curing optimization of photopolymerized structures: Basic concepts and effective tools for improved thermomechanical properties. Polym. Test. 2022, 108, 107499. [Google Scholar] [CrossRef]
- Zhou, L.; Miller, J.; Vezza, J.; Mayster, M.; Raffay, M.; Justice, Q.; Al Tamimi, Z.; Hansotte, G.; Sunkara, L.D.; Bernat, J. Additive Manufacturing: A Comprehensive Review. Sensors 2024, 24, 2668. [Google Scholar] [CrossRef]
- Kirby, S.; Pesun, I.; Nowakowski, A.; França, R. Effect of Different Post-Curing Methods on the Degree of Conversion of 3D-Printed Resin for Models in Dentistry. Polymers 2024, 16, 549. [Google Scholar] [CrossRef]
- Naveed, N. Investigating the Material Properties and Microstructural Changes of Fused Filament Fabricated PLA and Tough-PLA Parts. Polymers 2021, 13, 1487. [Google Scholar] [CrossRef]
- Beníček, L.; Vašina, M.; Hrbáček, P. Influence of 3D Printing Conditions on Physical–Mechanical Properties of Polymer Materials. Polymers 2025, 17, 43. [Google Scholar] [CrossRef]
Material | PLA | ABS | |
---|---|---|---|
Composition | Polylactic Acid | Acrylonitrile Butadiene Styrene | |
Physical Properties | Units | Nominal Value | |
Density/Specific Gravity (23 °C) | (g/cm3) | 1.24 to 1.26 | 1.03 to 1.08 |
Melt Mass-Flow Rate: 190 °C/2.16 kg | (g/10 min) | 2.8 to 23 | - |
Melt Mass-Flow Rate: 220 °C/10.0 kg | (g/10 min) | - | 1.0 to 36 |
Molding Shrinkage: Flow (23 °C) | (mm/mm) (%) | 3.7 × 10−3 to 4.1 × 10−3 0.30 to 1.1 | 3.9 × 10−3 to 6.5 × 10−3 0.40 to 0.70 |
UV resistance | - | Average | Average |
Mechanical Properties (23 °C) | Units | Nominal Value | |
Tensile Modulus | (MPa) | 890 to 3647 | 1697 to 2826 |
Tensile Strength | (MPa) | 17.6 to 64 | 32 to 53 |
Tensile Strength Yield | (MPa) | 15.5 to 72 | 29 to 57 |
Tensile Strength Break | (MPa) | 13.7 to 70 | 15 to 50 |
Tensile Elongation Yield | (%) | 9.8 to 10 | 2 to 21 |
Tensile Elongation Break | (%) | 0.50 to 19 | 0.90 to 57 |
Flexural Modulus | (MPa) | 2275 to 4495 | 1420 to 2770 |
Flexural Strength | (MPa) | 57.6 to 109 | 44.6 to 89 |
Young’s Modulus | (GPa) | 3.5 | 1.79–3.2 |
Impact Strength | (J/m) | 26 | 200–215 |
Hardness Shore D | - | 88 | 100 |
Thermal Properties | Units | Nominal Value | |
Glass Transition Temperature | (°C) | 56.6 to 57.7 | 100 |
Melting Temperature | (°C) | 190 to 240 | 210 to 240 |
Thermal Conductivity | (W/m·K) | 0.111 | 0.17–0.23 |
Specific Heat Capacity | (kJ/(kg·K)) | 1.590 | 1.60–2.13 |
Property | Description |
---|---|
Printing volume | 255 × 255 × 300 mm |
Build surface | Adjustable heated bed |
Filament | 1.75 mm PLA, ABS, PETG, TPU, etc. |
Extruder | Single nozzle, Bowden-style |
Layer resolution | 0.05–0.4 mm |
Max. print speed | 180 mm/s |
Nozzle diameter | 0.25 mm |
Connectivity | USB, SD card |
Display | 4.3-inch color touchscreen |
Firmware | Open-source Marlin firmware |
Power supply | Input: 100–120 V AC/4.0 A 200–240 V AC/2.0 A, Output: 24 V |
File format | STL, OBJ, G-code, AMF, etc. |
Supported OS | Windows, Mac, Linux |
Weight | 8.9 kg |
FFF Process Condition | Units | Printing Speed (Printing Parameter) | Nozzle Diameter (Printing Parameter) | ||
---|---|---|---|---|---|
Value PLA | Value ABS | Value PLA | Value ABS | ||
Extrusion temperature | (°C) | 210 | 230 | 210 | 230 |
Nozzle diameter | (mm) | 0.25 | 0.25 | Variable | Variable |
Build plate (Bed) temperature | (°C) | 60 | 110 | 60 | 110 |
Chamber temperature | (°C) | 30 | 60 | 30 | 60 |
Layer height | (mm) | 0.2 | 0.2 | 0.2 | 0.2 |
Printing speed | (mm/s) | Variable | Variable | 45 | 45 |
Infill density | (%) (average) | 50 | 50 | 50 | 50 |
Infill pattern | - | Honeycomb | Honeycomb | Honeycomb | Honeycomb |
Shell thickness | (mm) | 0.5 | 0.5 | 0.5 | 0.5 |
Top/Bottom thickness | (mm) | 0.5 | 0.5 | 0.5 | 0.5 |
Fan speed | - | 100% (except for the first layer, 0%) | 100% (except for the first layer, 0%) | 100% (except for the first layer, 0%) | 100% (except for the first layer, 0%) |
Number of bottom/top layers | (No.) | 2/2 | 2/2 | 2/2 | 2/2 |
Number of contours (wall) | (No.) | 2 | 2 | 2 | 2 |
Print orientation (ASTM D638 Type IV) | - | Flat, along the XY plane | Flat, along the XY plane | Flat, along the XY plane | Flat, along the XY plane |
Infill line directions (relative to the long axis of the test bar) | (°) | (45/−45) | (45/−45) | (45/−45) | (45/−45) |
Filament diameter | (mm) | 1.75 | 1.75 | 1.75 | 1.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ELDeeb, I.S.; Esmael, E.; Ebied, S.; Diab, M.R.; Dekis, M.; Petrov, M.A.; Zayed, A.A.; Egiza, M. Optimization of Nozzle Diameter and Printing Speed for Enhanced Tensile Performance of FFF 3D-Printed ABS and PLA. J. Manuf. Mater. Process. 2025, 9, 221. https://doi.org/10.3390/jmmp9070221
ELDeeb IS, Esmael E, Ebied S, Diab MR, Dekis M, Petrov MA, Zayed AA, Egiza M. Optimization of Nozzle Diameter and Printing Speed for Enhanced Tensile Performance of FFF 3D-Printed ABS and PLA. Journal of Manufacturing and Materials Processing. 2025; 9(7):221. https://doi.org/10.3390/jmmp9070221
Chicago/Turabian StyleELDeeb, I. S., Ehssan Esmael, Saad Ebied, Mohamed Ragab Diab, Mohammed Dekis, Mikhail A. Petrov, Abdelhameed A. Zayed, and Mohamed Egiza. 2025. "Optimization of Nozzle Diameter and Printing Speed for Enhanced Tensile Performance of FFF 3D-Printed ABS and PLA" Journal of Manufacturing and Materials Processing 9, no. 7: 221. https://doi.org/10.3390/jmmp9070221
APA StyleELDeeb, I. S., Esmael, E., Ebied, S., Diab, M. R., Dekis, M., Petrov, M. A., Zayed, A. A., & Egiza, M. (2025). Optimization of Nozzle Diameter and Printing Speed for Enhanced Tensile Performance of FFF 3D-Printed ABS and PLA. Journal of Manufacturing and Materials Processing, 9(7), 221. https://doi.org/10.3390/jmmp9070221