Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (201)

Search Parameters:
Keywords = high Curie temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6320 KiB  
Article
Enhanced Microwave Absorption Performance of Amorphous Co100−xFex Nanoparticles
by Zhen Wang, Chao An, Fenglong Wang, Hongsheng Liang, Zhaoyang Hou, Hao Shen and Hongjing Wu
Nanomaterials 2025, 15(14), 1091; https://doi.org/10.3390/nano15141091 - 14 Jul 2025
Viewed by 263
Abstract
Metallic magnetic materials are extensively used to mitigate electromagnetic interference due to their high Curie temperatures and permeability. However, their high permittivity often hinders impedance-matching effectiveness, limiting their utility. In this study, amorphous cobalt–iron (Co100−xFex) alloy nanoparticles with relatively [...] Read more.
Metallic magnetic materials are extensively used to mitigate electromagnetic interference due to their high Curie temperatures and permeability. However, their high permittivity often hinders impedance-matching effectiveness, limiting their utility. In this study, amorphous cobalt–iron (Co100−xFex) alloy nanoparticles with relatively low permittivity were synthesized using a simple aqueous reduction method at room temperature. The effect of atomic ratio variation on the microwave absorption properties of these nanoparticles was investigated across 2–18 GHz. The amorphous Co100−xFex nanoparticles exhibited excellent electromagnetic wave absorption performance, achieving an effective absorption bandwidth of 5.6 GHz, a matching thickness of 2.60 mm, and a reflection loss of −42 dB. Full article
(This article belongs to the Special Issue Harvesting Electromagnetic Fields with Nanomaterials)
Show Figures

Figure 1

10 pages, 6843 KiB  
Article
Correlation Between Microstructure and Electric Behavior of (1−x)Ba0.96Ca0.04TiO3-xBa(Mg1/3Nb2/3)O3 Ceramics Prepared via Chemical-Furnace-Assisted Combustion Synthesis
by Haiqin Ding, Jun Wang, Tongchun Qin, Lingling Cui, Guodong Jia, Guang Ji and Zhiwei Li
Coatings 2025, 15(7), 817; https://doi.org/10.3390/coatings15070817 - 12 Jul 2025
Viewed by 580
Abstract
The (1−x)Ba0.96Ca0.04TiO3-xBa(Mg1/3Nb2/3)O3 (x = 0–0.20) lead-free ceramics were prepared through the chemical-furnace-assisted combustion synthesis (abbreviated as CFACS). The phase structure, microstructure, dielectric, and piezoelectric properties were systematically investigated. Phase analysis revealed the [...] Read more.
The (1−x)Ba0.96Ca0.04TiO3-xBa(Mg1/3Nb2/3)O3 (x = 0–0.20) lead-free ceramics were prepared through the chemical-furnace-assisted combustion synthesis (abbreviated as CFACS). The phase structure, microstructure, dielectric, and piezoelectric properties were systematically investigated. Phase analysis revealed the coexistence of orthorhombic and tetragonal phases in the vicinity of x = 0.07. More importantly, the composition with x = 0.07 exhibited optimal overall electrical properties, including a high piezoelectric coefficient (d33) of 495 pC/N, the planar electromechanical coupling factor (Kp) of 41.9%, and the Curie temperature (Tc) of 123.7 °C. In addition, the average grain size was observed to progressively decrease with increasing x. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

27 pages, 3233 KiB  
Review
Advances in the Fabrication and Magnetic Properties of Heusler Alloy Glass-Coated Microwires with High Curie Temperature
by Mohamed Salaheldeen, Valentina Zhukova, Juan Maria Blanco, Julian Gonzalez and Arcady Zhukov
Metals 2025, 15(7), 718; https://doi.org/10.3390/met15070718 - 27 Jun 2025
Viewed by 651
Abstract
This review article provides an in-depth analysis of recent advancements in the fabrication, structural characterization, and magnetic properties of Heusler alloy glass-coated microwires, focusing on Co2FeSi alloys. These microwires exhibit unique thermal stability, high Curie temperatures, and tunable magnetic properties, making [...] Read more.
This review article provides an in-depth analysis of recent advancements in the fabrication, structural characterization, and magnetic properties of Heusler alloy glass-coated microwires, focusing on Co2FeSi alloys. These microwires exhibit unique thermal stability, high Curie temperatures, and tunable magnetic properties, making them suitable for a wide range of applications in spintronics, magnetic sensing, and biomedical engineering. The review emphasizes the influence of geometric parameters, annealing conditions, and compositional variations on the microstructure and magnetic behavior of these materials. Detailed discussions on the Taylor–Ulitovsky fabrication technique, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) provide insights into the structural properties of the microwires. The magnetic properties, including room-temperature behavior, temperature dependence, and the effects of annealing, are thoroughly examined. The potential applications of these microwires in advanced spintronic devices, magnetic sensors, and biomedical technologies are explored. The review concludes with future research directions, highlighting the potential for further advancements in the field of Heusler alloy microwires. Full article
(This article belongs to the Special Issue Metallic Magnetic Materials: Manufacture, Properties and Applications)
Show Figures

Figure 1

12 pages, 3031 KiB  
Article
Doping Effects on Magnetic and Electronic Transport Properties in BaZn2As2
by Guoqiang Zhao, Gangxu Gu, Shuai Yang, Yi Peng, Xiang Li, Kenji M. Kojima, Chaojing Lin, Xiancheng Wang, Timothy Ziman, Yasutomo J. Uemura, Bo Gu, Gang Su, Sadamichi Maekawa, Yongqing Li and Changqing Jin
Crystals 2025, 15(6), 582; https://doi.org/10.3390/cryst15060582 - 19 Jun 2025
Viewed by 636
Abstract
Novel diluted magnetic semiconductors derived from BaZn2As2 are of considerable importance owing to their elevated Curie temperature of 260 K, the diversity of magnetic states they exhibit, and their prospective applications in multilayer heterojunctions. However, the transition from the intrinsic [...] Read more.
Novel diluted magnetic semiconductors derived from BaZn2As2 are of considerable importance owing to their elevated Curie temperature of 260 K, the diversity of magnetic states they exhibit, and their prospective applications in multilayer heterojunctions. However, the transition from the intrinsic semiconductor BaZn2As2 (BZA) to its doped compounds has not been extensively explored, especially in relation to the significant intermediate compound Ba(Zn,Mn)2As2 (BZMA). This study aims to address this gap by performing susceptibility and magnetization measurements, in addition to electronic transport analyses, on these compounds in their single crystal form. Key findings include the following: (1) carriers can significantly modulate the magnetism, transitioning from a non-magnetic BZA to a weak magnetic BZMA, and subsequently to a hard ferromagnet (Ba,K)(Zn,Mn)2As2 with potassium (K) doping to BZMA; (2) two distinct sets of metal-insulator transitions were identified, which can be elucidated by the involvement of carriers and the emergence of various magnetic states, respectively; and (3) BZMA exhibits colossal negative magnetoresistance, and by lanthanum (La) doping, a potential n-type (Ba,La)(Zn,Mn)2As2 single crystal was synthesized, demonstrating promising prospects for p-n junction applications. This study enhances our understanding of the magnetic interactions and evolutions among these compounds, particularly in the low-doping regime, thereby providing a comprehensive physical framework that complements previous findings related to the high-doping region. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

17 pages, 3401 KiB  
Article
Ab Initio Investigation on the Magnetic Moments, Magnetocrystalline Anisotropy and Curie Temperature of Fe2P-Based Magnets
by Stephan Erdmann, Halil İbrahim Sözen and Thorsten Klüner
Magnetism 2025, 5(2), 14; https://doi.org/10.3390/magnetism5020014 - 10 Jun 2025
Viewed by 1087
Abstract
Permanent magnetic materials are essential for technological applications, with the majority of available magnets being either ferrites or materials composed of critical rare-earth elements, such as well-known Nd2Fe14B. The binary Fe2P material emerges as a promising candidate [...] Read more.
Permanent magnetic materials are essential for technological applications, with the majority of available magnets being either ferrites or materials composed of critical rare-earth elements, such as well-known Nd2Fe14B. The binary Fe2P material emerges as a promising candidate to address the performance gap, despite its relatively low Curie temperature TC of 214 K. In this study, density functional theory was employed to investigate the effect of Si and Co substitution on the magnetic moments, magnetocrystalline anisotropy energy (MAE) and Curie temperature in Fe2yCoyP1−xSix compounds. Our findings indicate that Si substitution enhances magnetic moments due to the increase in 3f-3f and 3f-3g interaction energies, which also contribute to higher TC values. Conversely, Co substitution leads to a reduction in magnetic moments, attributable to the inherently lower magnetic moments of Co. In all examined cases of different Si concentrations, such as hexagonally structured Fe2yCoyP, Fe2yCoyP0.92Si0.08 and Fe2yCoyP0.84Si0.16, Co substitution increases the Curie temperatures by augmenting 3g-3g exchange interaction energies. Both Si and Co substitutions decrease the magnetocrystalline anisotropy energy, resulting in the loss of the easy magnetization direction at higher Co contents. However, higher Si concentrations appear to confer resilience against the loss. In summary, Si and Co substitutions effectively modify the investigated magnetic properties. Nonetheless, to preserve a high MAE, the extent of substitution should be optimized. Full article
Show Figures

Figure 1

14 pages, 2109 KiB  
Article
XGBoost-Based Modeling of Electrocaloric Property: A Bayesian Optimization in BCZT Electroceramics
by Mustafa Cagri Bayir and Ebru Mensur
Materials 2025, 18(12), 2682; https://doi.org/10.3390/ma18122682 - 6 Jun 2025
Viewed by 463
Abstract
Electrocaloric materials, which exhibit adiabatic temperature change under an applied electric field, are promising for solid-state cooling technologies. In this study, the electrocaloric response of lead-free BaxCa1−xZryTi1−yO3 (BCZT) ceramics was modeled to investigate the [...] Read more.
Electrocaloric materials, which exhibit adiabatic temperature change under an applied electric field, are promising for solid-state cooling technologies. In this study, the electrocaloric response of lead-free BaxCa1−xZryTi1−yO3 (BCZT) ceramics was modeled to investigate the effects of composition, processing, and measurement conditions on performance. A high-accuracy XGBoost regression model (R2 = 0.99, MAE = 0.02 °C) was developed using a dataset of 2188 literature-derived data points to predict and design the electrocaloric response of BCZT ceramics. The feature space incorporated compositional ratios, processing parameters, measurement settings, and atomic-level Magpie descriptors, along with Curie temperature to account for phase-transition behavior. Feature importance analysis revealed that electric field, measurement temperature, and proximity to the Curie point are the most critical factors influencing ΔTEC. Bayesian optimization was applied to navigate the design space and identify performance maxima under unconstrained and realistic constraints, offering valuable insights into the nonlinear interactions governing electrocaloric performance. Under room temperature and moderate-field conditions (24 °C, 40 kV/cm), the optimized ΔTEC achieved a value of 1.03 °C for Ba0.85Ca0.15Zr0.40Ti0.60, to be processed at 1090 °C for 3 h during calcination, 1300 °C for 2 h during sintering. By integrating experimental insight with machine learning and optimization, this study offers a refined, interpretable framework for accelerating the design of high-performance electrocaloric ceramics while reducing the experimental workload. Full article
Show Figures

Figure 1

15 pages, 3635 KiB  
Article
Effect of Oxygen Vacancy Concentration on the Electrical Properties and Microstructure of Bi4Ti3O12 Ceramics: Experimental and First-Principles Investigation
by Tao Chen, Yang Chen, Ning Zhang, Tiantian Liu, Songlin Wang and Qi Zhang
Materials 2025, 18(11), 2666; https://doi.org/10.3390/ma18112666 - 5 Jun 2025
Viewed by 516
Abstract
This paper investigates the impact of sintering temperature on oxygen vacancy concentration and its subsequent effect on the microstructure and electrical properties of Bi4Ti3O12 (BIT) ceramics. To further clarify these effects, VASP software was employed to [...] Read more.
This paper investigates the impact of sintering temperature on oxygen vacancy concentration and its subsequent effect on the microstructure and electrical properties of Bi4Ti3O12 (BIT) ceramics. To further clarify these effects, VASP software was employed to simulate BIT ceramics with varying oxygen vacancy concentrations.The experimental results demonstrate that sintering temperature significantly influences the oxygen vacancy concentration. At the optimal sintering temperature of 1080 °C, the BIT ceramics exhibit a balanced microstructure with a grain size of 4.16 μm, the lowest measured oxygen vacancy concentration of 18.44%, and a piezoelectric coefficient (d33) of 9.8 pC/N. Additionally, the dielectric loss (tanδ) remains below 0.2 at 500 °C, indicating excellent thermal stability. VASP-based simulations reveal that increasing the oxygen vacancy concentration from 18.56% to 44.55% results in a significant collapse of the band gap (from 2.8 eV → 1.0 eV) and a transition in conductivity type from p-type to n-type. This shift induces a leakage current-dominated threshold effect, leading to a decrease in piezoelectric properties (d33 reduced from 9.8 to 6.9 pC/N). Atomic-scale density of states (DOS) analyses indicate that the delocalization of Ti3+ and the weakening of Bi–O hybridization collectively induce lattice distortion and ferroelectric inconsistency. These changes are correlated with an increase in dielectric loss and a slight reduction in Curie temperature (from 620 °C → 618 °C). In conclusion, this study comprehensively elucidates the influence of oxygen vacancy concentration on the microstructure and electrical properties of BIT ceramics. The findings provide a theoretical foundation and practical insights for designing high-performance piezoelectric ceramics. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

12 pages, 1552 KiB  
Article
Quantum Sensing of Local Magnetic Phase Transitions and Fluctuations near the Curie Temperature in Tm3Fe5O12 Using NV Centers
by Yuqing Zhu, Mengyuan Cai, Qian Zhang, Peiyang Wang, Yuanjie Yang, Jiaxin Zhao, Wei Zhu and Guanzhong Wang
Micromachines 2025, 16(6), 643; https://doi.org/10.3390/mi16060643 - 28 May 2025
Viewed by 660
Abstract
Thulium iron garnet (Tm3Fe5O12, TmIG) is a promising material for next-generation spintronic and quantum technologies owing to its high Curie temperature and strong perpendicular magnetic anisotropy. However, conventional magnetometry techniques are limited by insufficient spatial resolution and [...] Read more.
Thulium iron garnet (Tm3Fe5O12, TmIG) is a promising material for next-generation spintronic and quantum technologies owing to its high Curie temperature and strong perpendicular magnetic anisotropy. However, conventional magnetometry techniques are limited by insufficient spatial resolution and sensitivity to probe local magnetic phase transitions and critical spin dynamics in thin films. In this study, we present the first quantitative investigation of local magnetic field fluctuations near the Curie temperature in TmIG thin films using nitrogen-vacancy (NV) center-based quantum sensing. By integrating optically detected magnetic resonance (ODMR) and NV spin relaxometry (T1 measurements) with macroscopic techniques such as SQUID magnetometry and Hall effect measurements, we systematically characterize both the static magnetization and dynamic spin fluctuations across the magnetic phase transition. Our results reveal a pronounced enhancement in NV spin relaxation rates near 360 K, providing direct evidence of critical spin fluctuations at the nanoscale. This work highlights the unique advantages of NV quantum sensors for investigating dynamic critical phenomena in complex magnetic systems and establishes a versatile, multimodal framework for studying local phase transition kinetics in high-temperature magnetic insulators. Full article
Show Figures

Figure 1

14 pages, 10385 KiB  
Article
Correlation Between Structure, Microstructure, and Magnetic Properties of AlCoCrFeNi High-Entropy Alloy
by Renee Joselin Sáenz-Hernández, Carlos Roberto Santillán-Rodríguez, Jesús Salvador Uribe-Chavira, José Andrés Matutes-Aquino and María Cristina Grijalva-Castillo
Condens. Matter 2025, 10(2), 31; https://doi.org/10.3390/condmat10020031 - 27 May 2025
Viewed by 851
Abstract
This study explores the crystal structure, microstructure and magnetic phase evolution of the AlCoCrFeNi high-entropy alloy (HEA), highlighting its potential for applications requiring tailored magnetic properties across diverse temperatures. Electron microscopy and X-ray diffraction revealed that the as-cast alloy’s microstructure comprises equiaxed grains [...] Read more.
This study explores the crystal structure, microstructure and magnetic phase evolution of the AlCoCrFeNi high-entropy alloy (HEA), highlighting its potential for applications requiring tailored magnetic properties across diverse temperatures. Electron microscopy and X-ray diffraction revealed that the as-cast alloy’s microstructure comprises equiaxed grains with branching dendrites, showing compositional variations between interdendritic regions enriched in Al and Ni. Temperature-induced phase transformations were observed above room temperature, transitioning from body centered cubic (BCC) phases (A2 and B2) to a predominant FCC phase at higher temperatures, followed by recrystallization of the A2 phase upon cooling. Magnetization measurements showed a drop near 380 K, suggesting the Curie temperature of BCC phases, a peak at 830 K attributed to optimal magnetic alignment in the FCC phase, and a sharp decline at 950 K marking the transition to a paramagnetic state. Magnetic moment calculations provided insights into magnetic alignment dynamics, while low-temperature analysis highlighted the alloy’s magnetically soft nature, dominated by ferromagnetic contributions from the A2 phase. These findings underscore the strong interdependence of microstructural features and magnetic behavior, offering a foundation for optimizing HEAs for temperature-sensitive scientific and industrial applications. Full article
(This article belongs to the Section Magnetism)
Show Figures

Figure 1

15 pages, 2377 KiB  
Article
Data-Mining-Aided-Material Design of Doped LaMnO3 Perovskites with Higher Curie Temperature
by Lumin Tian, Wentan Wang, Xiaobo Ji, Zhibin Xu, Wenyan Zhou and Wencong Lu
Materials 2025, 18(11), 2437; https://doi.org/10.3390/ma18112437 - 23 May 2025
Viewed by 359
Abstract
The Curie temperature (Tc) of LaMnO3-based perovskites is one of the most important properties associated with their magnetic and spintronic applications. The search for new perovskites with even higher Tc is a challenging problem in material design. Through the systematic optimization [...] Read more.
The Curie temperature (Tc) of LaMnO3-based perovskites is one of the most important properties associated with their magnetic and spintronic applications. The search for new perovskites with even higher Tc is a challenging problem in material design. Through the systematic optimization of support vector regression (SVR) architecture, we establish a predictive framework for determining the Curie temperature (Tc) of doped LaMnO3 perovskites, leveraging fundamental atomic descriptors. The correlation coefficient (R) between the predicted and experimental Curie temperatures demonstrated high values of 0.9111 when evaluated through the leave-one-out cross-validation (LOOCV) approach, while maintaining a robust correlation of 0.8385 on the independent test set. The subsequent high-throughput screening of perovskite compounds exhibiting higher Curie temperatures was implemented via our online computation platform for materials data mining (OCPMDM), enabling the rapid identification of candidate materials through systematic screening protocols. The findings demonstrate that machine learning exhibits significant efficacy and cost-effectiveness in identifying lanthanum manganite perovskites with elevated Tc, as validated through comparative computational and empirical analyses. Furthermore, a web-based computational infrastructure is implemented for the global dissemination of the predictive framework, enabling the open-access deployment of the validated machine learning model. Full article
(This article belongs to the Special Issue Machine Learning for Materials Design)
Show Figures

Graphical abstract

11 pages, 14805 KiB  
Article
Dilute Paramagnetism and Non-Trivial Topology in Quasicrystal Approximant Fe4Al13
by Keenan E. Avers, Jarryd A. Horn, Ram Kumar, Shanta R. Saha, Peter Zavalij, Yuanfeng Xu, Bogdan Andrei Bernevig and Johnpierre Paglione
Crystals 2025, 15(5), 485; https://doi.org/10.3390/cryst15050485 - 21 May 2025
Viewed by 532
Abstract
A very fundamental property of both weakly and strongly interacting materials is the nature of their magnetic response. In this work, we detail the growth of crystals of the quasicrystal approximant Fe4Al13 with an Al flux solvent method. We characterize [...] Read more.
A very fundamental property of both weakly and strongly interacting materials is the nature of their magnetic response. In this work, we detail the growth of crystals of the quasicrystal approximant Fe4Al13 with an Al flux solvent method. We characterize our samples using electrical transport and heat capacity, yielding results consistent with a simple non-magnetic metal. However, magnetization measurements portray an extremely unusual response for a dilute paramagnet and do not exhibit the characteristic Curie behavior expected for a weakly interacting material at high temperature. Electronic structure calculations confirm metallic behavior but also indicate that each isolated band near the Fermi energy hosts non-trivial topologies, including strong, weak, and nodal components, with resultant topological surface states distinguishable from bulk states on the (001) surface. With half-filled flat bands apparent in the calculation, but an absence of long-range magnetic order, the unusual quasi-paramagnetic response suggests the dilute paramagnetic behavior in this quasicrystal approximant is surprising and may serve as a test of the fundamental assumptions that are taken for granted for the magnetic response of weakly interacting systems. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

11 pages, 3191 KiB  
Article
Magnetic Evolution of Carrier Doping and Spin Dynamics in Diluted Magnetic Semiconductors (Ba,Na)(Zn,Mn)2As2
by Guoqiang Zhao, Yipeng Cai, Kenji M. Kojima, Qi Sheng, James Beare, Graeme Luke, Xiang Li, Yi Peng, Timothy Ziman, Kan Zhao, Zheng Deng, Xiancheng Wang, Yongqing Li, Gang Su, Sadamichi Maekawa, Bo Gu, Yasutomo J. Uemura and Changqing Jin
Condens. Matter 2025, 10(2), 30; https://doi.org/10.3390/condmat10020030 - 15 May 2025
Cited by 4 | Viewed by 976
Abstract
The investigation of novel diluted magnetic semiconductors (DMSs) provides a promising platform for studying magnetism and transport characteristics, with significant implications for spintronics. DMSs based on BaZn2As2 are particularly noteworthy due to their high Curie temperature (TC) [...] Read more.
The investigation of novel diluted magnetic semiconductors (DMSs) provides a promising platform for studying magnetism and transport characteristics, with significant implications for spintronics. DMSs based on BaZn2As2 are particularly noteworthy due to their high Curie temperature (TC) of 260 K, diverse magnetic states, and potential for multilayer heterojunctions. This study investigates the magnetic evolution of carrier doping and spin dynamics in the asperomagnet (Ba,Na)(Zn,Mn)2As2, utilizing a combination of magnetization measurements, ac susceptibility, and muon spin rotation (µSR). Key findings include the following: (1) lower transition temperatures and coercive forces in (Ba,Na)(Zn,Mn)2As2 compared to the ferromagnet (Ba,K)(Zn,Mn)2As2; (2) a dynamic fluctuation peak around the transition temperature observed in both the ac susceptibility and longitudinal field (LF) µSR; and (3) the coexistence of static and dynamic states at low temperatures, exhibiting spin-glass-like characteristics. This study, to the best of our knowledge, may represent the first investigation of asperomagnetic order utilizing µSR techniques. It enhances the understanding of magnetic interactions in BaZn2As2-based systems and provides valuable insights into the exploration of high TC DMSs. Full article
(This article belongs to the Special Issue Superstripes Physics, 3rd Edition)
Show Figures

Figure 1

14 pages, 5161 KiB  
Article
First-Principles Study on the High Spin-Polarized Ferromagnetic Semiconductor of Vanadium-Nitride Monolayer and Its Heterostructures
by Guiyuan Hua, Xuming Wu, Xujin Ge, Tianhang Zhou and Zhibin Shao
Molecules 2025, 30(10), 2156; https://doi.org/10.3390/molecules30102156 - 14 May 2025
Viewed by 485
Abstract
The newly discovered 2D spin-gapless magnetic materials, which provide new opportunities for combining spin polarization and the quantum anomalous Hall effect, provide a new method for the design and application of memory and nanoscale devices. However, a low Curie temperature (TC [...] Read more.
The newly discovered 2D spin-gapless magnetic materials, which provide new opportunities for combining spin polarization and the quantum anomalous Hall effect, provide a new method for the design and application of memory and nanoscale devices. However, a low Curie temperature (TC) is a common limitation in most 2D ferromagnetic materials, and research on the topological properties of nontrivial 2D spin-gapless materials is still limited. We predict a novel spin-gapless semiconductor of monolayer h-VN, which has a high Curie temperature (~543 K), 100% spin polarization, and nontrivial topological properties. A nontrivial band gap is opened in the spin-gapless state when considering the spin–orbit coupling (SOC); it can increase with the intensity of spin–orbit coupling and the band gap increases linearly with SOC. By calculating the Chern number and edge states, we find that when the SOC strength is less than 250%, the monolayer h-VN is a quantum anomalous Hall insulator with a Chern number C = 1. In addition, the monolayer h-VN still belongs to the quantum anomalous Hall insulators with its tensile strain. Interestingly, the quantum anomalous Hall effect with a non-zero Chern number can be maintained when using h-BN as the substrate, making the designed structure more suitable for experimental implementation. Our results provide an ideal candidate material for achieving the QAHE at a high Curie temperature. Full article
(This article belongs to the Special Issue Novel Two-Dimensional Energy-Environmental Materials)
Show Figures

Graphical abstract

16 pages, 5955 KiB  
Article
High-Temperature Layered Modification of Mn2In2Se5
by Ivan V. Chernoukhov, Anton D. Pyreu, Andrey N. Azarevich, Alexander N. Samarin, Alexey V. Bogach, Konstantin O. Znamenkov, Andrei V. Shevelkov and Valeriy Yu. Verchenko
Molecules 2025, 30(9), 1904; https://doi.org/10.3390/molecules30091904 - 24 Apr 2025
Viewed by 410
Abstract
Layered chalcogenides are interesting from the point of view of the formation of two-dimensional magnetic systems for relevant applications in spintronics. High-spin Mn2+ or Fe3+ cations with five unpaired electrons are promising in the search for compounds with interesting magnetic properties. [...] Read more.
Layered chalcogenides are interesting from the point of view of the formation of two-dimensional magnetic systems for relevant applications in spintronics. High-spin Mn2+ or Fe3+ cations with five unpaired electrons are promising in the search for compounds with interesting magnetic properties. In this study, a new layered modification of the Mn2In2Se5 compound from the A2B2X5 family (“225”) was synthesized and investigated. A phase transition to the polymorph with primitive trigonal lattice was recorded at a temperature of 711 °C, which was confirmed by simultaneous thermal analysis, X-ray powder diffraction at elevated temperatures, and sample annealing and quenching. The stability of Mn2In2Se5 in air at high temperatures was investigated by thermal gravimetric analysis and powder X-ray diffraction. The new polymorph of Mn2In2Se5 crystallizes in the Mg2Al2Se5 structure type, as revealed by the Rietveld refinement against powder X-ray diffraction data. The crystal structure can be viewed as a close-packing of Se anions, in which indium and manganese cations are enclosed inside tetrahedral and octahedral voids, respectively, according to the AMnBInCBInCMnA… sequence. Magnetization measurements reveal an antiferromagnetic-like transition at a temperature of 6.3 K. The same magnetic properties are reported in the literature for the low-temperature R-centered trigonal polymorph. An approximation by the modified Curie–Weiss law yields a significant ratio of |θ|/TN = 28, which indicates strong magnetic frustration. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

16 pages, 2968 KiB  
Article
A Site-Ordered Quadruple Perovskites, RMn3Ni2Mn2O12 with R = Bi, Ce, and Ho, with Different Degrees of B Site Ordering
by Alexei A. Belik
Molecules 2025, 30(8), 1749; https://doi.org/10.3390/molecules30081749 - 14 Apr 2025
Viewed by 432
Abstract
A site-ordered quadruple perovskites, AA′3B4O12, can have 3d transition metals at A′ and B sites, and show complex magnetic interactions and behavior. Additional complexity appears when B site-ordered arrangements are realized in AA′3B2 [...] Read more.
A site-ordered quadruple perovskites, AA′3B4O12, can have 3d transition metals at A′ and B sites, and show complex magnetic interactions and behavior. Additional complexity appears when B site-ordered arrangements are realized in AA′3B2B′2O12. In this work, A site-ordered quadruple perovskites, RMn3Ni2Mn2O12 with R = Bi, Ce, and Ho, were prepared by a high-pressure, high-temperature method at about 6 GPa and about 1500 K. The R = Bi and Ce samples were found to crystallize in space group Im-3 with a disordered distribution of Ni2+ and Mn4+ cations in one B site. On the other hand, the R = Ho sample crystallized in space group Pn-3 and showed partial ordering of Ni2+ and Mn4+ cations between two B sites. The structural data (and bond valence sums) suggest that cerium has the oxidation state +3, which is unusual for such perovskites. Magnetic properties were investigated by magnetic susceptibility and specific heat measurements, which showed the presence of one magnetic transition near 36 K for R = Bi; there was evidence for the presence of two magnetic transitions near 27 K and 33 K for R = Ce, and near 10 K and 36 K for R = Ho. Curie–Weiss parameters were estimated for all samples from high-temperature magnetic measurements up to 750 K. The total effective magnetic moment for R = Ce also suggests the presence of Ce3+. A magnetic field of 90 kOe had the largest effect on the specific heat of the R = Ho sample, and almost no effects on the specific heat of the R = Bi sample. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

Back to TopTop