Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,279)

Search Parameters:
Keywords = high speed motor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3958 KiB  
Article
Detection of Inter-Turn Short-Circuit Faults for Inverter-Fed Induction Motors Based on Negative-Sequence Current Analysis
by Sarvarbek Ruzimov, Jianzhong Zhang, Xu Huang and Muhammad Shahzad Aziz
Sensors 2025, 25(15), 4844; https://doi.org/10.3390/s25154844 - 6 Aug 2025
Abstract
Inter-turn short-circuit faults in induction motors might lead to overheating, torque imbalances, and eventual motor failure. This paper presents a fault detection framework for accurately identifying ITSC faults under various operating conditions. The proposed method integrates negative-sequence current analysis utilizing wavelet-based filtering and [...] Read more.
Inter-turn short-circuit faults in induction motors might lead to overheating, torque imbalances, and eventual motor failure. This paper presents a fault detection framework for accurately identifying ITSC faults under various operating conditions. The proposed method integrates negative-sequence current analysis utilizing wavelet-based filtering and symmetrical component decomposition. A fault detection index to effectively monitor motor health and detect faults is presented. Moreover, the fault location is determined by phase angles of fundamental components of negative-sequence currents. Experimental validations were carried out for an inverter-fed induction motor under variable speed and load cases. These showed that the proposed approach has high sensitivity to early-stage inter-turn short circuits. This makes the framework highly suitable for real-time condition monitoring and predictive maintenance in inverter-fed motor systems, thereby improving system reliability and minimizing unplanned downtime. Full article
Show Figures

Figure 1

29 pages, 2636 KiB  
Review
Review on Tribological and Vibration Aspects in Mechanical Bearings of Electric Vehicles: Effect of Bearing Current, Shaft Voltage, and Electric Discharge Material Spalling Current
by Rohan Lokhande, Sitesh Kumar Mishra, Deepak Ronanki, Piyush Shakya, Vimal Edachery and Lijesh Koottaparambil
Lubricants 2025, 13(8), 349; https://doi.org/10.3390/lubricants13080349 - 5 Aug 2025
Viewed by 69
Abstract
Electric motors play a decisive role in electric vehicles by converting electrical energy into mechanical motion across various drivetrain components. However, failures in these motors can interrupt the motor function, with approximately 40% of these failures stemming from bearing issues. Key contributors to [...] Read more.
Electric motors play a decisive role in electric vehicles by converting electrical energy into mechanical motion across various drivetrain components. However, failures in these motors can interrupt the motor function, with approximately 40% of these failures stemming from bearing issues. Key contributors to bearing degradation include shaft voltage, bearing current, and electric discharge material spalling current, especially in motors powered by inverters or variable frequency drives. This review explores the tribological and vibrational aspects of bearing currents, analyzing their mechanisms and influence on electric motor performance. It addresses the challenges faced by electric vehicles, such as high-speed operation, elevated temperatures, electrical conductivity, and energy efficiency. This study investigates the origins of bearing currents, damage linked to shaft voltage and electric discharge material spalling current, and the effects of lubricant properties on bearing functionality. Moreover, it covers various methods for measuring shaft voltage and bearing current, as well as strategies to alleviate the adverse impacts of bearing currents. This comprehensive analysis aims to shed light on the detrimental effects of bearing currents on the performance and lifespan of electric motors in electric vehicles, emphasizing the importance of tribological considerations for reliable operation and durability. The aim of this study is to address the engineering problem of bearing failure in inverter-fed EV motors by integrating electrical, tribological, and lubrication perspectives. The novelty lies in proposing a conceptual link between lubricant breakdown and damage morphology to guide mitigation strategies. The study tasks include literature review, analysis of bearing current mechanisms and diagnostics, and identification of technological trends. The findings provide insights into lubricant properties and diagnostic approaches that can support industrial solutions. Full article
(This article belongs to the Special Issue Tribology of Electric Vehicles)
Show Figures

Figure 1

27 pages, 30231 KiB  
Article
Modelling and Simulation of a 3MW, Seventeen-Phase Permanent Magnet AC Motor with AI-Based Drive Control for Submarines Under Deep-Sea Conditions
by Arun Singh and Anita Khosla
Energies 2025, 18(15), 4137; https://doi.org/10.3390/en18154137 - 4 Aug 2025
Viewed by 207
Abstract
The growing need for high-efficiency and reliable propulsion systems in naval applications, particularly within the evolving landscape of submarine warfare, has led to an increased interest in multiphase Permanent Magnet AC motors. This study presents a modelling and simulation approach for a 3MW, [...] Read more.
The growing need for high-efficiency and reliable propulsion systems in naval applications, particularly within the evolving landscape of submarine warfare, has led to an increased interest in multiphase Permanent Magnet AC motors. This study presents a modelling and simulation approach for a 3MW, seventeen-phase Permanent Magnet AC motor designed for submarine propulsion, integrating an AI-based drive control system. Despite the advantages of multiphase motors, such as higher power density and enhanced fault tolerance, significant challenges remain in achieving precise torque and variable speed, especially for externally mounted motors operating under deep-sea conditions. Existing control strategies often struggle with the inherent nonlinearities, unmodelled dynamics, and extreme environmental variations (e.g., pressure, temperature affecting oil viscosity and motor parameters) characteristic of such demanding deep-sea applications, leading to suboptimal performance and compromised reliability. Addressing this gap, this research investigates advanced control methodologies to enhance the performance of such motors. A MATLAB/Simulink framework was developed to model the motor, whose drive system leverages an AI-optimised dual fuzzy-PID controller refined using the Harmony Search Algorithm. Additionally, a combination of Indirect Field-Oriented Control (IFOC) and Space Vector PWM strategies are implemented to optimise inverter switching sequences for precise output modulation. Simulation results demonstrate significant improvements in torque response and control accuracy, validating the efficacy of the proposed system. The results highlight the role of AI-based propulsion systems in revolutionising submarine manoeuvrability and energy efficiency. In particular, during a test case involving a speed transition from 75 RPM to 900 RPM, the proposed AI-based controller achieves a near-zero overshoot compared to an initial control scheme that exhibits 75.89% overshoot. Full article
Show Figures

Figure 1

32 pages, 3972 KiB  
Article
A Review and Case of Study of Cooling Methods: Integrating Modeling, Simulation, and Thermal Analysis for a Model Based on a Commercial Electric Permanent Magnet Synchronous Motor
by Henrry Gabriel Usca-Gomez, David Sebastian Puma-Benavides, Victor Danilo Zambrano-Leon, Ramón Castillo-Díaz, Milton Israel Quinga-Morales, Javier Milton Solís-Santamaria and Edilberto Antonio Llanes-Cedeño
World Electr. Veh. J. 2025, 16(8), 437; https://doi.org/10.3390/wevj16080437 - 4 Aug 2025
Viewed by 159
Abstract
The efficiency of electric motors is highly dependent on their operating temperature, with lower temperatures contributing to enhanced performance, reliability, and extended service life. This study presents a comprehensive review of state-of-the-art cooling technologies and evaluates their impact on the thermal behavior of [...] Read more.
The efficiency of electric motors is highly dependent on their operating temperature, with lower temperatures contributing to enhanced performance, reliability, and extended service life. This study presents a comprehensive review of state-of-the-art cooling technologies and evaluates their impact on the thermal behavior of a commercial motor–generator system in high-demand applications. A baseline model of a permanent magnet synchronous motor (PMSM) was developed using MotorCAD 2023® software, which was supported by reverse engineering techniques to accurately replicate the motor’s physical and thermal characteristics. Subsequently, multiple cooling strategies were simulated under consistent operating conditions to assess their effectiveness. These strategies include conventional axial water jackets as well as advanced oil-based methods such as shaft cooling and direct oil spray to the windings. The integration of these systems in hybrid configurations was also explored to maximize thermal efficiency. Simulation results reveal that hybrid cooling significantly reduces the temperature of critical components such as stator windings and permanent magnets. This reduction in thermal stress improves current efficiency, power output, and torque capacity, enabling reliable motor operation across a broader range of speeds and under sustained high-load conditions. The findings highlight the effectiveness of hybrid cooling systems in optimizing both thermal management and operational performance of electric machines. Full article
Show Figures

Figure 1

28 pages, 3973 KiB  
Article
A Neural Network-Based Fault-Tolerant Control Method for Current Sensor Failures in Permanent Magnet Synchronous Motors for Electric Aircraft
by Shuli Wang, Zelong Yang and Qingxin Zhang
Aerospace 2025, 12(8), 697; https://doi.org/10.3390/aerospace12080697 - 4 Aug 2025
Viewed by 123
Abstract
To enhance the reliability of electric propulsion in electric aircraft and address power interruptions caused by current sensor failures, this study proposes a current sensorless fault-tolerant control strategy for permanent magnet synchronous motors (PMSMs) based on a long short-term memory (LSTM) network. First, [...] Read more.
To enhance the reliability of electric propulsion in electric aircraft and address power interruptions caused by current sensor failures, this study proposes a current sensorless fault-tolerant control strategy for permanent magnet synchronous motors (PMSMs) based on a long short-term memory (LSTM) network. First, a hierarchical architecture is constructed to fuse multi-phase electrical signals in the fault diagnosis layer (sliding mode observer). A symbolic function for the reaching law observer is designed based on Lyapunov theory, in order to generate current predictions for fault diagnosis. Second, when a fault occurs, the system switches to the LSTM reconstruction layer. Finally, gating units are used to model nonlinear dynamics to achieve direct mapping of speed/position to phase current. Verification using a physical prototype shows that the proposed method can complete mode switching within 10 ms after a sensor failure, which is 80% faster than EKF, and its speed error is less than 2.5%, fully meeting the high speed error requirements of electric aircraft propulsion systems (i.e., ≤3%). The current reconstruction RMSE is reduced by more than 50% compared with that of the EKF, which ensures continuous and reliable control while maintaining the stable operation of the motor and realizing rapid switching. The intelligent algorithm and sliding mode control fusion strategy meet the requirements of high real-time performance and provide a highly reliable fault-tolerant scheme for electric aircraft propulsion. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

25 pages, 394 KiB  
Article
SMART DShot: Secure Machine-Learning-Based Adaptive Real-Time Timing Correction
by Hyunmin Kim, Zahid Basha Shaik Kadu and Kyusuk Han
Appl. Sci. 2025, 15(15), 8619; https://doi.org/10.3390/app15158619 - 4 Aug 2025
Viewed by 121
Abstract
The exponential growth of autonomous systems demands robust security mechanisms that can operate within the extreme constraints of real-time embedded environments. This paper introduces SMART DShot, a groundbreaking machine learning-enhanced framework that transforms the security landscape of unmanned aerial vehicle motor control systems [...] Read more.
The exponential growth of autonomous systems demands robust security mechanisms that can operate within the extreme constraints of real-time embedded environments. This paper introduces SMART DShot, a groundbreaking machine learning-enhanced framework that transforms the security landscape of unmanned aerial vehicle motor control systems through seamless integration of adaptive timing correction and real-time anomaly detection within Digital Shot (DShot) communication protocols. Our approach addresses critical vulnerabilities in Electronic Speed Controller (ESC) interfaces by deploying four synergistic algorithms—Kalman Filter Timing Correction (KFTC), Recursive Least Squares Timing Correction (RLSTC), Fuzzy Logic Timing Correction (FLTC), and Hybrid Adaptive Timing Correction (HATC)—each optimized for specific error characteristics and attack scenarios. Through comprehensive evaluation encompassing 32,000 Monte Carlo test iterations (500 per scenario × 16 scenarios × 4 algorithms) across 16 distinct operational scenarios and PolarFire SoC Field-Programmable Gate Array (FPGA) implementation, we demonstrate exceptional performance with 88.3% attack detection rate, only 2.3% false positive incidence, and substantial vulnerability mitigation reducing Common Vulnerability Scoring System (CVSS) severity from High (7.3) to Low (3.1). Hardware validation on PolarFire SoC confirms practical viability with minimal resource overhead (2.16% Look-Up Table utilization, 16.57 mW per channel) and deterministic sub-10 microsecond execution latency. The Hybrid Adaptive Timing Correction algorithm achieves 31.01% success rate (95% CI: [30.2%, 31.8%]), representing a 26.5% improvement over baseline approaches through intelligent meta-learning-based algorithm selection. Statistical validation using Analysis of Variance confirms significant performance differences (F(3,1996) = 30.30, p < 0.001) with large effect sizes (Cohen’s d up to 4.57), where 64.6% of algorithm comparisons showed large practical significance. SMART DShot establishes a paradigmatic shift from reactive to proactive embedded security, demonstrating that sophisticated artificial intelligence can operate effectively within microsecond-scale real-time constraints while providing comprehensive protection against timing manipulation, de-synchronization, burst interference, replay attacks, coordinated multi-channel attacks, and firmware-level compromises. This work provides essential foundations for trustworthy autonomous systems across critical domains including aerospace, automotive, industrial automation, and cyber–physical infrastructure. These results conclusively demonstrate that ML-enhanced motor control systems can achieve both superior security (88.3% attack detection rate with 2.3% false positives) and operational performance (31.01% timing correction success rate, 26.5% improvement over baseline) simultaneously, establishing SMART DShot as a practical, deployable solution for next-generation autonomous systems. Full article
Show Figures

Figure 1

18 pages, 6130 KiB  
Article
Multi-Objective Optimization Design of Bearingless Interior Permanent Magnet Synchronous Motor Based on MOWOA
by Jianan Wang, Yizhou Hua, Boyan Xu and Yuchen Zhu
Electronics 2025, 14(15), 3080; https://doi.org/10.3390/electronics14153080 - 31 Jul 2025
Viewed by 217
Abstract
Bearingless interior permanent magnet synchronous motors (BIPMSMs) have received considerable attention in recent research due to their advantages of high speed, high power density, and absence of mechanical wear. In order to improve the torque and suspension performance of the BIPMSM, an optimization [...] Read more.
Bearingless interior permanent magnet synchronous motors (BIPMSMs) have received considerable attention in recent research due to their advantages of high speed, high power density, and absence of mechanical wear. In order to improve the torque and suspension performance of the BIPMSM, an optimization design method of BIPMSM is proposed in this paper based on sensitivity analysis, response surface fitting, and the multi-objective whale optimization algorithm (MOWOA). Firstly, the structure and operation principle of the BIPMSM are introduced. Secondly, significant variables are extracted based on sensitivity analysis. Then, regression equations of the significant variables and optimization objectives are fitted by the response surface method, and global optimization is performed with MOWOA. Finally, the motor performance before and after optimization is compared. The results demonstrate that the proposed multi-objective optimization design scheme can significantly improve the performance of the BIPMSM and effectively shorten the design cycle. Full article
Show Figures

Figure 1

20 pages, 10603 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 - 31 Jul 2025
Viewed by 168
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

21 pages, 3473 KiB  
Article
Reinforcement Learning for Bipedal Jumping: Integrating Actuator Limits and Coupled Tendon Dynamics
by Yudi Zhu, Xisheng Jiang, Xiaohang Ma, Jun Tang, Qingdu Li and Jianwei Zhang
Mathematics 2025, 13(15), 2466; https://doi.org/10.3390/math13152466 - 31 Jul 2025
Viewed by 281
Abstract
In high-dynamic bipedal locomotion control, robotic systems are often constrained by motor torque limitations, particularly during explosive tasks such as jumping. One of the key challenges in reinforcement learning lies in bridging the sim-to-real gap, which mainly stems from both inaccuracies in simulation [...] Read more.
In high-dynamic bipedal locomotion control, robotic systems are often constrained by motor torque limitations, particularly during explosive tasks such as jumping. One of the key challenges in reinforcement learning lies in bridging the sim-to-real gap, which mainly stems from both inaccuracies in simulation models and the limitations of motor torque output, ultimately leading to the failure of deploying learned policies in real-world systems. Traditional RL methods usually focus on peak torque limits but ignore that motor torque changes with speed. By only limiting peak torque, they prevent the torque from adjusting dynamically based on velocity, which can reduce the system’s efficiency and performance in high-speed tasks. To address these issues, this paper proposes a reinforcement learning jump-control framework tailored for tendon-driven bipedal robots, which integrates dynamic torque boundary constraints and torque error-compensation modeling. First, we developed a torque transmission coefficient model based on the tendon-driven mechanism, taking into account tendon elasticity and motor-control errors, which significantly improves the modeling accuracy. Building on this, we derived a dynamic joint torque limit that adapts to joint velocity, and designed a torque-aware reward function within the reinforcement learning environment, aimed at encouraging the policy to implicitly learn and comply with physical constraints during training, effectively bridging the gap between simulation and real-world performance. Hardware experimental results demonstrate that the proposed method effectively satisfies actuator safety limits while achieving more efficient and stable jumping behavior. This work provides a general and scalable modeling and control framework for learning high-dynamic bipedal motion under complex physical constraints. Full article
Show Figures

Figure 1

16 pages, 3379 KiB  
Article
Research on Electric Vehicle Differential System Based on Vehicle State Parameter Estimation
by Huiqin Sun and Honghui Wang
Vehicles 2025, 7(3), 80; https://doi.org/10.3390/vehicles7030080 - 30 Jul 2025
Viewed by 234
Abstract
To improve the stability and safety of electric vehicles during medium-to-high-speed cornering, this paper investigates torque differential control for dual rear-wheel hub motor drive systems, extending beyond traditional speed control based on the Ackermann steering model. A nonlinear three-degree-of-freedom vehicle dynamics model incorporating [...] Read more.
To improve the stability and safety of electric vehicles during medium-to-high-speed cornering, this paper investigates torque differential control for dual rear-wheel hub motor drive systems, extending beyond traditional speed control based on the Ackermann steering model. A nonlinear three-degree-of-freedom vehicle dynamics model incorporating the Dugoff tire model was established. By introducing the maximum correntropy criterion, an unscented Kalman filter was developed to estimate longitudinal velocity, sideslip angle at the center of mass, and yaw rate. Building upon the speed differential control achieved through Ackermann steering model-based rear-wheel speed calculation, improvements were made to the conventional exponential reaching law, while a novel switching function was proposed to formulate a new sliding mode controller for computing an additional yaw moment to realize torque differential control. Finally, simulations conducted on the Carsim/Simulink platform demonstrated that the maximum correntropy criterion unscented Kalman filter effectively improves estimation accuracy, achieving at least a 22.00% reduction in RMSE metrics compared to conventional unscented Kalman filter. With torque control exhibiting higher vehicle stability than speed control, the RMSE values of yaw rate and sideslip angle at the center of mass are reduced by at least 20.00% and 4.55%, respectively, enabling stable operation during medium-to-high-speed cornering conditions. Full article
Show Figures

Figure 1

21 pages, 3802 KiB  
Article
Parameter Identification and Speed Control of a Small-Scale BLDC Motor: Experimental Validation and Real-Time PI Control with Low-Pass Filtering
by Ayman Ibrahim Abouseda, Resat Ozgur Doruk and Ali Amini
Machines 2025, 13(8), 656; https://doi.org/10.3390/machines13080656 - 27 Jul 2025
Viewed by 410
Abstract
This paper presents a structured and experimentally validated approach to the parameter identification, modeling, and real-time speed control of a brushless DC (BLDC) motor. Electrical parameters, including resistance and inductance, were measured through DC and AC testing under controlled conditions, respectively, while mechanical [...] Read more.
This paper presents a structured and experimentally validated approach to the parameter identification, modeling, and real-time speed control of a brushless DC (BLDC) motor. Electrical parameters, including resistance and inductance, were measured through DC and AC testing under controlled conditions, respectively, while mechanical and electromagnetic parameters such as the back electromotive force (EMF) constant and rotor inertia were determined experimentally using an AVL dynamometer. The back EMF was obtained by operating the motor as a generator under varying speeds, and inertia was identified using a deceleration method based on the relationship between angular acceleration and torque. The identified parameters were used to construct a transfer function model of the motor, which was implemented in MATLAB/Simulink R2024b and validated against real-time experimental data using sinusoidal and exponential input signals. The comparison between simulated and measured speed responses showed strong agreement, confirming the accuracy of the model. A proportional–integral (PI) controller was developed and implemented for speed regulation, using a low-cost National Instruments (NI) USB-6009 data acquisition (DAQ) and a Kelly controller. A first-order low-pass filter was integrated into the control loop to suppress high-frequency disturbances and improve transient performance. Experimental tests using a stepwise reference speed profile demonstrated accurate tracking, minimal overshoot, and robust operation. Although the modeling and control techniques applied are well known, the novelty of this work lies in its integration of experimental parameter identification, real-time validation, and practical hardware implementation within a unified and replicable framework. This approach provides a solid foundation for further studies involving more advanced or adaptive control strategies for BLDC motors. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

24 pages, 5256 KiB  
Article
In-Wheel Motor Fault Diagnosis Method Based on Two-Stream 2DCNNs with DCBA Module
by Junwei Zhu, Xupeng Ouyang, Zongkang Jiang, Yanlong Xu, Hongtao Xue, Huiyu Yue and Huayuan Feng
Sensors 2025, 25(15), 4617; https://doi.org/10.3390/s25154617 - 25 Jul 2025
Viewed by 210
Abstract
To address the challenge of fault diagnosis for in-wheel motors in four-wheel independent driving systems under variable driving conditions and harsh environments, this paper proposes a novel method based on two-stream 2DCNNs (two-dimensional convolutional neural networks) with a DCBA (depthwise convolution block attention) [...] Read more.
To address the challenge of fault diagnosis for in-wheel motors in four-wheel independent driving systems under variable driving conditions and harsh environments, this paper proposes a novel method based on two-stream 2DCNNs (two-dimensional convolutional neural networks) with a DCBA (depthwise convolution block attention) module. The main contributions are twofold: (1) A DCBA module is introduced to extract multi-scale features—including prominent, local, and average information—from grayscale images reconstructed from vibration signals across different domains; and (2) a two-stream network architecture is designed to learn complementary feature representations from time-domain and time–frequency-domain signals, which are fused through fully connected layers to improve diagnostic accuracy. Experimental results demonstrate that the proposed method achieves high recognition accuracy under various working speeds, loads, and road surfaces. Comparative studies with SENet, ECANet, CBAM, and single-stream 2DCNN models confirm its superior performance and robustness. The integration of DCBA with dual-domain feature learning effectively enhances fault feature extraction under complex operating conditions. Full article
(This article belongs to the Special Issue Intelligent Maintenance and Fault Diagnosis of Mobility Equipment)
Show Figures

Figure 1

20 pages, 4182 KiB  
Article
A Soft Reconfigurable Inverted Climbing Robot Based on Magneto-Elastica-Reinforced Elastomer
by Fuwen Hu, Bingyu Zhao and Wenyu Jiang
Micromachines 2025, 16(8), 855; https://doi.org/10.3390/mi16080855 - 25 Jul 2025
Viewed by 338
Abstract
This work presents a novel type of soft reconfigurable mobile robot with multimodal locomotion, which is created using a controllable magneto-elastica-reinforced composite elastomer. The rope motor-driven method is employed to modulate magnetics–mechanics coupling effects and enable the magneto-elastica-reinforced elastomer actuator to produce controllable [...] Read more.
This work presents a novel type of soft reconfigurable mobile robot with multimodal locomotion, which is created using a controllable magneto-elastica-reinforced composite elastomer. The rope motor-driven method is employed to modulate magnetics–mechanics coupling effects and enable the magneto-elastica-reinforced elastomer actuator to produce controllable deformations. Furthermore, the 3D-printed magneto-elastica-reinforced elastomer actuators are assembled into several typical robotic patterns: linear configuration, parallel configuration, and triangular configuration. As a proof of concept, a few of the basic locomotive modes are demonstrated including squirming-type crawling at a speed of 1.11 mm/s, crawling with turning functions at a speed of 1.11 mm/s, and omnidirectional crawling at a speed of 1.25 mm/s. Notably, the embedded magnetic balls produce magnetic adhesion on the ferromagnetic surfaces, which enables the soft mobile robot to climb upside-down on ferromagnetic curved surfaces. In the experiment, the inverted ceiling-based inverted crawling speed is 2.17 mm/s, and the inverted freeform surface-based inverted crawling speed is 3.40 mm/s. As indicated by the experimental results, the proposed robot has the advantages of a simple structure, low cost, reconfigurable multimodal motion ability, and so on, and has potential application in the inspection of high-value assets and operations in confined environments. Full article
(This article belongs to the Special Issue Development and Applications of Small-Scale Soft Robotics)
Show Figures

Figure 1

19 pages, 4344 KiB  
Article
Modeling of a C-Frame Reluctance-Enhanced Shaded-Pole Induction Motor—Study of Shaded-Coil Design
by Selma Čorović and Damijan Miljavec
Actuators 2025, 14(8), 368; https://doi.org/10.3390/act14080368 - 24 Jul 2025
Viewed by 266
Abstract
Shaded-pole induction motors are the most frequently used single-phase electric motors in low power applications. Their main advantages are reliability, robustness, low level of noise and vibration, relatively simple manufacturing technology and cost effectiveness. These motors are the driving units of choice in [...] Read more.
Shaded-pole induction motors are the most frequently used single-phase electric motors in low power applications. Their main advantages are reliability, robustness, low level of noise and vibration, relatively simple manufacturing technology and cost effectiveness. These motors are the driving units of choice in the applications where the variable speed and high starting torque are not of utmost importance, in spite of the fact that they are characterized by inferior efficiency, power factor and starting torque compared to their single-phase counterparts. They are equipped with auxiliary massive copper coils at the stator side, which makes them self-starting, and strongly influence the motor characteristics. This study deals with the numerical modeling and analysis of a shaded-pole induction motor with a C-shaped stator frame. The analysis was performed using 2D finite element-based transient magnetic numerical modeling. The primary objective was to investigate the influence of the number and size of the auxiliary shaded coils on the output torque speed characteristic. We explored the possibility of reducing the amount of material used while preserving the crucial/nominal properties of the motor. Our results have important implications in manufacturing simplification, which may be important for the eco-design of small motors and actuators, including their recycling and/or reuse process. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

19 pages, 5089 KiB  
Article
Fast Simulation and Optimization Design of a Slotless Micro-Motor for High-Speed and High-Flow Pumps
by Zhaohai Jin, Weizhong Fang, Jiawei Xu, Tianxiong Lu, Shitao Yang, Li Zhou and Sa Zhu
Machines 2025, 13(8), 649; https://doi.org/10.3390/machines13080649 - 24 Jul 2025
Viewed by 332
Abstract
The effective part of the winding in a slotless motor varies across different axial sections of the motor, resulting in a three-dimensional structure. Therefore, it is not feasible to simply use the single-section simulation method of conventional radial field motors for motor simulation. [...] Read more.
The effective part of the winding in a slotless motor varies across different axial sections of the motor, resulting in a three-dimensional structure. Therefore, it is not feasible to simply use the single-section simulation method of conventional radial field motors for motor simulation. Currently, the simulation of slotless motors primarily depends on three-dimensional electromagnetic fields, which present significant modeling challenges and require extensive simulation times, rendering them unsuitable for engineering applications. This paper introduces a method for analyzing slotless motors using a two-dimensional electromagnetic field, based on the electromagnetic field simulation software EasiMotor (R2025). The study elucidates the principle of employing a two-dimensional electromagnetic field to analyze slotless motors and applies this method to the design of a slotless motor with a diameter of 4.5 mm. Through the fabrication of prototypes and performance testing, experimental results validate the accuracy and efficiency of this method. Full article
Show Figures

Figure 1

Back to TopTop