Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = high field modulated FET

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3883 KB  
Article
Interaction of Organic Semiconductors and Graphene Materials in the Source-Drain Channel of Field-Effect Transistors
by Eugen Chiriac, Bianca Adiaconita, Tiberiu Burinaru, Catalin Marculescu, Marius Stoian, Catalin Parvulescu and Marioara Avram
Biosensors 2025, 15(9), 622; https://doi.org/10.3390/bios15090622 - 19 Sep 2025
Viewed by 950
Abstract
This study investigates the interfacial interactions between two organic semiconductors (tetrathiafulvalene (TTF) and hexaazatriphenylene-hexacarbonitrile (HAT-CN)) and graphene-based materials (nanocrystalline graphite and vertically aligned graphene) used in Field-Effect Transistors (FETs). The interaction mechanisms, including π–π stacking, charge transfer, and dipole–dipole interactions, were explored through [...] Read more.
This study investigates the interfacial interactions between two organic semiconductors (tetrathiafulvalene (TTF) and hexaazatriphenylene-hexacarbonitrile (HAT-CN)) and graphene-based materials (nanocrystalline graphite and vertically aligned graphene) used in Field-Effect Transistors (FETs). The interaction mechanisms, including π–π stacking, charge transfer, and dipole–dipole interactions, were explored through SEM imaging, Raman and FTIR spectroscopy, and FET transfer characteristics. Spectroscopic data confirmed strong π–π and charge-transfer interactions, with distinct modifications in graphene structural and electronic features. Electrical measurements revealed significant modulation of channel conductivity, confirming effective surface functionalization. These findings provide a framework for engineering high-performance organic/graphene hybrid interfaces in electronic devices and biosensors. Importantly, the results demonstrate that molecular design and interfacial control at the nanoscale can be strategically used to modulate charge transport in graphene-based FETs. This approach opens new pathways for developing tunable, molecule-specific biosensors and nanoelectronic platforms with enhanced sensitivity and selectivity. Full article
(This article belongs to the Special Issue Transistor-Based Biosensors and Their Applications)
Show Figures

Figure 1

11 pages, 2701 KB  
Article
Simulation-Based Performance Assessment of Bulk Junctionless FET with Asymmetric Source/Drain for Ultrasensitive Detection of Biomolecules
by Jeongmin Son, M. Meyyappan and Kihyun Kim
Biosensors 2025, 15(9), 597; https://doi.org/10.3390/bios15090597 - 10 Sep 2025
Viewed by 664
Abstract
Bio field-effect transistors (BioFETs) have attracted attention for their ability to rapidly detect physiological data with a simple structure. While conventional BioFETs offer high sensitivity, they often require reference electrodes or involve complex fabrication processes. A recently proposed bulk junctionless BioFET (Bulk JL-BioFET) [...] Read more.
Bio field-effect transistors (BioFETs) have attracted attention for their ability to rapidly detect physiological data with a simple structure. While conventional BioFETs offer high sensitivity, they often require reference electrodes or involve complex fabrication processes. A recently proposed bulk junctionless BioFET (Bulk JL-BioFET) features a simple fabrication process to address these issues. This structure utilizes a depletion region formed by a p-n junction, as the active layer is directly in contact with a substrate of the opposite type. As a result, the device can operate effectively with only two terminals—drain and source—without the need for a reference electrode. In this study, we propose a novel Bulk JL-BioFET, incorporating a doped field stop layer and an asymmetric source/drain structure, and verify its performance through simulations. The doped field stop layer blocks the electric field expansion, enhancing channel modulation, while the asymmetric source/drain structure promotes electron injection, reducing the on-off swing voltage and turn-on voltage. This improves the electrical performance, enabling lower power consumption and higher sensitivity. Simulation results show that the combination of these two novel features results in a sensitivity increase of approximately 30-fold. Moreover, high sensitivity was observed below the turn-on voltage region for all the structures when analyzing the sensitivity with overdrive voltage, identifying the optimal operating conditions. This study suggests that the combination of the doped field stop layer and asymmetric source/drain structure is an effective design strategy to maximize the sensing performance of BioFETs while minimizing power consumption. Full article
(This article belongs to the Special Issue Transistor-Based Biosensors and Their Applications)
Show Figures

Figure 1

26 pages, 3149 KB  
Review
Research Progress and Future Perspectives on Photonic and Optoelectronic Devices Based on p-Type Boron-Doped Diamond/n-Type Titanium Dioxide Heterojunctions: A Mini Review
by Shunhao Ge, Dandan Sang, Changxing Li, Yarong Shi, Qinglin Wang and Dao Xiao
Nanomaterials 2025, 15(13), 1003; https://doi.org/10.3390/nano15131003 - 29 Jun 2025
Cited by 2 | Viewed by 1393
Abstract
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. [...] Read more.
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. For instance, TiO2 is widely used as a photocatalyst for hydrogen production via water splitting and for degrading organic pollutants, thanks to its efficient photo-generated electron–hole separation. Additionally, TiO2 exhibits remarkable performance in dye-sensitized solar cells and photodetectors, providing critical support for advancements in green energy and photoelectric conversion technologies. Boron-doped diamond (BDD) is renowned for its exceptional electrical conductivity, high hardness, wide electrochemical window, and outstanding chemical inertness. These unique characteristics enable its extensive use in fields such as electrochemical analysis, electrocatalysis, sensors, and biomedicine. For example, BDD electrodes exhibit high sensitivity and stability in detecting trace chemicals and pollutants, while also demonstrating excellent performance in electrocatalytic water splitting and industrial wastewater treatment. Its chemical stability and biocompatibility make it an ideal material for biosensors and implantable devices. Research indicates that the combination of TiO2 nanostructures and BDD into heterostructures can exhibit unexpected optical and electrical performance and transport behavior, opening up new possibilities for photoluminescence and rectifier diode devices. However, applications based on this heterostructure still face challenges, particularly in terms of photodetector, photoelectric emitter, optical modulator, and optical fiber devices under high-temperature conditions. This article explores the potential and prospects of their combined heterostructures in the field of optoelectronic devices such as photodetector, light emitting diode (LED), memory, field effect transistor (FET) and sensing. TiO2/BDD heterojunction can enhance photoresponsivity and extend the spectral detection range which enables stability in high-temperature and harsh environments due to BDD’s thermal conductivity. This article proposes future research directions and prospects to facilitate the development of TiO2 nanostructured materials and BDD-based heterostructures, providing a foundation for enhancing photoresponsivity and extending the spectral detection range enables stability in high-temperature and high-frequency optoelectronic devices field. Further research and exploration of optoelectronic devices based on TiO2-BDD heterostructures hold significant importance, offering new breakthroughs and innovations for the future development of optoelectronic technology. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Optoelectronics)
Show Figures

Graphical abstract

15 pages, 1759 KB  
Article
Quantum Simulation Study of Ultrascaled Label-Free DNA Sensors Based on Sub-10 nm Dielectric-Modulated TMD FETs: Sensitivity Enhancement Through Downscaling
by Khalil Tamersit, Abdellah Kouzou, José Rodriguez and Mohamed Abdelrahem
Micromachines 2025, 16(6), 690; https://doi.org/10.3390/mi16060690 - 8 Jun 2025
Viewed by 1690
Abstract
In this article, the role of downscaling in boosting the sensitivity of a novel label-free DNA sensor based on sub-10 nm dielectric-modulated transition metal dichalcogenide field-effect transistors (DM-TMD FET) is presented through a quantum simulation approach. The computational method is based on self-consistently [...] Read more.
In this article, the role of downscaling in boosting the sensitivity of a novel label-free DNA sensor based on sub-10 nm dielectric-modulated transition metal dichalcogenide field-effect transistors (DM-TMD FET) is presented through a quantum simulation approach. The computational method is based on self-consistently solving the quantum transport equation coupled with electrostatics under ballistic transport conditions. The concept of dielectric modulation was employed as a label-free biosensing mechanism for detecting neutral DNA molecules. The computational investigation is exhaustive, encompassing the band profile, charge density, current spectrum, local density of states, drain current, threshold voltage behavior, sensitivity, and subthreshold swing. Four TMD materials were considered as the channel material, namely, MoS2, MoSe2, MoTe2, and WS2. The investigation of the scaling capability of the proposed label-free gate-all-around DM-TMDFET-based biosensor showed that gate downscaling is a valuable approach not only for producing small biosensors but also for obtaining high biosensing performance. Furthermore, we found that reducing the device size from 12 nm to 9 nm yields only a moderate improvement in sensitivity, whereas a more aggressive downscaling to 6 nm leads to a significant enhancement in sensitivity, primarily due to pronounced short-channel effects. The obtained results have significant technological implications, showing that miniaturization enhances the sensitivity of the proposed nanobiosensor. Full article
Show Figures

Figure 1

14 pages, 2520 KB  
Article
Neuron Circuit Based on a Split-gate Transistor with Nonvolatile Memory for Homeostatic Functions of Biological Neurons
by Hansol Kim, Sung Yun Woo and Hyungjin Kim
Biomimetics 2024, 9(6), 335; https://doi.org/10.3390/biomimetics9060335 - 31 May 2024
Viewed by 2307
Abstract
To mimic the homeostatic functionality of biological neurons, a split-gate field-effect transistor (S-G FET) with a charge trap layer is proposed within a neuron circuit. By adjusting the number of charges trapped in the Si3N4 layer, the threshold voltage (V [...] Read more.
To mimic the homeostatic functionality of biological neurons, a split-gate field-effect transistor (S-G FET) with a charge trap layer is proposed within a neuron circuit. By adjusting the number of charges trapped in the Si3N4 layer, the threshold voltage (Vth) of the S-G FET changes. To prevent degradation of the gate dielectric due to program/erase pulses, the gates for read operation and Vth control were separated through the fin structure. A circuit that modulates the width and amplitude of the pulse was constructed to generate a Program/Erase pulse for the S-G FET as the output pulse of the neuron circuit. By adjusting the Vth of the neuron circuit, the firing rate can be lowered by increasing the Vth of the neuron circuit with a high firing rate. To verify the performance of the neural network based on S-G FET, a simulation of online unsupervised learning and classification in a 2-layer SNN is performed. The results show that the recognition rate was improved by 8% by increasing the threshold of the neuron circuit fired. Full article
(This article belongs to the Special Issue New Insights into Bio-Inspired Neural Networks)
Show Figures

Figure 1

13 pages, 2317 KB  
Article
Rapid and Easy Detection of Microcystin-LR Using a Bioactivated Multi-Walled Carbon Nanotube-Based Field-Effect Transistor Sensor
by Myeongsoon Lee, Seong H. Kim, Don Kim and Hak Jun Kim
Biosensors 2024, 14(1), 37; https://doi.org/10.3390/bios14010037 - 11 Jan 2024
Cited by 4 | Viewed by 3148
Abstract
In this study, we developed a multi-walled carbon nanotube (MWCNT)-based field-effect transistor (MWCNT-FET) sensor with high sensitivity and selectivity for microcystin-LR (MC-LR). Carboxylated MWCNTs were activated with an MC-LR-targeting aptamer (MCTA). Subsequently the bioactivated MWCNTs were immobilized between interdigitated drain (D) and source [...] Read more.
In this study, we developed a multi-walled carbon nanotube (MWCNT)-based field-effect transistor (MWCNT-FET) sensor with high sensitivity and selectivity for microcystin-LR (MC-LR). Carboxylated MWCNTs were activated with an MC-LR-targeting aptamer (MCTA). Subsequently the bioactivated MWCNTs were immobilized between interdigitated drain (D) and source (S) electrodes through self-assembly. The top-gated MWCNT-FET sensor was configured by dropping the sample solution onto the D and S electrodes and immersing a Ag/AgCl electrode in the sample solution as a gate (G) electrode. We believe that the FET sensor’s conduction path arises from the interplay between the MCTAs, with the applied gate potential modulating this path. Using standard instruments and a personal computer, the sensor’s response was detected in real-time within a 10 min time frame. This label-free FET sensor demonstrated an impressive detection capability for MC-LR in the concentration range of 0.1–0.5 ng/mL, exhibiting a lower detection limit of 0.11 ng/mL. Additionally, the MWCNT-FET sensor displayed consistent reproducibility, a robust selectivity for MC-LR over its congeners, and minimal matrix interferences. Given these attributes, this easily mass-producible FET sensor is a promising tool for rapid, straightforward, and sensitive MC-LR detection in freshwater environments. Full article
(This article belongs to the Special Issue Field-Effect Transistor-Based Biosensors)
Show Figures

Graphical abstract

13 pages, 1087 KB  
Article
Acid-Modulated Peptide Synthesis for Application on Oxide Biosensor Interfaces
by Edgar Cristóbal-Lecina, Janwa El-Maiss, Eduard Figueras, Aruna Chandra Singh, Sivashankar Krishnamoorthy, Thomas Østerbye, César Pascual García and David Andreu
Nanomaterials 2023, 13(24), 3092; https://doi.org/10.3390/nano13243092 - 6 Dec 2023
Viewed by 3125
Abstract
In this paper we report an acid-modulated strategy for novel peptide microarray production on biosensor interfaces. We initially selected a controlled pore glass (CPG) as a support for solid-phase peptide synthesis (SPPS) to implement a chemistry that can be performed at the interface [...] Read more.
In this paper we report an acid-modulated strategy for novel peptide microarray production on biosensor interfaces. We initially selected a controlled pore glass (CPG) as a support for solid-phase peptide synthesis (SPPS) to implement a chemistry that can be performed at the interface of multiple field effect transistor (FET) sensors, eventually to generate label-free peptide microarrays for protein screening. Our chemistry uses a temporary protection of the N-terminal amino function of each amino acid building block with a tert-butyloxycarbonyl (Boc) group that can be removed after each SPPS cycle, in combination with semi-permanent protection of the side chains of trifunctional amino acid residues. Such a protection scheme with a well-proven record of application in conventional, batchwise SPPS has been fine-tuned for optimal performance on CPG and, from there, translated to SPR chips that allow layer-by-layer monitoring of amino acid coupling. Our results validate this acid-modulated synthesis as a feasible approach for producing peptides in high yields and purity on flat glass surfaces, such as those in bio-FETs. Full article
(This article belongs to the Special Issue Nano-Enabled Sensors for High Performance in Detection and Monitoring)
Show Figures

Figure 1

10 pages, 3656 KB  
Article
Controllable Carrier Doping in Two-Dimensional Materials Using Electron-Beam Irradiation and Scalable Oxide Dielectrics
by Lu Wang, Zejing Guo, Qing Lan, Wenqing Song, Zhipeng Zhong, Kunlin Yang, Tuoyu Zhao, Hai Huang, Cheng Zhang and Wu Shi
Micromachines 2023, 14(11), 2125; https://doi.org/10.3390/mi14112125 - 19 Nov 2023
Cited by 4 | Viewed by 3225
Abstract
Two-dimensional (2D) materials, characterized by their atomically thin nature and exceptional properties, hold significant promise for future nano-electronic applications. The precise control of carrier density in these 2D materials is essential for enhancing performance and enabling complex device functionalities. In this study, we [...] Read more.
Two-dimensional (2D) materials, characterized by their atomically thin nature and exceptional properties, hold significant promise for future nano-electronic applications. The precise control of carrier density in these 2D materials is essential for enhancing performance and enabling complex device functionalities. In this study, we present an electron-beam (e-beam) doping approach to achieve controllable carrier doping effects in graphene and MoS2 field-effect transistors (FETs) by leveraging charge-trapping oxide dielectrics. By adding an atomic layer deposition (ALD)-grown Al2O3 dielectric layer on top of the SiO2/Si substrate, we demonstrate that controllable and reversible carrier doping effects can be effectively induced in graphene and MoS2 FETs through e-beam doping. This new device configuration establishes an oxide interface that enhances charge-trapping capabilities, enabling the effective induction of electron and hole doping beyond the SiO2 breakdown limit using high-energy e-beam irradiation. Importantly, these high doping effects exhibit non-volatility and robust stability in both vacuum and air environments for graphene FET devices. This methodology enhances carrier modulation capabilities in 2D materials and holds great potential for advancing the development of scalable 2D nano-devices. Full article
(This article belongs to the Special Issue 2D Materials: Devices and Functionalities)
Show Figures

Figure 1

10 pages, 2483 KB  
Article
Formation of Highly Conductive Interfaces in Crystalline Ionic Liquid-Gated Unipolar MoTe2/h-BN Field-Effect Transistor
by Kamoladdin Saidov, Jamoliddin Razzokov, Odilkhuja Parpiev, Nur Sena Yüzbasi, Natalia Kovalska, Gurdial Blugan and Olim Ruzimuradov
Nanomaterials 2023, 13(18), 2559; https://doi.org/10.3390/nano13182559 - 15 Sep 2023
Cited by 1 | Viewed by 3036
Abstract
2H MoTe2 (molybdenum ditelluride) has generated significant interest because of its superconducting, nonvolatile memory, and semiconducting of new materials, and it has a large range of electrical properties. The combination of transition metal dichalcogenides (TMDCs) and two dimensional (2D) materials like hexagonal [...] Read more.
2H MoTe2 (molybdenum ditelluride) has generated significant interest because of its superconducting, nonvolatile memory, and semiconducting of new materials, and it has a large range of electrical properties. The combination of transition metal dichalcogenides (TMDCs) and two dimensional (2D) materials like hexagonal boron nitride (h-BN) in lateral heterostructures offers a unique platform for designing and engineering novel electronic devices. We report the fabrication of highly conductive interfaces in crystalline ionic liquid-gated (ILG) field-effect transistors (FETs) consisting of a few layers of MoTe2/h-BN heterojunctions. In our initial exploration of tellurium-based semiconducting TMDs, we directed our attention to MoTe2 crystals with thicknesses exceeding 12 nm. Our primary focus centered on investigating the transport characteristics and quantitatively assessing the surface interface heterostructure. Our transconductance (gm) measurements indicate that the very efficient carrier modulation with an ILG FET is two times larger than standard back gating, and it demonstrates unipolarity of the device. The ILG FET exhibited highly unipolar p-type behavior with a high on/off ratio, and it significantly increased the mobility in MoTe2/h-BN heterochannels, achieving improvement as one of the highest recorded mobility increments. Specifically, we observed hole and electron mobility values ranging from 345 cm2 V−1 s−1 to 285 cm2 V−1 s−1 at 80 K. We predict that our ability to observe the intrinsic, heterointerface conduction in the channels was due to a drastic reduction of the Schottky barriers, and electrostatic gating is suggested as a method for controlling the phase transitions in the few layers of TMDC FETs. Moreover, the simultaneous structural phase transitions throughout the sample, achieved through electrostatic doping control, presents new opportunities for developing phase change devices using atomically thin membranes. Full article
Show Figures

Figure 1

13 pages, 10307 KB  
Article
High-Quality Recrystallization of Amorphous Silicon on Si (100) Induced via Laser Annealing at the Nanoscale
by Zhuo Chen, Huilong Zhu, Guilei Wang, Qi Wang, Zhongrui Xiao, Yongkui Zhang, Jinbiao Liu, Shunshun Lu, Yong Du, Jiahan Yu, Wenjuan Xiong, Zhenzhen Kong, Anyan Du, Zijin Yan and Yantong Zheng
Nanomaterials 2023, 13(12), 1867; https://doi.org/10.3390/nano13121867 - 15 Jun 2023
Cited by 1 | Viewed by 3035
Abstract
At sub-3 nm nodes, the scaling of lateral devices represented by a fin field-effect transistor (FinFET) and gate-all-around field effect transistors (GAAFET) faces increasing technical challenges. At the same time, the development of vertical devices in the three-dimensional direction has excellent potential for [...] Read more.
At sub-3 nm nodes, the scaling of lateral devices represented by a fin field-effect transistor (FinFET) and gate-all-around field effect transistors (GAAFET) faces increasing technical challenges. At the same time, the development of vertical devices in the three-dimensional direction has excellent potential for scaling. However, existing vertical devices face two technical challenges: “self-alignment of gate and channel” and “precise gate length control”. A recrystallization-based vertical C-shaped-channel nanosheet field effect transistor (RC-VCNFET) was proposed, and related process modules were developed. The vertical nanosheet with an “exposed top” structure was successfully fabricated. Moreover, through physical characterization methods such as scanning electron microscopy (SEM), atomic force microscopy (AFM), conductive atomic force microscopy (C-AFM) and transmission electron microscopy (TEM), the influencing factors of the crystal structure of the vertical nanosheet were analyzed. This lays the foundation for fabricating high-performance and low-cost RC-VCNFETs devices in the future. Full article
(This article belongs to the Special Issue Memory Nanomaterials: Growth, Characterization and Device Fabrication)
Show Figures

Figure 1

19 pages, 7325 KB  
Review
Recent Research for HZO-Based Ferroelectric Memory towards In-Memory Computing Applications
by Jaewook Yoo, Hyeonjun Song, Hongseung Lee, Seongbin Lim, Soyeon Kim, Keun Heo and Hagyoul Bae
Electronics 2023, 12(10), 2297; https://doi.org/10.3390/electronics12102297 - 19 May 2023
Cited by 31 | Viewed by 16080
Abstract
The AI and IoT era requires software and hardware capable of efficiently processing massive amounts data quickly and at a low cost. However, there are bottlenecks in existing Von Neumann structures, including the difference in the operating speed of current-generation DRAM and Flash [...] Read more.
The AI and IoT era requires software and hardware capable of efficiently processing massive amounts data quickly and at a low cost. However, there are bottlenecks in existing Von Neumann structures, including the difference in the operating speed of current-generation DRAM and Flash memory systems, the large voltage required to erase the charge of nonvolatile memory cells, and the limitations of scaled-down systems. Ferroelectric materials are one exciting means of breaking away from this structure, as Hf-based ferroelectric materials have a low operating voltage, excellent data retention qualities, and show fast switching speed, and can be used as non-volatile memory (NVM) if polarization characteristics are utilized. Moreover, adjusting their conductance enables diverse computing architectures, such as neuromorphic computing with analog characteristics or ‘logic-in-memory’ computing with digital characteristics, through high integration. Several types of ferroelectric memories, including two-terminal-based FTJs, three-terminal-based FeFETs using electric field effect, and FeRAMs using ferroelectric materials as capacitors, are currently being studied. In this review paper, we include these devices, as well as a Fe-diode with high on/off ratio properties, which has a similar structure to the FTJs but operate with the Schottky barrier modulation. After reviewing the operating principles and features of each structure, we conclude with a summary of recent applications that have incorporated them. Full article
(This article belongs to the Special Issue Advanced CMOS Devices and Applications)
Show Figures

Figure 1

23 pages, 5722 KB  
Article
Design of Pyrrole-Based Gate-Controlled Molecular Junctions Optimized for Single-Molecule Aflatoxin B1 Detection
by Fabrizio Mo, Chiara Elfi Spano, Yuri Ardesi, Massimo Ruo Roch, Gianluca Piccinini and Mariagrazia Graziano
Sensors 2023, 23(3), 1687; https://doi.org/10.3390/s23031687 - 3 Feb 2023
Cited by 8 | Viewed by 3076
Abstract
Food contamination by aflatoxins is an urgent global issue due to its high level of toxicity and the difficulties in limiting the diffusion. Unfortunately, current detection techniques, which mainly use biosensing, prevent the pervasive monitoring of aflatoxins throughout the agri-food chain. In this [...] Read more.
Food contamination by aflatoxins is an urgent global issue due to its high level of toxicity and the difficulties in limiting the diffusion. Unfortunately, current detection techniques, which mainly use biosensing, prevent the pervasive monitoring of aflatoxins throughout the agri-food chain. In this work, we investigate, through ab initio atomistic calculations, a pyrrole-based Molecular Field Effect Transistor (MolFET) as a single-molecule sensor for the amperometric detection of aflatoxins. In particular, we theoretically explain the gate-tuned current modulation from a chemical–physical perspective, and we support our insights through simulations. In addition, this work demonstrates that, for the case under consideration, the use of a suitable gate voltage permits a considerable enhancement in the sensor performance. The gating effect raises the current modulation due to aflatoxin from 100% to more than 103÷104%. In particular, the current is diminished by two orders of magnitude from the μA range to the nA range due to the presence of aflatoxin B1. Our work motivates future research efforts in miniaturized FET electrical detection for future pervasive electrical measurement of aflatoxins. Full article
(This article belongs to the Special Issue Advanced Field-Effect Sensors)
Show Figures

Figure 1

15 pages, 3448 KB  
Article
Highly Stretchable Graphene Scrolls Transistors for Self-Powered Tribotronic Non-Mechanosensation Application
by Yanfang Meng
Nanomaterials 2023, 13(3), 528; https://doi.org/10.3390/nano13030528 - 28 Jan 2023
Cited by 5 | Viewed by 2767
Abstract
Owing to highly desired requirements in advanced disease diagnosis, therapy, and health monitoring, noncontact mechanosensation active matrix has drawn considerable attention. To satisfy the practical demands of high energy efficiency, in this report, combining the advantage of multiparameter monitoring, high sensitivity, and high [...] Read more.
Owing to highly desired requirements in advanced disease diagnosis, therapy, and health monitoring, noncontact mechanosensation active matrix has drawn considerable attention. To satisfy the practical demands of high energy efficiency, in this report, combining the advantage of multiparameter monitoring, high sensitivity, and high resolution of active matrix field-effect transistor (FET) with triboelectric nanogenerators (TENG), we successfully developed the tribotronic mechanosensation active matrix based on tribotronic ion gel graphene scrolls field-effect transistors (GSFET). The tribopotential produced by TENG served as a gate voltage to modulate carrier transport along the semiconductor channel and realized self-powered ability with considerable decreased energy consumption. To achieve high spatial utilization and more pronounced responsivity of the dielectric of this transistor, ion gel was used to act as a triboelectric layer to conduct friction and contact electrification with external materials directly to produce triboelectric charges to power GFET. This tribopotential-driving device has excellent tactile sensing properties with high sensitivity (1.125 mm−1), rapid response time (~16 ms), and a durability operation of thousands of cycles. Furthermore, the device was transparent and flexible with the capability of spatially mapping touch stimuli and monitoring real-time temperature. Due to all these unique characteristics, this novel noncontact mechanosensation GSFET active matrix provided a new method for self-powered E-skin with promising potential for self-powered wearable devices and intelligent robots. Full article
(This article belongs to the Special Issue Functional Graphene-Based Nanodevices)
Show Figures

Figure 1

16 pages, 1202 KB  
Article
Next-Generation Hybrid RF Front-End with MoS2-FET Supply Management Circuit, CNT-FET Amplifiers, and Graphene Thin-Film Antennas
by Paolo Crippa, Giorgio Biagetti, Lorenzo Minelli, Claudio Turchetti, Martino Aldrigo, Mircea Dragoman, Davide Mencarelli and Luca Pierantoni
Electronics 2022, 11(22), 3708; https://doi.org/10.3390/electronics11223708 - 12 Nov 2022
Cited by 3 | Viewed by 3367
Abstract
One-dimensional (1D) and two-dimensional (2D) materials represent the emerging technologies for transistor electronics in view of their attractive electrical (high power gain, high cut-off frequency, low power dissipation) and mechanical properties. This work investigates the integration of carbon-nanotube-based field-effect transistors (CNT-FETs) and molybdenum [...] Read more.
One-dimensional (1D) and two-dimensional (2D) materials represent the emerging technologies for transistor electronics in view of their attractive electrical (high power gain, high cut-off frequency, low power dissipation) and mechanical properties. This work investigates the integration of carbon-nanotube-based field-effect transistors (CNT-FETs) and molybdenum disulphide (MoS2)-based FETs with standard CMOS technology for designing a simple analog system integrating a power switching circuit for the supply management of a 10 GHz transmitting/receiving (T/R) module that embeds a low-noise amplifier (LNA) and a high-power amplifier (HPA), both of which loaded by nanocrystalline graphene (NCG)-based patch antennas. Verilog-A models, tuned to the technology that will be used to manufacture the FETs, were implemented to perform electrical simulations of the MoS2 and CNT devices using a commercial integrated circuit software simulator. The obtained simulation results prove the potential of hybrid CNT-MoS2-FET circuits as building blocks for next-generation integrated circuits for radio frequency (RF) applications, such as radars or IoT systems. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

10 pages, 2884 KB  
Article
Time-Dependent Sensitivity Tunable pH Sensors Based on the Organic-Inorganic Hybrid Electric-Double-Layer Transistor
by Ki-Woong Park and Won-Ju Cho
Int. J. Mol. Sci. 2022, 23(18), 10842; https://doi.org/10.3390/ijms231810842 - 16 Sep 2022
Cited by 4 | Viewed by 2590
Abstract
In this study, we propose tunable pH sensors based on the electric-double-layer transistor (EDLT) with time-dependent sensitivity characteristics. The EDLT is able to modulate the drain current by using the mobile ions inside the electrolytic gate dielectric. This property allows the implementation of [...] Read more.
In this study, we propose tunable pH sensors based on the electric-double-layer transistor (EDLT) with time-dependent sensitivity characteristics. The EDLT is able to modulate the drain current by using the mobile ions inside the electrolytic gate dielectric. This property allows the implementation of a device with sensitivity characteristics that are simply adjusted according to the measurement time. An extended gate-type, ion-sensitive, field-effect transistor consisting of a chitosan/Ta2O5 hybrid dielectric EDLT transducer, and an SnO2 sensing membrane, were fabricated to evaluate the sensing behavior at different buffer pH levels. As a result, we were able to achieve tunable sensitivity by only adjusting the measurement time by using a single EDLT and without additional gate electrodes. In addition, to demonstrate the unique sensing behavior of the time-dependent tunable pH sensors based on organic–inorganic hybrid EDLT, comparative sensors consisting of a normal FET with a SiO2 gate dielectric were prepared. It was found that the proposed pH sensors exhibit repeatable and stable sensing operations with drain current deviations <1%. Therefore, pH sensors using a chitosan electrolytic EDLT are suitable for biosensor platforms, possessing tunable sensitivity and high-reliability characteristics. Full article
(This article belongs to the Special Issue Recent Advances in Nanomaterials Science)
Show Figures

Figure 1

Back to TopTop