Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = high clean–low loss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2815 KB  
Article
Preparation and Research of a Metal Anti-Corrosion Coating Based on PDMS Reinforcement
by Chenyan Xie, Peng Dou, Gaojie Fu, Jiaqi Wang, Zeyi Wei, Xinglin Lu, Suji Sheng, Lixin Yuan and Bin Shen
Coatings 2026, 16(1), 74; https://doi.org/10.3390/coatings16010074 - 8 Jan 2026
Viewed by 176
Abstract
Metal materials are widely used in power grid infrastructure, but they are prone to metal corrosion due to long-term exposure to various environmental conditions, resulting in significant losses. The existing superhydrophobic coatings have good anti-corrosion performance, but poor wear resistance. Therefore, it is [...] Read more.
Metal materials are widely used in power grid infrastructure, but they are prone to metal corrosion due to long-term exposure to various environmental conditions, resulting in significant losses. The existing superhydrophobic coatings have good anti-corrosion performance, but poor wear resistance. Therefore, it is extremely important to improve the wear resistance of superhydrophobic coatings. In this study, a kind of fluorine-modified SiO2 particle was prepared with pentafluorooctyltrimethoxysilane (FAS-13) as the low surface energy modifier, following the fabrication of a superhydrophobic coating on metal substrate via a PDMS-doped spray deposition method to reinforcement wear resistance property. XPS, FT-IR and Raman spectra confirmed the successful introduction of FAS-13 on SiO2 particles, as evidenced by the characteristic fluorine-related peaks. TGA revealed that the fluorine modified SiO2 (F-SiO2) particles exhibited excellent thermal stability, with an initial decomposition temperature of 354 °C. From the perspective of surface morphology, the relevant data indicated a peak-to-valley height difference of only 88.7 nm, with Rq of 11.9 nm and Ra of 8.86 nm. And it also exhibited outstanding superhydrophobic property with contact angle (CA) of 164.44°/159.48°, demonstrating remarkable self-cleaning performance. And it still maintained CA of over 150° even after cyclic abrasion of 3000 cm with 800 grit sandpaper under a 100 g load, showing exceptional wear resistance. In addition, it was revealed that the coated electrode retained a high impedance value of 8.53 × 108 Ω·cm2 at 0.1 Hz after 480 h of immersion in 5 wt% NaCl solution, with the CPE exponent remaining close to unity (from 1.00 to 0.97), highlighting its superior anti-corrosion performance and broad application prospects for metal corrosion prevention. Full article
(This article belongs to the Collection Feature Paper Collection in Corrosion, Wear and Erosion)
Show Figures

Figure 1

21 pages, 1062 KB  
Article
Chia Seed Gel Powder as a Clean-Label Enhancer of Texture, Physicochemical Quality, Antioxidant Activity, and Prebiotic Function in Probiotic Low-Fat Yogurt
by Mahmoud E. A. Hamouda, Ratul Kalita, Abdelfatah K. Ali, Pratibha Chaudhary, Pramith U. Don, Omar A. A. Abdelsater, Anjali Verma and Yaser Elderwy
Processes 2026, 14(1), 145; https://doi.org/10.3390/pr14010145 - 31 Dec 2025
Viewed by 560
Abstract
This study evaluated the effect of incorporating chia seed gel powder (CSGP) as a natural, clean-label stabilizer on the physicochemical, functional, microbiological, microstructural, antioxidant, and sensory properties of probiotic low-fat yogurt (PLFY) during 21 days of refrigerated storage. Six formulations were prepared using [...] Read more.
This study evaluated the effect of incorporating chia seed gel powder (CSGP) as a natural, clean-label stabilizer on the physicochemical, functional, microbiological, microstructural, antioxidant, and sensory properties of probiotic low-fat yogurt (PLFY) during 21 days of refrigerated storage. Six formulations were prepared using 0–2.5% CSGP, including Control (0% CSGP), YOG1 (0.5% CSGP), YOG2 (1.0% CSGP), YOG3 (1.5% CSGP), YOG4 (2.0% CSGP), and YOG5 (2.5% CSGP). Results showed that increasing CSGP levels noticeably enhanced the total solids, protein content, viscosity, hardness, and water-holding capacity of the PLFY (p < 0.05), while consistently reducing syneresis. Antioxidant activity also rose with higher CSGP concentrations, with YOG5 exhibiting the greatest DPPH scavenging activity (35.12%). Confocal laser scanning microscopy revealed a denser and more uniform protein network in PLFY fortified with CSGP, consistent with rheological measurements showing increased storage (G′) and loss (G″) moduli. Probiotic viability significantly increased (p < 0.05) in CSGP-added samples, indicating a potential prebiotic effect of CSGP. Sensory results demonstrated that although higher CSGP levels slightly darkened the yogurt color, body, texture, flavor, and total sensory scores improved markedly, with YOG5 gaining the highest total score (81.77). The results demonstrate that CSGP acts as a highly effective, multifunctional ingredient that enhances texture, stability, probiotic viability, and antioxidant capacity, making it a strong clean-label candidate for developing high-quality, functional probiotic low-fat yogurt. Full article
Show Figures

Graphical abstract

19 pages, 2921 KB  
Article
A Study of the Reservoir Protection Mechanism of Fuzzy-Ball Workover Fluid for Temporary Plugging in Low-Pressure Oil Well Workover Operations
by Fanghui Zhu, Lihui Zheng, Yibo Li, Mengdi Zhang, Shuai Li, Hongwei Shi, Jingyi Yang, Xiaowei Huang and Xiujuan Tao
Processes 2026, 14(1), 59; https://doi.org/10.3390/pr14010059 - 23 Dec 2025
Viewed by 236
Abstract
This study addresses the challenges of low-pressure oil well workover operations, namely, severe loss of water-based workover fluid, significant reservoir damage from conventional temporary plugging agents, and slow production recovery, by focusing on the yet-mechanistically unclear “fuzzy-ball workover fluid.” Laboratory experiments combined with [...] Read more.
This study addresses the challenges of low-pressure oil well workover operations, namely, severe loss of water-based workover fluid, significant reservoir damage from conventional temporary plugging agents, and slow production recovery, by focusing on the yet-mechanistically unclear “fuzzy-ball workover fluid.” Laboratory experiments combined with field data were used to evaluate its plugging performance and reservoir-protective mechanisms. In sand-filled tubes (diameter 25 mm, length 20–100 cm) sealed with the fuzzy-ball fluid, the formation’s bearing capacity increased by 3.25–18.59 MPa, showing a positive correlation with the plugging radius. Compatibility tests demonstrated that mixtures of crude oil and workover fluid (1:1) or crude oil, workover fluid, and water (1:1:1) held at 60 °C for 80 h exhibited only minor apparent viscosity reductions of 4 mPa·s and 2 mPa·s, respectively, indicating good stability. After successful plugging, a 1% ammonium persulfate solution was injected for 2 h to break the gel; permeability recovery rates reached 112–127%, confirming low reservoir damage and effective gel-break de-blocking. Field data from five wells (formation pressure coefficients 0.49–0.64) showed per-well fluid consumption of 33–83 m3 and post-workover liquid production index recoveries of 5.90–53.30%. Multivariate regression established mathematical relationships among bearing capacity, production index recovery, and fourteen geological engineering parameters, identifying the plugging radius as a key factor. Larger radii enhance both temporary plugging strength and production recovery without harming the reservoir, and they promote production by expanding the cleaning zone. In summary, the fuzzy-ball workover fluid achieves an integrated “high-efficiency plugging–low-damage gel-break–synergistic cleaning” mechanism, resolving the trade-off between temporary-plugging strength and production recovery in low-pressure wells and offering an innovative, environmentally friendly solution for the sustainable and efficient exploitation of oil–gas resources. Full article
(This article belongs to the Special Issue New Technology of Unconventional Reservoir Stimulation and Protection)
Show Figures

Figure 1

20 pages, 3397 KB  
Article
Image Enhancement Algorithm and FPGA Implementation for High-Sensitivity Low-Light Detection Based on Carbon-Based HGFET
by Yi Cao, Yuyan Zhang, Zhifeng Chen, Dongyi Lin, Chengying Chen, Liming Chen and Jianhua Jiang
Electron. Mater. 2025, 6(4), 23; https://doi.org/10.3390/electronicmat6040023 - 2 Dec 2025
Viewed by 435
Abstract
To address the issues of insufficient responsivity and low imaging contrast of carbon-based HGFET high-sensitivity short-wave infrared (SWIR) detectors under low-light conditions, this paper proposes a high-sensitivity and high-contrast image enhancement algorithm for low-light detection, with FPGA-based hardware verification. The proposed algorithm establishes [...] Read more.
To address the issues of insufficient responsivity and low imaging contrast of carbon-based HGFET high-sensitivity short-wave infrared (SWIR) detectors under low-light conditions, this paper proposes a high-sensitivity and high-contrast image enhancement algorithm for low-light detection, with FPGA-based hardware verification. The proposed algorithm establishes a multi-stage cooperative enhancement framework targeting key challenges such as low signal-to-noise ratio (SNR), high dark-state noise, and weak target extraction. Unlike traditional direct enhancement methods, the proposed approach first performs defective row-column correction and background noise separation based on dark-state data, which provides a clean foundation for signal reconstruction. Furthermore, an adaptive gamma correction mechanism based on image maximum value is introduced to avoid unnecessary nonlinear transformations in high-contrast regions. During the contrast enhancement stage, an exposure-constrained adaptive histogram equalization strategy is adopted to effectively suppress noise amplification and saturation in low-light scenes. Finally, an innovative dual-mode threshold selection method based on image variance is proposed, which can dynamically integrate the OTSU algorithm with statistical moment analysis to ensure robust background noise separation across both high- and low-contrast scenarios. Experimental results demonstrate that the proposed algorithm significantly improves target contrast in infrared images while preventing detail loss due to overexposure. Under microwatt-level laser power, background noise is effectively suppressed, and both imaging quality and weak target detection capability are substantially enhanced. Full article
Show Figures

Figure 1

21 pages, 2725 KB  
Article
Study on Self-Healing and Sealing Technology of Fractured Geothermal Reservoir
by Wenxi Wang and Yang Tian
Processes 2025, 13(12), 3817; https://doi.org/10.3390/pr13123817 - 26 Nov 2025
Viewed by 375
Abstract
Geothermal energy, recognized as a sustainable and clean resource, is playing an increasingly critical role in the global shift toward low-carbon energy systems. Nevertheless, the exploitation of fractured geothermal reservoirs is often impeded by severe lost circulation during drilling, where conventional plugging materials [...] Read more.
Geothermal energy, recognized as a sustainable and clean resource, is playing an increasingly critical role in the global shift toward low-carbon energy systems. Nevertheless, the exploitation of fractured geothermal reservoirs is often impeded by severe lost circulation during drilling, where conventional plugging materials fail under high-temperature, high-salinity, and high-pressure conditions due to inadequate mechanical strength, poor thermal resistance, and lack of self-adaptive sealing behavior. In response, self-healing materials have emerged as an innovative strategy for developing intelligent lost circulation control technologies. Herein, we report a novel self-healing gel (XFFD) synthesized via inverse emulsion polymerization using acrylamide (AM), acrylic acid (AA), p-nitroblue tetrazolium (PNBT), and modified silica nanoparticles (PAS). The resulting material exhibits exceptional thermal stability, with decomposition onset above 356 °C, as determined by thermogravimetric analysis. Rheological and mechanical assessments reveal outstanding viscoelasticity, moderate swelling capacity (4.17-fold in deionized water), and a high self-recovery efficiency of 91.15%, accompanied by a bearing strength of 3.65 MPa. Mechanistic investigations indicate that the autonomous repair capability stems from dynamic non-covalent interactions—primarily hydrogen bonding and ionic associations—enabled by amide and carboxyl groups within the polymer network. Sand bed filtration tests under simulated geothermal conditions (150 °C, 8% salinity) demonstrate that XFFD forms a robust sealing barrier with significantly shallower invasion depth compared to conventional materials such as sulfonated asphalt and calcium carbonate. This work presents an effective self-healing gel system that ensures reliable wellbore strengthening and fluid loss control in challenging high-temperature, high-salinity geothermal drilling operations. Full article
(This article belongs to the Topic Polymer Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

11 pages, 547 KB  
Article
Chloride Ion and Chemical Oxygen Demand on the Rust Generation of Metals in Cleaning
by Tsuyoshi Yoda
Processes 2025, 13(10), 3253; https://doi.org/10.3390/pr13103253 - 13 Oct 2025
Viewed by 453
Abstract
Metal components that undergo ultrasonic cleaning are often stored in rinse water before drying; during this dwell period, surface corrosion can nucleate and grow. Here, we investigate how two easily monitored water-quality parameters—chloride ion concentration (Cl) and chemical oxygen demand (COD), [...] Read more.
Metal components that undergo ultrasonic cleaning are often stored in rinse water before drying; during this dwell period, surface corrosion can nucleate and grow. Here, we investigate how two easily monitored water-quality parameters—chloride ion concentration (Cl) and chemical oxygen demand (COD), a proxy for residual organic species—govern the initiation and propagation of corrosion on low-carbon steel. After ultrasonic cleaning in five representative cleaning solutions, test coupons were immersed for up to 72 h in the corresponding rinse water and the extent of corrosion was quantified by optical profilometry and mass loss. The surface area covered by corrosion scaled linearly with [Cl] (0–150 mg L−1) and COD (5–120 mg L−1), with correlation coefficients of 0.92 and 0.88, respectively. When both parameters exceeded threshold values of 50 mg L−1 (Cl) and 30 mg L−1 (COD), the corrosion rate doubled relative to the control. A two-step mitigation strategy—ion-exchange pretreatment followed by activated-carbon polishing—reduced Cl and COD below the thresholds and suppressed corrosion formation by >70%. These findings provide a simple water-quality guideline and a low-cost process retrofit for manufacturers that store steel parts in high-humidity environments. Full article
Show Figures

Figure 1

45 pages, 2671 KB  
Article
Mathematical Model for Economic Optimization of Tower-Type Solar Thermal Power Generation Systems via Coupled Monte Carlo Ray-Tracing and Multi-Mechanism Heat Loss Equations
by Juanen Li, Yao Chen and Huanhao Su
Mathematics 2025, 13(19), 3132; https://doi.org/10.3390/math13193132 - 30 Sep 2025
Viewed by 785
Abstract
With the global energy transition and decarbonization goals, tower-type solar thermal power generation is increasingly important for dispatchable clean energy due to its high efficiency, thermal storage capacity, and regulation performance. However, current research focuses on ideal conditions, ignoring real geographical constraints on [...] Read more.
With the global energy transition and decarbonization goals, tower-type solar thermal power generation is increasingly important for dispatchable clean energy due to its high efficiency, thermal storage capacity, and regulation performance. However, current research focuses on ideal conditions, ignoring real geographical constraints on heliostat layout and environmental impacts on receiver performance. More practical scene modeling and performance evaluation methods are urgently needed. To address these issues, we propose a heliostat field simulation algorithm based on heat loss mechanisms and real site characteristics. The algorithm includes optical performance evaluation (cosine efficiency, shading, truncation, atmospheric transmittance) and heat loss mechanisms (radiation, convection, conduction) for realistic net heat output estimation. Experiments revealed the following: (1) higher central towers improve optical efficiency by increasing solar elevation angle; (2) radiation losses dominate at high power and tower height, while convection losses dominate at low power and tower height. Using the Economic-Integrated Score (EIS) optimization algorithm, we achieved optimal tower and receiver configuration with 40.22% average improvement over other configurations (maximum 3.9× improvement). This provides a scientific design basis for improving tower-type solar thermal systems’ adaptability and economy in different geographical environments. Full article
(This article belongs to the Special Issue Advances and Applications in Intelligent Computing)
Show Figures

Figure 1

21 pages, 3127 KB  
Article
Experimental Research and Parameter Optimization on Dust Emission Reduction for Peanut Pickup Combine Harvesting
by Hongbo Xu, Peng Zhang, Fengwei Gu, Feng Wu, Hongguang Yang, Zhichao Hu, Enrong Mao and Jiangtao Wang
Agriculture 2025, 15(19), 2006; https://doi.org/10.3390/agriculture15192006 - 25 Sep 2025
Viewed by 616
Abstract
In response to the dust pollution issue during the harvesting operations of peanut pickup combines, this study involved conducting bench tests to explore the variation patterns of dust emission parameters and harvesting operation indicators under diverse working parameter conditions of the combine’s working [...] Read more.
In response to the dust pollution issue during the harvesting operations of peanut pickup combines, this study involved conducting bench tests to explore the variation patterns of dust emission parameters and harvesting operation indicators under diverse working parameter conditions of the combine’s working components. A multi-factor mathematical model was established to predict both the dust emission rate of peanut pickup combines and the quality of harvesting operations. The model was utilized to identify the optimal combination of operation parameters for achieving high-quality and low-emission performance. The optimal parameter combination was determined as follows: a pod threshing roller speed of 313 r/min, a cleaning fan speed of 2535 r/min, a vine crushing roller speed of 1970 r/min, and a lifting fan speed of 1604 r/min. Under these conditions, the theoretical dust emission rate was calculated to be 10,603 mg/s, with a pod loss rate of 4.73% and a pod impurity rate of 5.21%. Compared to previous settings, the optimized operation parameters effectively reduced the combine’s dust emissions by 9.95%. Notably, the harvesting operation quality still complies with the industry standards for peanut harvesters. These research findings offer theoretical insights and robust technical support for minimizing dust pollution during the whole-feed harvesting of peanuts, contributing to more environmentally friendly and efficient peanut harvesting practices. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

20 pages, 1238 KB  
Review
Stefan Flow in Char Combustion: A Critical Review of Mass Transfer and Combustion Differences Between Air-Fuel and Oxy-Fuel Conditions
by Wenfei Bao, Zongwei Gan, Yuzhong Li and Yan Ma
Energies 2025, 18(16), 4347; https://doi.org/10.3390/en18164347 - 15 Aug 2025
Viewed by 1022
Abstract
Fuel combustion is a crucial process in energy utilization. As a key bulk transport mechanism, Stefan flow significantly affects heat and mass transfer during char combustion. However, its physical nature and engineering implications have long been underestimated, and no systematic review has been [...] Read more.
Fuel combustion is a crucial process in energy utilization. As a key bulk transport mechanism, Stefan flow significantly affects heat and mass transfer during char combustion. However, its physical nature and engineering implications have long been underestimated, and no systematic review has been conducted. This paper presents a comprehensive review of Stefan flow in char combustion, with a focus on its impact on mass transfer and combustion behavior under both air-fuel and oxy-fuel conditions. It also highlights the critical role of Stefan flow in enhancing energy conversion efficiency and optimizing carbon capture processes. The analysis reveals that Stefan flow has been widely neglected in traditional combustion models, resulting in significant errors in calculated mass transfer coefficients (up to 21% in air-fuel combustion and as high as 74% in oxy-fuel combustion). This long-overlooked deviation severely compromises the accuracy of combustion efficiency predictions and model reliability. In oxy-fuel combustion, the gasification reaction (C + CO2 = 2CO) induces a much stronger outward Stefan flow, reducing CO2 transport by up to 74%, weakening local CO2 enrichment, and substantially increasing the energy cost of carbon capture. In contrast, the oxidation reaction (2C + O2 = 2CO) results in only an 18% reduction in O2 transport. Stefan flow hinders the inward mass transfer of O2 and CO2 toward the char surface and increases heat loss during combustion, resulting in reduced reaction rates and lower particle temperatures. These effects contribute to incomplete fuel conversion and diminished thermal efficiency. Simulation studies that neglect Stefan flow produce significant errors when predicting combustion characteristics, particularly under oxy-fuel conditions. The impact of Stefan flow on energy balance is more substantial in the kinetic/diffusion-controlled regime than in the diffusion-controlled regime. This review is the first to clearly identify Stefan flow as the fundamental physical mechanism responsible for the differences in combustion behavior between air-fuel and oxy-fuel environments. It addresses a key gap in current research and offers a novel theoretical framework for improving low-carbon combustion models, providing important theoretical support for efficient combustion and clean energy conversion. Full article
Show Figures

Figure 1

24 pages, 6757 KB  
Article
Design and Testing of a Pneumatic Jujube Harvester
by Huaming Hou, Wei Niu, Qixian Wen, Hairui Yang, Jianming Zhang, Rui Zhang, Bing Xv and Qingliang Cui
Agronomy 2025, 15(8), 1881; https://doi.org/10.3390/agronomy15081881 - 3 Aug 2025
Viewed by 807
Abstract
Jujubes have a beautiful taste, and high nutritional and economic value. The planting area of dwarf and densely planted jujubes is large and shows an increasing trend; however, the mechanization level and efficiency of fresh jujube harvesting are low. For this reason, our [...] Read more.
Jujubes have a beautiful taste, and high nutritional and economic value. The planting area of dwarf and densely planted jujubes is large and shows an increasing trend; however, the mechanization level and efficiency of fresh jujube harvesting are low. For this reason, our research group conducted a study on mechanical harvesting technology for fresh jujubes. A pneumatic jujube harvester was designed. This harvester is composed of a self-regulating picking mechanism, a telescopic conveying pipe, a negative pressure generator, a cleaning mechanism, a double-chamber collection box, a single-door shell, a control assembly, a generator, a towing mobile chassis, etc. During the harvest, the fresh jujubes on the branches are picked under the combined effect of the flexible squeezing of the picking roller and the suction force of the negative pressure air flow. They then enter the cleaning mechanism through the telescopic conveying pipe. Under the combined effect of the upper and lower baffles of the cleaning mechanism and the negative-pressure air flow, the fresh jujubes are separated from impurities such as jujube leaves and branches. The clean fresh jujubes fall into the collection box. We considered the damage rate of fresh jujubes, impurity rate, leakage rate, and harvesting efficiency as the indexes, and the negative-pressure suction wind speed, picking roller rotational speed, and the inclination angle of the upper and lower baffles of the cleaning and selection machinery as the test factors, and carried out the harvesting test of fresh jujubes. The test results show that when the negative-pressure suction wind speed was 25 m/s, the picking roller rotational speed was 31 r/min, and the inclination angles of the upper and lower baffle plates for cleaning and selecting were −19° and 19.5°, respectively, the breakage rate of fresh jujube harvesting was 0.90%, the rate of impurity was 1.54%, the rate of leakage was 2.59%, and the efficiency of harvesting was 73.37 kg/h, realizing the high-efficiency and low-loss harvesting of fresh jujubes. This study provides a reference for the research and development of fresh jujube mechanical harvesting technology and equipment. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

32 pages, 1970 KB  
Review
A Review of New Technologies in the Design and Application of Wind Turbine Generators
by Pawel Prajzendanc and Christian Kreischer
Energies 2025, 18(15), 4082; https://doi.org/10.3390/en18154082 - 1 Aug 2025
Cited by 8 | Viewed by 3519
Abstract
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power [...] Read more.
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power systems. This paper presents a comprehensive review of generator technologies used in wind turbine applications, ranging from conventional synchronous and asynchronous machines to advanced concepts such as low-speed direct-drive (DD) generators, axial-flux topologies, and superconducting generators utilizing low-temperature superconductors (LTS) and high-temperature superconductors (HTS). The advantages and limitations of each design are discussed in the context of efficiency, weight, reliability, scalability, and suitability for offshore deployment. Special attention is given to HTS-based generator systems, which offer superior power density and reduced losses, along with challenges related to cryogenic cooling and materials engineering. Furthermore, the paper analyzes selected modern generator designs to provide references for enhancing the performance of grid-synchronized hybrid microgrids integrating solar PV, wind, battery energy storage, and HTS-enhanced generators. This review serves as a valuable resource for researchers and engineers developing next-generation wind energy technologies with improved efficiency and integration potential. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

26 pages, 4142 KB  
Review
Progress in Mechanized Harvesting Technologies and Equipment for Minor Cereals: A Review
by Xiaojing Ren, Fei Dai, Wuyun Zhao, Ruijie Shi, Junzhi Chen and Leilei Chang
Agriculture 2025, 15(15), 1576; https://doi.org/10.3390/agriculture15151576 - 22 Jul 2025
Viewed by 2422
Abstract
Minor cereals are an important part of the Chinese grain industry, accounting for about 8 percent of the country’s total grain-growing area. Minor cereals include millet, buckwheat, Panicum miliaceum, and other similar grains. Influenced by topographical and climatic factors, the distribution of [...] Read more.
Minor cereals are an important part of the Chinese grain industry, accounting for about 8 percent of the country’s total grain-growing area. Minor cereals include millet, buckwheat, Panicum miliaceum, and other similar grains. Influenced by topographical and climatic factors, the distribution of minor cereals in China is mainly concentrated in the plateau and hilly areas north of the Yangtze River. In addition, there are large concentrations of minor cereals in Inner Mongolia, Heilongjiang, and other areas with flatter terrain. However, the level of mechanized harvesting in these areas is still low, and there is little research on the whole process of mechanized harvesting of minor cereals. This paper aims to discuss the current status of the minor cereal industry and its mechanization level, with particular attention to the challenges encountered in research related to the mechanized harvesting of minor cereals, including limited availability of suitable machinery, high losses, and low efficiency. The article provides a comprehensive overview of the key technologies that must be advanced to achieve mechanized harvesting throughout the process, such as header design, threshing, cleaning, and intelligent modular systems. It also summarizes current research progress on advanced equipment for mechanized harvesting of minor cereals. In addition, the article puts forward suggestions to promote the development of mechanized harvesting of minor cereals, focusing on aspects such as crop variety optimization, equipment modularization, and intelligentization technology, aiming to provide a reference for the further development and research of mechanized harvesting technology for minor cereals in China. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

26 pages, 9003 KB  
Article
A Pilot-Scale Gasifier Freeboard Equipped with Catalytic Filter Candles for Particulate Abatement and Tar Conversion: 3D-CFD Simulations and Experimental Tests
by Alessandra Tacconi, Pier Ugo Foscolo, Sergio Rapagnà, Andrea Di Carlo and Alessandro Antonio Papa
Processes 2025, 13(7), 2233; https://doi.org/10.3390/pr13072233 - 12 Jul 2025
Cited by 1 | Viewed by 1163
Abstract
This work deals with the catalytic steam reforming of raw syngas to increase the efficiency of coupling gasification with downstream processes (such as fuel cells and catalytic chemical syntheses) by producing high-temperature, ready-to-use syngas without cooling it for cleaning and conditioning. Such a [...] Read more.
This work deals with the catalytic steam reforming of raw syngas to increase the efficiency of coupling gasification with downstream processes (such as fuel cells and catalytic chemical syntheses) by producing high-temperature, ready-to-use syngas without cooling it for cleaning and conditioning. Such a combination is considered a key point for the future exploitation of syngas produced by steam gasification of biogenic solid fuel. The design and construction of an integrated gasification and gas conditioning system were proposed approximately 20 years ago; however, they still require further in-depth study for practical applications. A 3D model of the freeboard of a pilot-scale, fluidized bed gasification plant equipped with catalytic ceramic candles was used to investigate the optimal operating conditions for in situ syngas upgrading. The global kinetic parameters for methane and tar reforming reactions were determined experimentally. A fluidized bed gasification reactor (~5 kWth) equipped with a 45 cm long segment of a fully commercial filter candle in its freeboard was used for a series of tests at different temperatures. Using a computational fluid dynamics (CFD) description, the relevant parameters for apparent kinetic equations were obtained in the frame of a first-order reaction model to describe the steam reforming of key tar species. As a further step, a CFD model of the freeboard of a 100 kWth gasification plant, equipped with six catalytic ceramic candles, was developed in ANSYS FLUENT®. The composition of the syngas input into the gasifier freeboard was obtained from experimental results based on the pilot-scale plant. Simulations showed tar catalytic conversions of 80% for toluene and 41% for naphthalene, still insufficient compared to the threshold limits required for operating solid oxide fuel cells (SOFCs). An overly low freeboard temperature level was identified as the bottleneck for enhancing gas catalytic conversions, so further simulations were performed by injecting an auxiliary stream of O2/steam (50/50 wt.%) through a series of nozzles at different heights. The best simulation results were obtained when the O2/steam stream was fed entirely at the bottom of the freeboard, achieving temperatures high enough to achieve a tar content below the safe operating conditions for SOFCs, with minimal loss of hydrogen content or LHV in the fuel gas. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

24 pages, 5766 KB  
Review
Research Progress on Castor Harvesting Technology and Equipment
by Teng Wu, Fanting Kong, Bin Zhang, Qing Xie, Yongfei Sun and Huayang Zhao
Sustainability 2025, 17(13), 5703; https://doi.org/10.3390/su17135703 - 20 Jun 2025
Cited by 1 | Viewed by 1323
Abstract
The harvesting of castor is highly seasonal and labor-intensive, necessitating a reliance on mature mechanical harvesting equipment. Castor harvesting machinery is a weak link in the castor industry chain, severely constraining the development of China’s castor industry. This article elaborates on the current [...] Read more.
The harvesting of castor is highly seasonal and labor-intensive, necessitating a reliance on mature mechanical harvesting equipment. Castor harvesting machinery is a weak link in the castor industry chain, severely constraining the development of China’s castor industry. This article elaborates on the current status of the castor industry and the harvesting modes, which mainly include combined harvesting and segmented harvesting. It systematically summarizes the harvesting platforms, cleaning technologies, and shelling technologies of castor harvesting machinery in China and internationally. It analyzes the main structural forms and working principles of the harvesting platforms of castor harvesters. The cleaning technologies and different types of shelling technologies of harvesters are also analyzed and summarized. Finally, this article identifies the existing problems in castor harvesting in China and provides an outlook on future development trends. It suggests that China’s castor cultivation will strengthen the integration of agricultural machinery and agronomy, while harvesting will develop in the direction of combined harvesting. In the future, the focus will be on the development of high-efficiency harvesting, specialized low-loss shelling machines, and breakthroughs in key core technologies to promote the development of mechanized castor harvesting technology in China. Full article
Show Figures

Figure 1

16 pages, 2018 KB  
Article
Toward Sustainable Solar Energy: Predicting Recombination Losses in Perovskite Solar Cells with Deep Learning
by Syed Raza Abbas, Bilal Ahmad Mir, Jihyoung Ryu and Seung Won Lee
Sustainability 2025, 17(12), 5287; https://doi.org/10.3390/su17125287 - 7 Jun 2025
Cited by 2 | Viewed by 2421
Abstract
Perovskite solar cells (PSCs) are emerging as leading candidates for sustainable energy generation due to their high power conversion efficiencies and low fabrication costs. However, their performance remains constrained by non-radiative recombination losses primarily at grain boundaries, interfaces, and within the perovskite bulk [...] Read more.
Perovskite solar cells (PSCs) are emerging as leading candidates for sustainable energy generation due to their high power conversion efficiencies and low fabrication costs. However, their performance remains constrained by non-radiative recombination losses primarily at grain boundaries, interfaces, and within the perovskite bulk that are difficult to characterize under realistic operating conditions. Traditional methods such as photoluminescence offer valuable insights but are complex, time-consuming, and often lack scalability. In this study, we present a novel Long Short-Term Memory (LSTM)-based deep learning framework for dynamically predicting dominant recombination losses in PSCs. Trained on light intensity-dependent current–voltage (J–V) characteristics, the proposed model captures temporal behavior in device performance and accurately distinguishes between grain boundary, interfacial, and band-to-band recombination mechanisms. Unlike static ML approaches, our model leverages sequential data to provide deeper diagnostic capability and improved generalization across varying conditions. This enables faster, more accurate identification of efficiency limiting factors, guiding both material selection and device optimization. While silicon technologies have long dominated the photovoltaic landscape, their high-temperature processing and rigidity pose limitations. In contrast, PSCs—especially when combined with intelligent diagnostic tools like our framework—offer enhanced flexibility, tunability, and scalability. By automating recombination analysis and enhancing predictive accuracy, our framework contributes to the accelerated development of high-efficiency PSCs, supporting the global transition to clean, affordable, and sustainable energy solutions. Full article
Show Figures

Figure 1

Back to TopTop