Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,017)

Search Parameters:
Keywords = high porosity carbon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6506 KB  
Article
Time-Engineered Hydrothermal Nb2O5 Nanostructures for High-Performance Asymmetric Supercapacitors
by Rutuja U. Amate, Mrunal K. Bhosale, Aviraj M. Teli, Sonali A. Beknalkar, Hajin Seo, Yeonsu Lee and Chan-Wook Jeon
Nanomaterials 2026, 16(3), 173; https://doi.org/10.3390/nano16030173 - 27 Jan 2026
Abstract
Precise control over nanostructure evolution is critical for optimizing the electrochemical performance of pseudocapacitive materials. In this work, Nb2O5 nanostructures were synthesized via a time-engineered hydrothermal route by systematically varying the reaction duration (6, 12, and 18 h) to elucidate [...] Read more.
Precise control over nanostructure evolution is critical for optimizing the electrochemical performance of pseudocapacitive materials. In this work, Nb2O5 nanostructures were synthesized via a time-engineered hydrothermal route by systematically varying the reaction duration (6, 12, and 18 h) to elucidate its influence on structural development, charge storage kinetics, and supercapacitor performance. Structural and surface analyses confirm the formation of phase-pure monoclinic Nb2O5 with a stable Nb5+ oxidation state. Morphological investigations reveal that a 12 h reaction time produces hierarchically organized Nb2O5 architectures composed of nanograin-assembled spherical aggregates with interconnected porosity, providing optimized ion diffusion pathways and enhanced electroactive surface exposure. Electrochemical evaluation demonstrates that the NbO-12 electrode delivers superior pseudocapacitive behavior dominated by diffusion-controlled Nb5+/Nb4+ redox reactions, exhibiting high areal capacitance (5.504 F cm−2 at 8 mA cm−2), fast ion diffusion kinetics, low internal resistance, and excellent cycling stability with 85.73% capacitance retention over 12,000 cycles. Furthermore, an asymmetric pouch-type supercapacitor assembled using NbO-12 as the positive electrode and activated carbon as the negative electrode operates stably over a wide voltage window of 1.5 V, delivering an energy density of 0.101 mWh cm−2 with outstanding durability. This study establishes hydrothermal reaction-time engineering as an effective strategy for tailoring Nb2O5 nanostructures and provides valuable insights for the rational design of high-performance pseudocapacitive electrodes for advanced energy storage systems. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

14 pages, 2416 KB  
Article
Highly Porous Polyimide Gel for Use as a Battery Separator with Room-Temperature Ionic Liquid Electrolytes
by Rocco P. Viggiano, James Wu, Daniel A. Scheiman, Brianne DeMattia, Patricia Loyselle and Baochau N. Nguyen
Gels 2026, 12(2), 108; https://doi.org/10.3390/gels12020108 - 27 Jan 2026
Abstract
Advanced aerospace vehicle concepts demand concurrent advances in energy storage technologies that improve both specific energy and safety. Commercial lithium-ion batteries commonly employ polyolefin microporous separators and carbonate-based liquid electrolytes, which can deliver room-temperature ionic conductivities on the order of 10−3–10 [...] Read more.
Advanced aerospace vehicle concepts demand concurrent advances in energy storage technologies that improve both specific energy and safety. Commercial lithium-ion batteries commonly employ polyolefin microporous separators and carbonate-based liquid electrolytes, which can deliver room-temperature ionic conductivities on the order of 10−3–10−2 S/cm but rely on inherently flammable solvents. Room-temperature ionic liquids (RTILs) offer a nonvolatile, nonflammable alternative with a stable electrochemical window; however, many RTILs exhibit poor compatibility and wetting with polyolefin separators. Here, we evaluate highly porous, cross-linked polyimide (PI) gel separators based on 4,4′-oxydianiline (ODA) and biphenyl-3,3′,4,4′-tetracarboxylic dianhydride (BPDA), cross-linked with Desmodur N3300A, formulated with repeating unit lengths (n) of 30 and 60. These PI gel separators exhibit an open, fibrillar network with high porosity (typically >85%), high thermal stability (onset decomposition > 561 °C), and high char yield. Six imidazolium-based RTILs containing 10 wt% LiTFSI were screened, yielding nonflammable separator/electrolyte systems with room-temperature conductivities in the 10−3 S/cm range. Among the RTILs studied, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI) provided the best overall performance. Ionic conductivity and its retention after four months of storage at 75 °C were evaluated in the EMIM-TFSI/LiTFSI system, and the corresponding gel separator exhibited a tensile modulus of 26.66 MPa. Collectively, these results demonstrate that PI gel separators can enable carbonate-free, nonflammable RTIL electrolytes while maintaining the ionic conductivity suitable for lithium-based cells. Full article
(This article belongs to the Special Issue Gels for Energy Applications)
Show Figures

Figure 1

18 pages, 4050 KB  
Article
Pore-Scale Evolution of Effective Properties in Porous Rocks During Dissolution/Erosion and Precipitation
by Xiaoyu Wang, Songqing Zheng, Yingfu He, Yujie Wang, Enhao Liu, Yandong Zhang, Fengchang Yang and Bowen Ling
Appl. Sci. 2026, 16(3), 1287; https://doi.org/10.3390/app16031287 - 27 Jan 2026
Abstract
Reactive transport in porous media exists ubiquitously in natural and industrial systems—reformation of geological energy repository, carbon dioxide (CO2) sequestration, CO2 storage via mineralization, and soil remediation are just some examples where geo-/bio-chemical reactions play a key role. Reactive transport [...] Read more.
Reactive transport in porous media exists ubiquitously in natural and industrial systems—reformation of geological energy repository, carbon dioxide (CO2) sequestration, CO2 storage via mineralization, and soil remediation are just some examples where geo-/bio-chemical reactions play a key role. Reactive transport models are expected to provide assessments of (1) the effective property variation and (2) the reaction capability. However, the synergy among flow, solute transport, and reaction undermines the predictability of the existing model. In recent decades, the Micro-Continuum Approach (MCA) has demonstrated advantages for modeling pore-scale reactive transport and high accuracy compared with experiments. In this study, we present an MCA-based numerical framework that simulates dissolution/erosion or precipitation in digital rocks. The framework imports two- or three-dimensional digital rock samples, conducts reactive transport simulations, and evaluates dynamic changes in porosity, surface area, permeability tensor, tortuosity, mass change, and reaction rate. The results show that samples with similar effective properties, e.g., porosity or permeability, may exhibit different reaction abilities, suggesting that the pore-scale geometry has a strong impact on reactive transport. Additionally, the numerical framework demonstrates the advantage of conducting multiple reaction studies on the same sample, in contrast to reality, where there is often only one physical experiment. This advantage enables the identification of the optimal condition, quantified by the dimensionless Pe´clet number and Damko¨hler number, to reach the maximum reaction. We believe that the newly developed framework serves as a toolbox for evaluating reactivity capacity and predicting effective properties of digital samples. Full article
(This article belongs to the Special Issue Geochemistry and Geochronology of Rocks)
19 pages, 11282 KB  
Article
Bamboo Derived Charcoal for Highly-Efficient Photothermal Evaporation Materials
by Wenmu Feng, Shushan Yuan, Junyao Dai, Jiran Wu, Bing Li and Yue Wang
Separations 2026, 13(2), 44; https://doi.org/10.3390/separations13020044 - 26 Jan 2026
Abstract
Bamboo-derived biochar (BC) is promising for high-salinity wastewater treatment through photothermal evaporation. This study systematically evaluated BCs synthesized at 400–800 °C with residence times of 40 or 70 min. Pyrolysis temperature proved dominant, with 600 °C representing a critical threshold. Below this temperature, [...] Read more.
Bamboo-derived biochar (BC) is promising for high-salinity wastewater treatment through photothermal evaporation. This study systematically evaluated BCs synthesized at 400–800 °C with residence times of 40 or 70 min. Pyrolysis temperature proved dominant, with 600 °C representing a critical threshold. Below this temperature, BCs maintained high carbon content and polar functional groups but exhibited limited porosity. Above it, structural reorganization enhanced pore development and aromaticity while reducing polar surface groups. Residence time primarily influenced volatile retention, and prolonged pyrolysis led to pore collapse. The optimal BC—produced at 800 °C for 40 min—combined hierarchical porosity with balanced surface chemistry, achieving an evaporation rate of 1.21 kg/m2·h and a photothermal efficiency of 70.45% under high-salinity conditions. Mechanistic analysis indicates that short, high-temperature pyrolysis preserves structural integrity and interfacial activity with minimal energy input. These results establish a thermal processing approach that reconciles carbon stability with surface functionality, offering practical guidance for scaling efficient and sustainable biochar-based wastewater treatment systems. Full article
(This article belongs to the Special Issue Separation Process for Sustainable Utilization of Bioresources)
Show Figures

Figure 1

17 pages, 13859 KB  
Article
Research on the BEM Reinforcement Mechanism of the POSF Method for Ocean Stone Construction
by Yuhong Ding, Yujing Lai, Jinxuan Wang, Yili Fu, Li Chen, Tengfei Ma and Ruiming Guan
Coatings 2026, 16(1), 145; https://doi.org/10.3390/coatings16010145 - 22 Jan 2026
Viewed by 175
Abstract
The Planting Oysters to Strengthen the Foundation (POSF) method, as a construction technique for coastal stone structures in the Northern Song Dynasty of China (1059), has been preserved to this day. Exploring its long-term reinforcement mechanism can provide theoretical support and practical guidance [...] Read more.
The Planting Oysters to Strengthen the Foundation (POSF) method, as a construction technique for coastal stone structures in the Northern Song Dynasty of China (1059), has been preserved to this day. Exploring its long-term reinforcement mechanism can provide theoretical support and practical guidance for the protection and sustainable development of world marine cultural heritage. This article uses Crustacean Ash Triad Clay (CATC) from Shihu Ancient Wharf in Quanzhou as a case study and conducts a systematic investigation using XRD, Raman, SEM-EDS, FTIR, and 16S rRNA high-throughput sequencing. The results show that CATC has a core skeleton of 94.6% quartz, with potassium feldspar, dolomite, and metal compounds as auxiliary components; that its 19.04% porosity provides enrichment space for positively charged ions and tide-borne microorganisms; that electrostatic adsorption between barnacle adhesive and the material achieves physical reinforcement; and that microbial metabolism promotes dolomite formation, producing chemical reinforcement. Thus, the ternary coupling of Biology–Environment–Materials forms a BEM long-term reinforcement mechanism suitable for low-carbon construction in the ocean. Full article
Show Figures

Graphical abstract

10 pages, 1511 KB  
Article
Improvements of Both Anode Catalyst Layer and Porous Transport Layer for the Efficient Proton-Exchange Membrane Water Electrolysis
by Zehao Tan, Ruofan Yu, Baoduo Jin, Chen Deng, Zhidong Huang and Liuxuan Luo
Catalysts 2026, 16(1), 101; https://doi.org/10.3390/catal16010101 - 20 Jan 2026
Viewed by 170
Abstract
In recent years, green hydrogen production via water electrolysis driven by renewable energy sources has garnered increasingly significant attention. Among the various water electrolysis technologies, proton-exchange membrane water electrolysis (PEMWE) distinguishes itself owing to the unique advantages, including the compact architecture, high efficiency, [...] Read more.
In recent years, green hydrogen production via water electrolysis driven by renewable energy sources has garnered increasingly significant attention. Among the various water electrolysis technologies, proton-exchange membrane water electrolysis (PEMWE) distinguishes itself owing to the unique advantages, including the compact architecture, high efficiency, rapid dynamic response, and high purity of the generated hydrogen. The membrane electrode assembly (MEA) serves as the core component of a PEM electrolyzer. And only a high-performance and stable MEA can provide a reliable platform for investigating the mass transport behavior within the porous transport layer (PTL). In this study, the MEA fabrication method was optimized by varying the ionomer-to-carbon (I/C) ratio, coating strategy, and anode Ir mass loading. As a result, the cell voltage was reduced from 1.679 V to 1.645 V at 1.0 A cm−2, with a small degradation of 1.3% over 70 h of operation. Based on the optimized MEA, the effects of the structure and porosity of PTL on the mass transport behavior were further analyzed. After the PTL parameter optimization, the cell voltage was further reduced to 1.630 V at 1.0 A cm−2, while a high-speed camera captured bubble dynamics in real time, showing the fast detachment of small oxygen bubbles. The integrated electrochemical and visualization results provide a useful guideline to designing both MEA and PTL for efficient PEMWE. Full article
(This article belongs to the Special Issue Advanced Catalysts for Water Electrolysis)
Show Figures

Graphical abstract

63 pages, 2394 KB  
Review
Hydrothermal Carbonization of Biomass for Hydrochar Production: Mechanisms, Process Parameters, and Sustainable Valorization
by Halil Durak, Rahmiye Zerrin Yarbay and Burçin Atilgan Türkmen
Processes 2026, 14(2), 339; https://doi.org/10.3390/pr14020339 - 18 Jan 2026
Viewed by 456
Abstract
Hydrothermal carbonization (HTC) represents a promising thermochemical method for converting wet biomass under moderate aqueous conditions into carbon-rich materials, characterized by specific attributes. Notwithstanding the increasing interest surrounding HTC, the current literature remains fragmented regarding the precise mechanisms by which process parameters influence [...] Read more.
Hydrothermal carbonization (HTC) represents a promising thermochemical method for converting wet biomass under moderate aqueous conditions into carbon-rich materials, characterized by specific attributes. Notwithstanding the increasing interest surrounding HTC, the current literature remains fragmented regarding the precise mechanisms by which process parameters influence hydrochar formation, its properties, and sustainable utilization. Consequently, the primary objective of this review is to systematically elucidate the fundamental mechanisms that govern HTC, to identify key parameters impacting hydrochar yield and quality, and to assess the sustainability and prospective contributions of HTC within the context of circular economy principles. This paper elaborates on the reaction pathways of hydrolysis, dehydration, decarboxylation, and aromatization that dictate the structural alterations and carbon densification of hydrochars. It emphasizes the roles of temperature, residence time, solid/liquid ratio, catalysts, and feedstock composition in jointly determining hydrochar yield, elemental composition, aromaticity, porosity, and energy density. Additionally, recent advancements, including microwave-assisted HTC, catalytic modifications, and post-activation techniques, are reviewed to enhance hydrochar functionality for applications in energy, adsorption, catalysis, and soil enhancement. Challenges remain regarding the scale-up of the process, reactor design, standardization of hydrochar properties, and the sustainable management or valorization of process water. This review integrates mechanistic insights with recent technological progress to position HTC as a versatile and sustainable method for producing high-value hydrochars, thereby underscoring its potential role in future biorefineries and circular economy initiatives. Full article
(This article belongs to the Special Issue Advances in Waste Valorization into High-Value Chemicals)
Show Figures

Graphical abstract

28 pages, 21767 KB  
Article
Reservoir Characteristics and Productivity Controlling Factors of the Wufeng–Longmaxi Formations in the Lu203–Yang101 Well Block, Southern Sichuan Basin, China
by Zhi Gao, Tian Tang, Cheng Yang, Jing Li, Yijia Wu, Ying Wang, Jingru Ruan, Yi Xiao, Hu Li and Kun Zhang
Energies 2026, 19(2), 444; https://doi.org/10.3390/en19020444 - 16 Jan 2026
Viewed by 178
Abstract
The Wufeng–Longmaxi (WF–LMX) shale gas reservoirs at depths > 3500 m in the Lu203–Yang101 well block, southern Sichuan Basin, possess great exploration potential, but their reservoir characteristics and high-production mechanisms remain unclear. In this study, we employed multi-scale analyses—including core geochemistry, X-ray diffraction [...] Read more.
The Wufeng–Longmaxi (WF–LMX) shale gas reservoirs at depths > 3500 m in the Lu203–Yang101 well block, southern Sichuan Basin, possess great exploration potential, but their reservoir characteristics and high-production mechanisms remain unclear. In this study, we employed multi-scale analyses—including core geochemistry, X-ray diffraction (XRD), scanning electron microscopy (SEM), low-pressure N2 adsorption, and nuclear magnetic resonance (NMR)—to characterize the macro- and micro-scale characteristics of these deep shales. By comparing with shallower shales in adjacent areas, we investigated differences in pore structure between deep and shallow shales and the main controlling factors for high gas-well productivity. The results show that the Long 11 sub-member shales are rich in organic matter, with total organic carbon (TOC) content decreasing upward. The mineral composition is dominated by quartz (averaging ~51%), which slightly decreases upward, while clay content increases upward. Porosity ranges from 1% to 7%; the Long11-1-3 sublayers average 4–6%, locally >6%. Gas content correlates closely with TOC and porosity, highest in the Long11-1 sublayer (6–10 m3/t) and decreasing upward, and the central part of the study area has higher gas content than adjacent areas. The micro-pore structure exhibits pronounced stratigraphic differences: the WF Formation top and Long11-1 and Long11-3 sublayers are dominated by connected round or bubble-like organic pores (50–100 nm), whereas the Long11-2 and Long11-4 sublayers contain mainly smaller isolated organic pores (5–50 nm). Compared to shallow shales nearby, the deep shales have a slightly lower proportion of organic pores, smaller pore sizes with more isolated pores, inorganic pores of mainly intraparticle types, and more developed microfractures, confirming that greater burial depth leads to a more complex pore structure. Type I high-quality reservoirs are primarily distributed from the top of the WF Formation to the Long11-3 sublayer, with a thickness of 15.6–38.5 m and a continuous thickness of 13–23 m. The Lu206–Yang101 area has the thickest high-quality reservoir, with a cumulative thickness of Type I + II exceeding 60 m. Shale gas-well high productivity is jointly controlled by multiple factors: an oxygen-depleted, stagnant deep-shelf environment, with deposited organic-rich, biogenic siliceous shales providing the material basis for high yields; abnormally high pore-fluid pressure with preserved abundant large organic pores and increased free gas content; and effective multi-stage massive fracturing connecting a greater reservoir volume, which is the key to achieving high gas-well production. This study provides a scientific basis for evaluating deep marine shale gas reservoirs in southern Sichuan and understanding the enrichment patterns for high productivity. Full article
Show Figures

Figure 1

21 pages, 41496 KB  
Article
Surface Nanoengineering of Gold via Oxalic Acid Anodization: Morphology, Composition, Electronic Properties, and Corrosion Resistance in Artificial Saliva
by Bożena Łosiewicz, Delfina Nowińska, Julian Kubisztal and Patrycja Osak
Materials 2026, 19(2), 335; https://doi.org/10.3390/ma19020335 - 14 Jan 2026
Viewed by 177
Abstract
Nanoporous gold (np-Au) has attracted significant attention for biomedical and electrochemical applications due to its high surface area, tunable morphology, and excellent biocompatibility. In this study, polycrystalline gold surfaces were modified by anodization in 0.3–0.9 M oxalic acid to produce np-Au layers. The [...] Read more.
Nanoporous gold (np-Au) has attracted significant attention for biomedical and electrochemical applications due to its high surface area, tunable morphology, and excellent biocompatibility. In this study, polycrystalline gold surfaces were modified by anodization in 0.3–0.9 M oxalic acid to produce np-Au layers. The influence of anodization conditions on surface morphology, chemical composition, electronic properties, and corrosion resistance in artificial saliva was systematically investigated. Surface morphology and porosity were analyzed by scanning electron microscopy combined with image analysis, revealing a transition from fine and uniform porosity to highly developed but structurally heterogeneous nanoporous structures with increasing oxalic acid concentration. Energy-dispersive spectroscopy confirmed surface oxidation and adsorption of oxygen- and carbon-containing species after anodization, while gold remained the dominant component. Scanning Kelvin probe measurements demonstrated significant modifications of surface electronic properties, including changes in contact potential difference, governed by nanostructure geometry and surface chemistry. Electrochemical tests in artificial saliva showed that increasing nanoporousness led to reduced thermodynamic stability, with the sample anodized in 0.3 M oxalic acid providing the most favorable balance between corrosion resistance and surface activity. These results demonstrate that oxalic acid anodization is a simple and effective approach for tailoring gold surfaces for biomedical applications, particularly in dentistry. Full article
(This article belongs to the Special Issue Biomedical Alloys: Corrosion Protection and New Coatings)
Show Figures

Graphical abstract

15 pages, 2845 KB  
Article
One-Step CO2-Assisted Pyrolysis of Spent Coffee Grounds: A Simpler Route to Highly Porous Biochar Compared with Two-Step Pyrolysis–CO2 Activation
by Ancuţa Balla, Cristina Marcu, Maria Mihet, Irina Kacsó, Septimiu Tripon, Alexandru Turza and József-Zsolt Szücs-Balázs
ChemEngineering 2026, 10(1), 14; https://doi.org/10.3390/chemengineering10010014 - 14 Jan 2026
Viewed by 250
Abstract
Spent coffee grounds (SCG) are an abundant, carbon-rich residue that can be valorized through thermochemical conversion into biochar. Conventional CO2 activation is typically performed in a two-step process, which is time- and energy-consuming. This study aims to evaluate whether a one-step CO [...] Read more.
Spent coffee grounds (SCG) are an abundant, carbon-rich residue that can be valorized through thermochemical conversion into biochar. Conventional CO2 activation is typically performed in a two-step process, which is time- and energy-consuming. This study aims to evaluate whether a one-step CO2-assisted pyrolysis can produce biochar with comparable or enhanced structural and textural properties while simplifying the process. We compare a two-step pyrolysis process followed by CO2 activation with a one-step CO2-assisted route for producing biochar from SCG. CO2 treatment markedly increases surface area (from 9.8 m2∙g−1 to 550.6–671.0 m2∙g−1) and pore volume. FTIR and Boehm titration indicate depletion of oxygenated surface groups, while N2 adsorption–desorption analyses and SEM reveal a more uniform micro/mesoporous texture for the one-step sample. Although fixed carbon decreases due to gasification, the one-step route delivers superior textural properties in a single thermal stage, reducing energy demand. These results highlight one-step CO2-assisted pyrolysis as an efficient, scalable option for producing high-porosity biochar from coffee waste. Full article
Show Figures

Graphical abstract

13 pages, 2281 KB  
Article
Microstructural Engineering of Magnetic Wood for Enhanced Magnetothermal Conversion
by Yuxi Lin, Chen Chen and Wei Xu
Magnetochemistry 2026, 12(1), 11; https://doi.org/10.3390/magnetochemistry12010011 - 13 Jan 2026
Viewed by 150
Abstract
The increasing energy crisis demands sustainable functional materials. Wood, with its natural three-dimensional porous structure, offers an ideal renewable template. This study demonstrates that microstructural engineering of wood is a decisive strategy for enhancing magnetothermal conversion. Using eucalyptus wood, we precisely tailored its [...] Read more.
The increasing energy crisis demands sustainable functional materials. Wood, with its natural three-dimensional porous structure, offers an ideal renewable template. This study demonstrates that microstructural engineering of wood is a decisive strategy for enhancing magnetothermal conversion. Using eucalyptus wood, we precisely tailored its pore architecture via delignification and synthesized Fe3O4 nanoparticles in situ through coprecipitation. We systematically investigated the effects of delignification and precursor immersion time (24, 48, 72 h) on the loading, distribution, and magnetothermal performance of the composites. Delignification drastically increased wood porosity, raising the Fe3O4 loading capacity from ~5–6% (in non-delignified wood) to over 14%. Immersion time critically influenced nanoparticle distribution: 48 h achieved optimal deep penetration and uniformity, whereas extended time (72 h) induced minor local agglomeration. The optimized composite (MDW-48) achieved an equilibrium temperature of 51.2 °C under a low alternating magnetic field (0.06 mT, 35 kHz), corresponding to a temperature rise (ΔT) > 24 °C and a Specific Loss Power (SLP) of 1.31W·g−1. This performance surpasses that of the 24 h sample (47 °C, SLP = 1.16 W·g−1) and rivals other bio-based magnetic systems. This work establishes a clear microstructure–property relationship: delignification enables high loading, while controlled impregnation tunes distribution uniformity, both directly governing magnetothermal efficiency. Our findings highlight delignified magnetic wood as a robust, sustainable platform for efficient low-field magnetothermal conversion, with promising potential in low-carbon thermal management. Full article
Show Figures

Figure 1

34 pages, 4143 KB  
Article
Coconut Shell-Derived Activated Carbons: Preparation, Physicochemical Properties, and Dye Removal from Water
by Vanda María Cachola Maldito Lowden, María Francisca Alexandre-Franco, Juan Manuel Garrido-Zoido, Eduardo Manuel Cuerda-Correa and Vicente Gómez-Serrano
Molecules 2026, 31(2), 263; https://doi.org/10.3390/molecules31020263 - 12 Jan 2026
Viewed by 241
Abstract
Valorizing coconut shell waste as a renewable lignocellulosic precursor offers a sustainable route to produce high-performance activated carbons for wastewater treatment. In this study, coconut shells were transformed into activated carbons through physical activation (air, CO2, steam) and chemical activation (H [...] Read more.
Valorizing coconut shell waste as a renewable lignocellulosic precursor offers a sustainable route to produce high-performance activated carbons for wastewater treatment. In this study, coconut shells were transformed into activated carbons through physical activation (air, CO2, steam) and chemical activation (H3PO4, ZnCl2, KOH), allowing direct comparison of how each method influences porosity and surface chemistry. Among the physically activated samples, steam activation produced the best material, A-ST, with SBET = 738 m2 g−1, Vmi = 0.38 cm3 g−1 and Vme = 0.07 cm3 g−1. KOH activation yielded the top-performing carbon, A-KOH, achieving SBET = 1600 m2 g−1, Vmi = 0.74 cm3 g−1, and Vme = 0.22 cm3 g−1. Adsorption tests with methylene blue, methyl orange, and orange G showed a clear link between physicochemical features and dye uptake. A-ST and A-KOH exhibited the highest capacities due to their wide micro–mesoporosity and favorable surface charge at the adsorption pH. In both cases, methylene blue was most strongly retained, confirming that large aromatic cations benefit from π–π interactions with graphene-like layers and easy micropore access. Overall, the results demonstrate that coconut-shell valorization is maximized when activation enhances both porosity and surface chemistry, enabling the production of tailored sorbents for the efficient removal of organic contaminants. Full article
(This article belongs to the Special Issue Carbon-Based Materials for Sustainable Chemistry: 3rd Edition)
Show Figures

Figure 1

46 pages, 6520 KB  
Review
A Comprehensive Review on Dual-Pathway Utilization of Coal Gangue Concrete: Aggregate Substitution, Cementitious Activity Activation, and Performance Optimization
by Yuqi Wang, Lin Zhu and Yi Xue
Buildings 2026, 16(2), 302; https://doi.org/10.3390/buildings16020302 - 11 Jan 2026
Viewed by 185
Abstract
Coal gangue, as a predominant solid byproduct of the global coal industry, poses severe environmental challenges because of its massive accumulation and low utilization rate. This review systematically synthesizes and analyzes published experimental and analytical studies on the dual-pathway utilization of coal gangue [...] Read more.
Coal gangue, as a predominant solid byproduct of the global coal industry, poses severe environmental challenges because of its massive accumulation and low utilization rate. This review systematically synthesizes and analyzes published experimental and analytical studies on the dual-pathway utilization of coal gangue in concrete, including Pathway 1 (aggregate substitution) and Pathway 2 (cementitious activity activation). While the application of coal gangue aggregates is traditionally limited by their inherent high porosity and lower mechanical strength than those of natural aggregates, this review demonstrates that performance barriers can be effectively overcome. Through multiscale modification strategies—including surface densification, biological mineralization (MICP), and matrix synergy—the interfacial defects are significantly mitigated, allowing for feasible substitution in structural concrete. Conversely, for the mineral admixture pathway, controlled thermal activation is identified as a key process to optimize the phase transformation of kaolinite, thereby significantly enhancing pozzolanic reactivity and long-term durability. According to reported studies, the partial replacement of natural aggregates or cement with coal gangue can reduce CO2 emissions by approximately tens to several hundreds of kilograms per ton of coal gangue utilized, depending on the substitution level and activation strategy, highlighting its considerable potential for carbon reduction in the construction sector. Nevertheless, challenges related to energy-intensive activation processes and variability in raw gangue composition remain. These limitations indicate the need for future research focusing on low-carbon activation technologies, standardized classification of coal gangue resources, and long-term performance validation under realistic service environments. Based on the synthesized literature, this review discusses hierarchical utilization concepts and low-carbon activation approaches as promising directions for promoting the sustainable transformation of coal gangue from an environmental liability into a carbon-reduction asset in the construction industry. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

24 pages, 2187 KB  
Article
Modeling of the Chemical Re-Alkalization of Concrete by Application of Alkaline Mortars
by Clarissa Glawe, Rebecca Achenbach and Michael Raupach
Materials 2026, 19(2), 278; https://doi.org/10.3390/ma19020278 - 9 Jan 2026
Viewed by 219
Abstract
Since the number of existing steel-reinforced concrete buildings affected by carbonation-induced corrosion is steadily increasing, there is a high demand for durable repair methods. Chemical re-alkalization (CRA) represents one such approach, relying on the transport of alkaline pore solution from a repair mortar [...] Read more.
Since the number of existing steel-reinforced concrete buildings affected by carbonation-induced corrosion is steadily increasing, there is a high demand for durable repair methods. Chemical re-alkalization (CRA) represents one such approach, relying on the transport of alkaline pore solution from a repair mortar into carbonated concrete. With the introduction of clinker-reduced binder systems such as hybrid alkali-activated binders (HAABs), their suitability for CRA and governing material parameters require further clarification. In this study, material-related chemical and structural influences on CRA were investigated using an adapted form of Fick’s second law of diffusion, incorporating a time-dependent attenuation factor, β(t). The CRA progression was evaluated over 28 days, distinguishing between an initial suction phase and a subsequent diffusion phase. The results show that a high initial alkalinity of the mortar pore solution (pH > 14) significantly enhances re-alkalization during the suction phase, reflected by suction factors a > 1. In contrast, progression during the diffusion phase is primarily governed by the potassium concentration gradient at the mortar–concrete interface, while structural parameters such as capillary porosity show no systematic correlation with the deceleration factor b (−0.46 ≤ b ≤ −0.26). The findings indicate that, within the investigated range, mortar pore solution chemistry has a stronger influence on CRA than structural properties, providing guidance for the targeted design of alkaline repair mortars. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 3258 KB  
Article
Sustainable Carbon–Carbon Composites from Biomass-Derived Pitch: Optimizing Structural, Electrical, and Mechanical Properties via Catalyst Engineering
by Zeban Shah, Muhammad Nisar, Inam Ullah, Muhammad Yaseen, Abiodun Oluwatosin Adeoye, Shaowei Zhang, Sayyar Ali Shah and Habib Ullah
Catalysts 2026, 16(1), 74; https://doi.org/10.3390/catal16010074 - 8 Jan 2026
Cited by 1 | Viewed by 695
Abstract
This work is based on our previous research on sulfur-assisted graphitization of biopitch by focusing on catalyst-driven optimization of biomass-derived pitch (BDP) composites as sustainable alternatives to coal tar pitch (CTP). Biomass from eucalyptus sawdust was pyrolyzed to produce BDP, which was used [...] Read more.
This work is based on our previous research on sulfur-assisted graphitization of biopitch by focusing on catalyst-driven optimization of biomass-derived pitch (BDP) composites as sustainable alternatives to coal tar pitch (CTP). Biomass from eucalyptus sawdust was pyrolyzed to produce BDP, which was used as a binder for carbon–carbon composites. The properties of BDP/graphite and CTP/graphite composites, including bending strength, electrical conductivity, hardness, density, porosity, mass loss, and shrinkage, were compared. Furthermore, the influence of catalysts (NiSO4, K2SO4, CuSO4, FeSO4, and KOH) on composite performance was systematically investigated. Results show that catalyst selection significantly enhances structural, electrical, and mechanical properties, demonstrating the potential of combining eco-friendly materials with strategic catalyst engineering to develop high-performance, sustainable composites. Full article
Show Figures

Graphical abstract

Back to TopTop