Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,095)

Search Parameters:
Keywords = high ambient temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11790 KiB  
Article
Uniaxial Mechanical Behavior and Constitutive Modeling of Early-Age Steel Fiber-Reinforced Concrete Under Variable-Temperature Curing Conditions
by Yongkang Xu, Quanmin Xie, Hui Zhou, Yongsheng Jia, Zhibin Zheng and Chong Pan
Materials 2025, 18(15), 3642; https://doi.org/10.3390/ma18153642 (registering DOI) - 2 Aug 2025
Abstract
In high geothermal tunnels (>28 °C), curing temperature critically affects early-age concrete mechanics and durability. Uniaxial compression tests under six curing conditions, combined with CT scanning and machine learning-based crack analysis, were used to evaluate the impacts of curing age, temperature, and fiber [...] Read more.
In high geothermal tunnels (>28 °C), curing temperature critically affects early-age concrete mechanics and durability. Uniaxial compression tests under six curing conditions, combined with CT scanning and machine learning-based crack analysis, were used to evaluate the impacts of curing age, temperature, and fiber content. The test results indicate that concrete exhibits optimal development of mechanical properties under ambient temperature conditions. Specifically, the elastic modulus increased by 33.85% with age in the room-temperature group (RT), by 23.35% in the fiber group (F), and decreased by 26.75% in the varying-temperature group (VT). A Weibull statistical damage-based constitutive model aligned strongly with the experimental data (R2 > 0.99). Fractal analysis of CT-derived cracks revealed clear fractal characteristics in the log(Nr)–log(r) curves, demonstrating internal damage mechanisms under different thermal histories. Full article
(This article belongs to the Section Construction and Building Materials)
16 pages, 2366 KiB  
Article
ZnO-Assisted Synthesis of Rouaite (Cu2(OH)3NO3) Long Hexagonal Multilayered Nanoplates Towards Catalytic Wet Peroxide Oxidation Application
by Guang Yao Zhou, Jun Guo and Ji Hong Wu
Crystals 2025, 15(8), 710; https://doi.org/10.3390/cryst15080710 (registering DOI) - 2 Aug 2025
Abstract
Rouaite (Cu2(OH)3NO3) long hexagonal multilayered nanoplates with high purity and high crystallinity were prepared from acidic reaction solution (pH = 4.4–4.8) with the assistance of ZnO. The ZnO-assisted strategy is remarkably different from the conventional synthetic protocol [...] Read more.
Rouaite (Cu2(OH)3NO3) long hexagonal multilayered nanoplates with high purity and high crystallinity were prepared from acidic reaction solution (pH = 4.4–4.8) with the assistance of ZnO. The ZnO-assisted strategy is remarkably different from the conventional synthetic protocol that was regularly carried out in alkaline solution (pH > 11). The rouaite multilayer nanoplates displayed exceptionally high catalytic activity in the catalytic wet peroxide oxidation (CWPO) of Congo red (CR). The catalytic efficiency for CR decolorization achieved an impressive 96.3% in 50 min under near-neutral (pH = 6.76) and ambient conditions (T = 20 °C, p = 1 atm), without increasing the temperature and/or decreasing the pH value to acidic region (pH = 2–3) as is commonly employed in CWPO process for improved degradation efficiency. Full article
Show Figures

Figure 1

18 pages, 8702 KiB  
Article
Oxidation Process and Morphological Degradation of Drilling Chips from Carbon Fiber-Reinforced Polymers
by Dora Kroisová, Stepanka Dvorackova, Martin Bilek, Josef Skrivanek, Anita Białkowska and Mohamed Bakar
J. Compos. Sci. 2025, 9(8), 410; https://doi.org/10.3390/jcs9080410 (registering DOI) - 2 Aug 2025
Abstract
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods [...] Read more.
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods like landfilling and incineration are unsustainable. CFRP machining processes, such as drilling and milling, produce fine chips and dust that are difficult to recycle due to their heterogeneity and contamination. This study investigates the oxidation behavior of CFRP drilling waste from two types of materials (tube and plate) under oxidative (non-inert) conditions. Thermogravimetric analysis (TGA) was performed from 200 °C to 800 °C to assess weight loss related to polymer degradation and carbon fiber integrity. Scanning electron microscopy (SEM) was used to analyze morphological changes and fiber damage. The optimal range for removing the polymer matrix without significant fiber degradation has been identified as 500–600 °C. At temperatures above 700 °C, notable surface and internal fiber damage occurred, along with nanostructure formation, which may pose health and environmental risks. The results show that partial fiber recovery is possible under ambient conditions, and this must be considered regarding the harmful risks to the human body if submicron particles are inhaled. This research supports sustainable CFRP recycling and fire hazard mitigation. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

25 pages, 6272 KiB  
Article
Research on Energy-Saving Control of Automotive PEMFC Thermal Management System Based on Optimal Operating Temperature Tracking
by Qi Jiang, Shusheng Xiong, Baoquan Sun, Ping Chen, Huipeng Chen and Shaopeng Zhu
Energies 2025, 18(15), 4100; https://doi.org/10.3390/en18154100 (registering DOI) - 1 Aug 2025
Abstract
To further enhance the economic performance of fuel cell vehicles (FCVs), this study develops a model-adaptive model predictive control (MPC) strategy. This strategy leverages the dynamic relationship between proton exchange membrane fuel cell (PEMFC) output characteristics and temperature to track its optimal operating [...] Read more.
To further enhance the economic performance of fuel cell vehicles (FCVs), this study develops a model-adaptive model predictive control (MPC) strategy. This strategy leverages the dynamic relationship between proton exchange membrane fuel cell (PEMFC) output characteristics and temperature to track its optimal operating temperature (OOT), addressing challenges of temperature control accuracy and high energy consumption in the PEMFC thermal management system (TMS). First, PEMFC and TMS models were developed and experimentally validated. Subsequently, the PEMFC power–temperature coupling curve was experimentally determined under multiple operating conditions to serve as the reference trajectory for TMS multi-objective optimization. For MPC controller design, the TMS model was linearized and discretized, yielding a predictive model adaptable to different load demands for stack temperature across the full operating range. A multi-constrained quadratic cost function was formulated, aiming to minimize the deviation of the PEMFC operating temperature from the OOT while accounting for TMS parasitic power consumption. Finally, simulations under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) conditions evaluated the OOT tracking performance of both PID and MPC control strategies, as well as their impact on stack efficiency and TMS energy consumption at different ambient temperatures. The results indicate that, compared to PID control, MPC reduces temperature tracking error by 33%, decreases fan and pump speed fluctuations by over 24%, and lowers TMS energy consumption by 10%. These improvements enhance PEMFC operational stability and improve FCV energy efficiency. Full article
Show Figures

Figure 1

17 pages, 1522 KiB  
Article
Characterization of Solid Particulates to Be Used as Storage as Well as Heat Transfer Medium in Concentrated Solar Power Systems
by Rageh Saeed, Syed Noman Danish, Shaker Alaqel, Nader S. Saleh, Eldwin Djajadiwinata, Hany Al-Ansary, Abdelrahman El-Leathy, Abdulelah Alswaiyd, Zeyad Al-Suhaibani, Zeyad Almutairi and Sheldon Jeter
Appl. Sci. 2025, 15(15), 8566; https://doi.org/10.3390/app15158566 (registering DOI) - 1 Aug 2025
Abstract
Using solid particulates as a heat transfer medium for concentrated solar power (CSP) systems has many advantages, positioning them as a superior option compared with conventional heat transfer media such as steam, oil, air, and molten salt. However, a critical imperative lies in [...] Read more.
Using solid particulates as a heat transfer medium for concentrated solar power (CSP) systems has many advantages, positioning them as a superior option compared with conventional heat transfer media such as steam, oil, air, and molten salt. However, a critical imperative lies in the comprehensive evaluation of the properties of potential solid particulates intended for utilization under such extreme thermal conditions. This paper undertakes an exhaustive examination of both ambient and high-temperature thermophysical properties of four naturally occurring particulate materials, Riyadh white sand, Riyadh red sand, Saudi olivine sand, and US olivine sand, and one well-known engineered particulate material. The parameters under scrutiny encompass loose bulk density, tapped bulk density, real density, sintering temperature, and thermal conductivity. The results reveal that the theoretical density decreases with the increase in temperature. The bulk density of solid particulates depends strongly on the particulate size distribution, as well as on the compaction. The tapped bulk density was found to be larger than the loose density for all particulates, as expected. The sintering test proved that Riyadh white sand is sintered at the highest temperature and pressure, 1300 °C and 50 MPa, respectively. US olivine sand was solidified at 800 °C and melted at higher temperatures. This proves that US olivine sand is not suitable to be used as a thermal energy storage and heat transfer medium in high-temperature particle-based CSP systems. The experimental results of thermal diffusivity/conductivity reveal that, for all particulates, both properties decrease with the increase in temperature, and results up to 475.5 °C are reported. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

29 pages, 5343 KiB  
Article
Optimizing Electric Bus Efficiency: Evaluating Seasonal Performance in a Southern USA Transit System
by MD Rezwan Hossain, Arjun Babuji, Md. Hasibul Hasan, Haofei Yu, Amr Oloufa and Hatem Abou-Senna
Future Transp. 2025, 5(3), 92; https://doi.org/10.3390/futuretransp5030092 (registering DOI) - 1 Aug 2025
Abstract
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced [...] Read more.
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced battery performance, this study presents a contrasting perspective based on a three-year longitudinal analysis of the LYMMO fleet in Orlando, Florida—a subtropical U.S. region. The findings reveal that summer is the most energy-intensive season, primarily due to sustained HVAC usage driven by high ambient temperatures—a seasonal pattern rarely reported in the current literature and a key regional contribution. Additionally, idling time exceeds driving time across all seasons, with HVAC usage during idling emerging as the dominant contributor to total energy consumption. To mitigate these inefficiencies, a proxy-based HVAC energy estimation method and an optimization model were developed, incorporating ambient temperature and peak passenger load. This approach achieved up to 24% energy savings without compromising thermal comfort. Results validated through non-parametric statistical testing support operational strategies such as idling reduction, HVAC control, and seasonally adaptive scheduling, offering practical pathways to improve EB efficiency in warm-weather transit systems. Full article
Show Figures

Figure 1

14 pages, 923 KiB  
Article
Mitigating Effects of Rosmarinus officinalis Essential Oil and Sugar Beet Pulp on Immune Response and Growth Performance of Heat-Stressed Lambs
by Maria Giovanna Ciliberti, Rosaria Marino, Mariangela Caroprese, Cristina Stango, Agostino Sevi and Marzia Albenzio
Animals 2025, 15(15), 2241; https://doi.org/10.3390/ani15152241 - 30 Jul 2025
Viewed by 81
Abstract
Dietary supplementation under high ambient temperatures can be considered crucial for supporting immune responses in livestock. In the present paper, Rosmarinus officinalis essential oil (REO) alone and in combination with dried sugar beet pulp (REO + B) was included in the diet of [...] Read more.
Dietary supplementation under high ambient temperatures can be considered crucial for supporting immune responses in livestock. In the present paper, Rosmarinus officinalis essential oil (REO) alone and in combination with dried sugar beet pulp (REO + B) was included in the diet of lambs during the fattening period under heat stress conditions. Environmental conditions and physiological and growth parameters of lambs were monitored throughout the trial. Plasma samples were collected to evaluate cytokine secretion (IL-1β, IL-6, and IL-10). Notably, REO inclusion reduced rectal temperature and respiration rate while increasing pro-inflammatory cytokines (IL-1β and IL-6) at the same time, suggesting an enhanced immune response without compromising growth performance. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

16 pages, 4017 KiB  
Article
Recyclable Platinum Nanocatalyst for Nitroarene Hydrogenation: Gum Acacia Polymer-Stabilized Pt Nanoparticles with TiO2 Support
by Supriya Prakash, Selvakumar Ponnusamy, Jagadeeswari Rangaraman, Kundana Nakkala and Putrakumar Balla
ChemEngineering 2025, 9(4), 81; https://doi.org/10.3390/chemengineering9040081 - 30 Jul 2025
Viewed by 84
Abstract
Platinum has emerged as an optimal catalyst for the selective hydrogenation of nitroarenes owing to its high hydrogenation activity, selectivity, and stability. In this study, we report the fabrication of platinum nanoparticles stabilized on a composite support consisting of gum acacia polymer (GAP) [...] Read more.
Platinum has emerged as an optimal catalyst for the selective hydrogenation of nitroarenes owing to its high hydrogenation activity, selectivity, and stability. In this study, we report the fabrication of platinum nanoparticles stabilized on a composite support consisting of gum acacia polymer (GAP) and TiO2. It was engineered for the targeted reduction of nitroarenes to arylamines via selective hydrogenation in methanol at ambient temperature. The non-toxic and biocompatible properties of GAP enable it to act as a reducing and stabilizing agent during synthesis. The synthesized nanocatalyst was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Morphological and structural analyses revealed that the fabricated catalyst consisted of minuscule Pt nanoparticles integrated within the GAP framework, accompanied by the corresponding TiO2 nanoparticles. Inductively coupled plasma optical emission spectrometry (ICP-OES) was employed to ascertain the Pt content. The mild reaction conditions, decent yields, trouble-free workup, and facile separation of the catalyst make this method a clean and practical alternative to nitroreduction. Selective hydrogenation yielded an average arylamine production of 97.6% over five consecutive cycles, demonstrating the stability of the nanocatalyst without detectable leaching. Full article
Show Figures

Figure 1

36 pages, 539 KiB  
Review
Genomic Adaptation, Environmental Challenges, and Sustainable Yak Husbandry in High-Altitude Pastoral Systems
by Saima Naz, Ahmad Manan Mustafa Chatha, Qudrat Ullah, Muhammad Farooq, Tariq Jamil, Raja Danish Muner and Azka Kiran
Vet. Sci. 2025, 12(8), 714; https://doi.org/10.3390/vetsci12080714 - 29 Jul 2025
Viewed by 133
Abstract
The yak (Bos grunniens) is a key species in high-altitude rangelands of Asia. Despite their ecological and economic importance, yak production faces persistent challenges, including low milk yields, vulnerability to climate changes, emerging diseases, and a lack of systematic breeding programs. [...] Read more.
The yak (Bos grunniens) is a key species in high-altitude rangelands of Asia. Despite their ecological and economic importance, yak production faces persistent challenges, including low milk yields, vulnerability to climate changes, emerging diseases, and a lack of systematic breeding programs. This review presents the genomic, physiological, and environmental dimensions of yak biology and husbandry. Genes such as EPAS1, which encodes hypoxia-inducible transcription factors, underpin physiological adaptations, including enlarged cardiopulmonary structures, elevated erythrocyte concentrations, and specialized thermoregulatory mechanisms that enable their survival at elevations of 3000 m and above. Copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) present promising markers for improving milk and meat production, disease resistance, and metabolic efficiency. F1 and F2 generations of yak–cattle hybrids show superior growth and milk yields, but reproductive barriers, such as natural mating or artificial insemination, and environmental factors limit the success of these hybrids beyond second generation. Infectious diseases, such as bovine viral diarrhea and antimicrobial-resistant and biofilm-forming Enterococcus and E. coli, pose risks to herd health and food safety. Rising ambient temperatures, declining forage biomass, and increased disease prevalence due to climate changes risk yak economic performance and welfare. Addressing these challenges by nutritional, environmental, and genetic interventions will safeguard yak pastoralism. This review describes the genes associated with different yak traits and provides an overview of the genetic adaptations of yaks (Bos grunniens) to environmental stresses at high altitudes and emphasizes the need for conservation and improvement strategies for sustainable husbandry of these yaks. Full article
Show Figures

Figure 1

16 pages, 1285 KiB  
Article
The Physiological Cost of Being Hot: High Thermal Stress and Disturbance Decrease Energy Reserves in Dragonflies in the Wild
by Eduardo Ulises Castillo-Pérez, Angélica S. Ensaldo-Cárdenas, Catalina M. Suárez-Tovar, José D. Rivera-Duarte, Daniel González-Tokman and Alex Córdoba-Aguilar
Biology 2025, 14(8), 956; https://doi.org/10.3390/biology14080956 - 29 Jul 2025
Viewed by 126
Abstract
Anthropogenic disturbance alters macro- and microclimatic conditions, often increasing ambient temperatures. These changes can strongly affect insects, particularly those experiencing high thermal stress (i.e., large differences between body and environmental temperature), as prolonged exposure to elevated temperatures can reduce their energetic reserves due [...] Read more.
Anthropogenic disturbance alters macro- and microclimatic conditions, often increasing ambient temperatures. These changes can strongly affect insects, particularly those experiencing high thermal stress (i.e., large differences between body and environmental temperature), as prolonged exposure to elevated temperatures can reduce their energetic reserves due to increased metabolic demands and physiological stress. We evaluated thermal stress in 16 insect dragonfly species during two sampling periods (2019 and 2022) in preserved and disturbed sites within a tropical dry forest in western Mexico. Also, we compared energetic condition (lipid and protein content) and thoracic mass for the seven most abundant species between both habitat types. In preserved sites, insects showed higher thermal stress at lower maximum temperatures, which decreased as temperatures increased. Dragonflies in disturbed sites maintained consistent levels of thermal stress across the temperature gradient. Thermal stress was linked to lower lipid and protein content, and individuals from disturbed sites had reduced energy reserves. We also found a weak but consistent positive relationship between mean ambient temperature and protein content. In preserved sites, thoracic mass increased with thermal stress, but only at high mean temperatures. These findings suggest that although species can persist in disturbed environments, their energetic condition may be compromised, potentially affecting their performance and fitness. Preserving suitable habitats is essential for preserving both biodiversity and ecological function. Full article
Show Figures

Figure 1

20 pages, 3170 KiB  
Article
Sensorless SPMSM Control for Heavy Handling Machines Electrification: An Innovative Proposal
by Marco Bassani, Andrea Toscani and Carlo Concari
Energies 2025, 18(15), 4021; https://doi.org/10.3390/en18154021 - 28 Jul 2025
Viewed by 233
Abstract
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting [...] Read more.
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting fan drives in heavy machinery, like bulldozers and tractors, utilizing existing 48 VDC batteries. By replacing or complementing internal combustion and hydraulic technologies with electric solutions, significant advantages in efficiency, reduced environmental impact, and versatility can be achieved. Focusing on the fan drive system addresses the critical challenge of thermal management in high ambient temperatures and harsh environments, particularly given the high current requirements for 3kW-class applications. A sensorless architecture has been selected to enhance reliability by eliminating mechanical position sensors. The developed fan drive has been extensively tested both on a braking bench and in real-world applications, demonstrating its effectiveness and robustness. Future work will extend this prototype to electrify additional onboard hydraulic motors in these machines, further advancing the electrification of heavy-duty equipment and improving overall efficiency and environmental impact. Full article
(This article belongs to the Special Issue Electronics for Energy Conversion and Renewables)
Show Figures

Figure 1

30 pages, 7246 KiB  
Article
Linear Dependence of Sublimation Enthalpy on Young’s Elastic Modulus: Implications for Thermodynamics of Solids
by Anne M. Hofmeister
Materials 2025, 18(15), 3535; https://doi.org/10.3390/ma18153535 - 28 Jul 2025
Viewed by 289
Abstract
Classical thermodynamics omits rigidity, which property distinguishes solids from gases and liquids. By accounting for rigidity (i.e., Young’s elastic modulus, ϒ), we recently amended historical formulae and moreover linked heat capacity, thermal expansivity, and ϒ. Further exploration is motivation by the importance of [...] Read more.
Classical thermodynamics omits rigidity, which property distinguishes solids from gases and liquids. By accounting for rigidity (i.e., Young’s elastic modulus, ϒ), we recently amended historical formulae and moreover linked heat capacity, thermal expansivity, and ϒ. Further exploration is motivation by the importance of classical thermodynamics to various applied sciences. Based on heat performing work, we show here, theoretically, that density times sublimation enthalpy divided by the molar mass (ρΔHsub/M, energy per volume), depends linearly on ϒ (1 GPa = 109 J m−3). Data on diverse metals, non-metallic elements, chalcogenides, simple oxides, alkali halides, and fluorides with cubic structures validate this relationship at ambient conditions. Furthermore, data on hcp metals and molecular solids show that ρΔHsub/M is proportional to ϒ for anisotropic materials. Proportionality constants vary only from 0.1 to 0.7 among these different material types (>100 substances), which shows that the elastic energy reservoir of solids is large. Proportionality constants depend on whether molecules or atoms are sublimated and are somewhat affected by structure. We show that ductility of refractory, high-ϒ metals affect high-temperature determinations of their ΔHsub. Our results provide information on sublimation processes and subsequent gas phase reactions, while showing that elasticity of solids is the key parameter needed to assessing their energetics. Implications are highlighted. Full article
Show Figures

Graphical abstract

16 pages, 2050 KiB  
Article
Effects of Activated Cold Regenerant on Pavement Properties of Emulsified Asphalt Cold Recycled Mixture
by Fuda Chen, Jiangmiao Yu, Yuan Zhang, Zengyao Lin and Anxiong Liu
Materials 2025, 18(15), 3529; https://doi.org/10.3390/ma18153529 - 28 Jul 2025
Viewed by 242
Abstract
Limited recovery of the viscoelastic properties of aged asphalt on RAP surfaces at ambient temperature reduces interface fusion and bonding with new emulsified asphalt, degrading pavement performance and limiting large-scale promotion and high-value applications of the emulsified asphalt cold recycled mixture (EACRM). Therefore, [...] Read more.
Limited recovery of the viscoelastic properties of aged asphalt on RAP surfaces at ambient temperature reduces interface fusion and bonding with new emulsified asphalt, degrading pavement performance and limiting large-scale promotion and high-value applications of the emulsified asphalt cold recycled mixture (EACRM). Therefore, a cold regenerant was independently prepared to rapidly penetrate, soften, and activate aged asphalt at ambient temperature in this paper, and its effects on the volumetric composition, mechanical strength, and pavement performance of EACRM were systematically investigated. The results showed that as the cold regenerant content increased, the air voids, indirect tensile strength (ITS), and high-temperature deformation resistance of EACRM decreased, while the dry–wet ITS ratio, cracking resistance, and fatigue resistance increased. Considering the comprehensive pavement performance requirements of cold recycled pavements, the optimal content of the activated cold regenerant for EACRM was determined to be approximately 0.6%. Full article
Show Figures

Figure 1

38 pages, 5939 KiB  
Article
Decentralized Energy Management for Microgrids Using Multilayer Perceptron Neural Networks and Modified Cheetah Optimizer
by Zulfiqar Ali Memon, Ahmed Bilal Awan, Hasan Abdel Rahim A. Zidan and Mohana Alanazi
Processes 2025, 13(8), 2385; https://doi.org/10.3390/pr13082385 - 27 Jul 2025
Viewed by 404
Abstract
This paper presents a decentralized energy management system (EMS) based on Multilayer Perceptron Artificial Neural Networks (MLP-ANNs) and a Modified Cheetah Optimizer (MCO) to account for uncertainty in renewable generation and load demand. The proposed framework applies an MLP-ANN with Levenberg–Marquardt (LM) training [...] Read more.
This paper presents a decentralized energy management system (EMS) based on Multilayer Perceptron Artificial Neural Networks (MLP-ANNs) and a Modified Cheetah Optimizer (MCO) to account for uncertainty in renewable generation and load demand. The proposed framework applies an MLP-ANN with Levenberg–Marquardt (LM) training for high-precision forecasts of photovoltaic/wind generation, ambient temperature, and load demand, greatly outperforming traditional statistical methods (e.g., time-series analysis) and resilient backpropagation (RP) in precision. The new MCO algorithm eliminates local trapping and premature convergence issues in classical optimization methods like Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs). Simulations on a test microgrid verily demonstrate the advantages of the framework, achieving a 26.8% cost-of-operation reduction against rule-based EMSs and classical PSO/GA, and a 15% improvement in forecast accuracy using an LM-trained MLP-ANN. Moreover, demand response programs embodied in the system reduce peak loads by 7.5% further enhancing grid stability. The MLP-ANN forecasting–MCO optimization duet is an effective and cost-competitive decentralized microgrid management solution under uncertainty. Full article
Show Figures

Figure 1

32 pages, 7179 KiB  
Article
Effects of an Integrated Infrared Suppressor on the Infrared and Acoustic Characteristics of Helicopters
by Zongyao Yang, Xinqian Zheng and Jingzhou Zhang
Aerospace 2025, 12(8), 665; https://doi.org/10.3390/aerospace12080665 - 26 Jul 2025
Viewed by 170
Abstract
To enhance the survivability of armed helicopters in high-threat environments, integrated infrared (IR) suppressors are increasingly adopted to reduce thermal signatures. However, such integration significantly alters the exhaust flow field, which may in turn affect both the infrared and acoustic characteristics of the [...] Read more.
To enhance the survivability of armed helicopters in high-threat environments, integrated infrared (IR) suppressors are increasingly adopted to reduce thermal signatures. However, such integration significantly alters the exhaust flow field, which may in turn affect both the infrared and acoustic characteristics of the helicopter. This study investigates the aerodynamic, infrared, and acoustic impacts of an integrated IR suppressor through the comparative analysis of two helicopter configurations: a conventional design and a design equipped with an integrated IR suppressor. Full-scale models are used to analyze flow field and IR radiation characteristics, while scaled models are employed for aeroacoustic simulations. The results show that although the integrated IR suppressor increases flow resistance and reduces entrainment performance within the exhaust mixing duct, it significantly improves the thermal dissipation efficiency of the exhaust plume. The infrared radiation analysis reveals that the integrated suppressor effectively reduces radiation intensity in both the 3~5 μm and 8~14 μm bands, especially under cruise conditions where the exhaust is more efficiently cooled by ambient airflow. Equivalent radiation temperatures calculated along principal axes confirm lower IR signatures for the integrated configuration. Preliminary acoustic analyses suggest that the slit-type nozzle and integrated suppressor layout may also offer potential benefits in jet noise reduction. Overall, the integrated IR suppressor provides a clear advantage in lowering the infrared observability of armed helicopters, with acceptable aerodynamic and acoustic trade-offs. These findings offer valuable guidance for the future development of low-observable helicopter platforms. Full article
Show Figures

Figure 1

Back to TopTop