Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = heterologous ic-ELISAs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2598 KiB  
Article
Prime-Boost Vaccination Based on Nanospheres and MVA Encoding the Nucleoprotein of Crimean-Congo Hemorrhagic Fever Virus Elicits Broad Immune Responses
by Eva Calvo-Pinilla, Sandra Moreno, Natalia Barreiro-Piñeiro, Juana M. Sánchez-Puig, Rafael Blasco, José Martínez-Costas, Alejandro Brun and Gema Lorenzo
Vaccines 2025, 13(3), 291; https://doi.org/10.3390/vaccines13030291 - 10 Mar 2025
Cited by 1 | Viewed by 1295
Abstract
Background/Objectives: Crimean–Congo hemorrhagic fever virus (CCHFV) is an emerging, widely distributed zoonotic tick-borne pathogen. The virus causes severe disease in humans, and numerous wild and domestic animals act as reservoirs of it. Unfortunately, there are no effective therapies or safe vaccines commercialized [...] Read more.
Background/Objectives: Crimean–Congo hemorrhagic fever virus (CCHFV) is an emerging, widely distributed zoonotic tick-borne pathogen. The virus causes severe disease in humans, and numerous wild and domestic animals act as reservoirs of it. Unfortunately, there are no effective therapies or safe vaccines commercialized nowadays for this particular virus. As CCHF (Crimean–Congo hemorrhagic fever) is a serious threat to public health, there is an urgent need to investigate the development of safe and effective vaccination strategies further. Methods: In this work, we have employed two immunization platforms based on protein nanoparticles and a modified vaccinia Ankara (MVA) viral vector using the nucleoprotein (NP) as the target antigen. The humoral and cellular immune responses were characterized by ELISA, ICS, and cytokine measurement. Results: This work shows that a single dose of the vaccine candidates was not as immunogenic as the heterologous vaccination using nanoparticles and MVA. A prime with NP nanoparticles (NS-NP) and a boost with MVA-expressing NP were capable of triggering significant levels of humoral and cellular immune responses against CCHFV in mice. Conclusions: Our study shows that the NS-NP/MVA-NP vaccination strategy effectively elicits a robust humoral and cellular immune response in a mouse model, emphasizing its potential as a protective approach against CCHFV lineages. Full article
(This article belongs to the Special Issue Veterinary Vaccines and Host Immune Responses)
Show Figures

Figure 1

15 pages, 6662 KiB  
Article
A Broad-Spectrum Monoclonal Antibody-Based Heterologous ic-ELISA for the Detection of Multiple Pyrethroids in Water, Milk, Celery, and Leek
by Sulin Hou, Dandan Zhang, Zhenyu Xu, Yun Shen and Yulian Wang
Foods 2025, 14(5), 768; https://doi.org/10.3390/foods14050768 - 24 Feb 2025
Viewed by 534
Abstract
Pyrethroids are one of the most commonly used insecticides worldwide in agriculture, public health, and household products. To monitor the presence of pyrethroids in the environment and in food, a broad-spectrum monoclonal antibody (mAb), CL/CN-1D2, was prepared. This mAb demonstrates a 50% inhibitory [...] Read more.
Pyrethroids are one of the most commonly used insecticides worldwide in agriculture, public health, and household products. To monitor the presence of pyrethroids in the environment and in food, a broad-spectrum monoclonal antibody (mAb), CL/CN-1D2, was prepared. This mAb demonstrates a 50% inhibitory concentration (IC50) for different pyrethroids: cypermethrin (129.1 µg/L), β-cypermethrin (199.6 µg/L), cyfluthrin (215.5 µg/L), fenpropathrin (220.3 µg/L), λ-cyhalothrin (226.9 µg/L), β-cyfluthrin (241.7 µg/L), deltamethrin (591.2 µg/L), and fenvalerate (763.1 µg/L). Using the mAb CL/CN-1D2, a highly sensitive heterologous indirect competitive ELISA (ic-ELISA) was developed for the rapid detection of these pyrethroids. The limit of detection (LOD) for the eight pyrethroids in water, milk, celery, and leek matrices ranged from 24.4 to 152.2 μg/kg. The recoveries ranged from 65.1% to 112.4%, with a coefficient of variation (CV) below 15%. A robust correlation (R2 = 0.9945) between the ic-ELISA and GC indicated that the ic-ELISA is a reliable tool for the rapid and cost-effective screening of pyrethroids residues. Full article
Show Figures

Figure 1

17 pages, 2075 KiB  
Article
Immunotechniques for the Group Determination of Macrolide Antibiotics Traces in the Environment Using a Volume-Mediated Sensitivity Enhancement Strategy
by Maksim A. Burkin, Anna N. Tevyashova, Elena N. Bychkova, Artem O. Melekhin and Inna A. Galvidis
Biosensors 2023, 13(10), 921; https://doi.org/10.3390/bios13100921 - 10 Oct 2023
Cited by 3 | Viewed by 2072
Abstract
Macrolide antibiotics, which are effective antimicrobial agents, are intensively used in human and veterinary medicine, as well as in agriculture. Consequently, they are found all over the world as environmental pollutants, causing harm to sensitive ecological communities and provoking a selection of resistant [...] Read more.
Macrolide antibiotics, which are effective antimicrobial agents, are intensively used in human and veterinary medicine, as well as in agriculture. Consequently, they are found all over the world as environmental pollutants, causing harm to sensitive ecological communities and provoking a selection of resistant forms. A novel azithromycin derivative, which was used as hapten conjugate, ensured the group immunorecognition of six major macrolide representatives (105–41%), namely erythromycin, erythromycin ethylsuccinate, clarithromycin, roxithromycin, azithromycin, and dirithromycin in a competitive immunoassay based on anti-clarithromycin antibodies. The heterologous hapten-based ELISA format resulted in a 5-fold increase in sensitivity, with an IC50 value of 0.04 ng/mL for erythromycin. In this study, we proposed an underexploited strategy in an immunoassay field to significantly improve the detectability of analytes in environmental samples. Unlike most approaches, it does not require special enhancers/amplifiers or additional concentration/extraction procedures; instead, it involves analyzing a larger volume of test samples. A gradual volume increase in the samples (from 0.025 to 10 mL) analyzed using a direct competitive ELISA, immunobeads, and immunofiltration assay formats based on the same reagents resulted in a significant improvement (more than 50-fold) in assay sensitivity and detection limit up to 5 and 1 pg/mL, respectively. The suitability of the test for detecting the macrolide contamination of natural water was confirmed by the recovery of macrolides from spiked blank samples (71.7–141.3%). During 2022–2023, a series of natural water samples from Lake Onega and its influents near Petrozavodsk were analyzed, using both the developed immunoassay and HPLC-MS/MS. The results revealed no contamination of macrolide antibiotic. Full article
(This article belongs to the Special Issue Novel Biosensors for Food Safety and Environmental Monitoring)
Show Figures

Figure 1

20 pages, 3753 KiB  
Article
A Nanobody-Based Immunoassay for Detection of Ustilaginoidins in Rice Samples
by Weixuan Wang, Gan Gu, Ruya Yin, Jiajin Fu, Mingpeng Jing, Zhen Shen, Daowan Lai, Baomin Wang and Ligang Zhou
Toxins 2022, 14(10), 659; https://doi.org/10.3390/toxins14100659 - 23 Sep 2022
Cited by 12 | Viewed by 3059
Abstract
Ustilaginoidins are a class of bis-naphtho-γ-pyrone mycotoxins produced by the pathogen Villosiclava virens of rice false smut, which has recently become one of the most devastating diseases in rice-growing regions worldwide. In this research, the nanobody phage display library was established after an [...] Read more.
Ustilaginoidins are a class of bis-naphtho-γ-pyrone mycotoxins produced by the pathogen Villosiclava virens of rice false smut, which has recently become one of the most devastating diseases in rice-growing regions worldwide. In this research, the nanobody phage display library was established after an alpaca was immunized with the hemiustilaginoidin F-hapten coupled with bovine serum albumin (BSA). Heterologous antigen selection and combing trypsin with competition alternant elution methods were performed for nanobody screening. Two nanobodies, namely, Nb-B15 and Nb–C21, were selected for the establishment of indirect competitive enzyme-linked immunosorbent assays (ic-ELISAs). For Nb–B15 and Nb-C21, their IC50 values were 11.86 μg/mL and 11.22 μg/mL, and the detection ranges were at 3.41–19.98 μg/mL and 1.17–32.13 μg/mL, respectively. Two nanobodies had a broad spectrum to quantify the contents of total ustilaginoidins in rice samples according to cross-reactivity. The recognition mechanisms of Nb-B15 and Nb-C21 against ustilaginoidin A were elucidated by molecular modeling and docking. The key amino acid sites for the binding of Nb–B15 or Nb–C21 to ustilaginoidin A were mainly located in the FR1 and CDR1 regions. As Nb-B15 was superior to Nb–C21 in the aspects of protein expression, ELISA titer, and tolerance to organic solvents, it was selected for application in the detection of actual contaminated rice samples. The total ustilaginoidin contents of rice samples were analyzed by Nb–B15-based ic–ELISA and HPLC-DAD, between which the results were found to be consistent. The developed immunoassay based on the nanobody from the alpaca can be employed as a rapid and effective method for detection of total utilaginoidins in contaminated rice samples. Full article
(This article belongs to the Special Issue Emerging Strategies for Extraction and Analysis of Mycotoxins in Food)
Show Figures

Figure 1

11 pages, 1025 KiB  
Article
Immunoassay for Natamycin Trace Screening: Bread, Wine and Other Edibles Analysis
by Maksim A. Burkin, Anastasia G. Moshcheva and Inna A. Galvidis
Biosensors 2022, 12(7), 493; https://doi.org/10.3390/bios12070493 - 6 Jul 2022
Cited by 8 | Viewed by 2621
Abstract
The antifungal drug natamycin (NAT) is widely used in medicine and in the food industry as preservative E235 for a wide variety of foods. The risk of the development of resistance to NAT and its spread in relation to other polyene antibiotics is [...] Read more.
The antifungal drug natamycin (NAT) is widely used in medicine and in the food industry as preservative E235 for a wide variety of foods. The risk of the development of resistance to NAT and its spread in relation to other polyene antibiotics is fraught with the emergence of incurable infections. This work is devoted to the development of an immunoassay to investigate the prevalence of NAT use for food preservation. Two immunogen designs based on tetanus toxoid, conjugated to NAT through different sites of hapten molecules, were compared in antibody generation. Assay formats using heterologous coating antigens were superior for both antibodies. The ELISA variant demonstrated the highest sensitivity (IC50 = 0.12 ng/mL), and a limit of detection of 0.02 ng/mL was selected for NAT determination. The optimized extraction procedure provided a recovery rate of 72–106% for various food matrixes with variations below 12%. Cyclodextrins, as well as NAT–cyclodextrin complex formulations, showed no interference with the quantification of NAT. One hundred and six food product brands, including baked goods, wines, beers, drinks, sauces, and yogurts, were tested to assess the prevalence of the undeclared use of NAT as a preservative. The screening examination revealed three positive yogurts with an undeclared NAT incorporation of 1.1–9.3 mg/kg. Full article
Show Figures

Graphical abstract

12 pages, 1816 KiB  
Article
A Novel Full-length IgG Recombinant Antibody Highly Specific to Clothianidin and Its Application in Immunochromatographic Assay
by Yunyun Chang, Yang Chen, Shasha Jiao, Xinying Lu, Yihua Fang, Yihua Liu, Ying Zhao, Xiuping Zhan, Guonian Zhu and Yirong Guo
Biosensors 2022, 12(4), 233; https://doi.org/10.3390/bios12040233 - 11 Apr 2022
Cited by 10 | Viewed by 2948
Abstract
The toxicity of clothianidin to non-target organisms has gradually attracted world-wide attention. It is essential to develop reliable methods for the on-site detection of clothianidin residue. In this study, analogue-based heterologous ic-ELISAs were designed to rapidly screen desirable hybridomas, which could [...] Read more.
The toxicity of clothianidin to non-target organisms has gradually attracted world-wide attention. It is essential to develop reliable methods for the on-site detection of clothianidin residue. In this study, analogue-based heterologous ic-ELISAs were designed to rapidly screen desirable hybridomas, which could be used for the construction of recombinant antibodies (RAbs) against clothianidin. Based on the antibody variable region genes, two full-length IgG RAbs (1F7-RAb and 5C3-RAb) were produced by the mammalian cell expression system. The performance of the two RAbs was characterized and compared by heterologous ic-ELISAs and non-competitive surface plasmon resonance (SPR) assays. Using heterologous ic-ELISAs, the 1F7-RAb exhibited highly specific and sensitive recognition to clothianidin with an IC50 of 4.62 μg/L, whereas the 5C3-RAb could bind to both clothianidin and dinotefuran. The results of the non-competitive SPR assay further verified that the 1F7-RAb had a higher specificity and affinity to clothianidin than the 5C3-RAb. Finally, a gold immunochromatographic assay based on the novel antibody, 1F7-RAb, was developed for rapid detection of clothianidin with high sensitivity (visual detection limit of 2.5 μg/L), specificity, and good reproducibility, which can be used as an effective supervision tool for clothianidin residue in agricultural and environmental samples. Full article
Show Figures

Figure 1

18 pages, 2796 KiB  
Article
Development of a Highly Sensitive and Specific Monoclonal Antibody Based on Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Determination of Zearalenone in Food and Feed Samples
by Yanan Wang, Xiaofei Wang, Shuyun Wang, Hanna Fotina and Ziliang Wang
Toxins 2022, 14(3), 220; https://doi.org/10.3390/toxins14030220 - 17 Mar 2022
Cited by 16 | Viewed by 3737
Abstract
Zearalenone (ZEN) contamination in food and feed is prevalent and has severe effects on humans and animals post-consumption. Therefore, a sensitive, specific, rapid, and reliable method for detecting a single residue of ZEN is necessary. This study aimed to establish a highly sensitive [...] Read more.
Zearalenone (ZEN) contamination in food and feed is prevalent and has severe effects on humans and animals post-consumption. Therefore, a sensitive, specific, rapid, and reliable method for detecting a single residue of ZEN is necessary. This study aimed to establish a highly sensitive and specific ZEN monoclonal antibody (mAb) and an indirect competitive enzyme-linked immunosorbent assay (icELISA) for the detection of ZEN residues in food and feed. The immunogen ZEN-BSA was synthesized via the amino glutaraldehyde (AGA) and amino diazotization (AD) methods and identified using 1H nuclear magnetic resonance (1H NMR), a high-resolution mass spectrometer (HRMS), and an ultraviolet spectrometer (UV). The coating antigens ZEN-OVA were synthesized via the oxime active ester (OAE), formaldehyde (FA), 1,4-butanediol diglycidyl ether (BDE), AGA, and AD methods. These methods were used to screen the best antibody/antigen combination of a heterologous icELISA. Balb/c mice were immunized with a low ZEN-BSA dose at long intervals and multiple sites. Suitable cell fusion mice and positive hybridoma cell lines were screened using a homologous indirect non-competitive ELISA (inELISA) and an icELISA. The ZEN mAbs were prepared by inducing ascites in vivo. The immunological characteristics of ZEN mAbs were then assessed. The standard curves of the icELISA for ZEN were constructed under optimal experimental conditions, and the performance of the icELISA was validated. The two ZEN-BSA immunogens (conjugation ratios, 11.6:1 (AGA) and 9.2:1 (AD)) were successfully synthesized. Four hybridoma cell lines (2B6, 4D9, 1A10, and 4G8) were filtered, of which 2B6 had the best sensitivity and specificity. The mAb 2B6-based icELISA was then developed. The limit of detection (LOD), the 50% inhibitive concentration (IC50), and the linear working range (IC20 to IC80) values of the icELISA were 0.76 μg/L, 8.69 μg/L, and 0.92–82.24 μg/L, respectively. The cross-reactivity (CR) of the icELISA with the other five analogs of ZEN was below 5%. Three samples were spiked with different concentrations of ZEN and detected using the icELISA. The average intra-assay recoveries, inter-assay recoveries, intra-assay coefficients of variations (CVs), and inter-assay CVs were 93.48–99.48%, 94.18–96.13%, 12.55–12.98%, and 12.53–13.58%, respectively. The icELISA was used to detect ZEN in various samples. The results were confirmed using high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) (correlation coefficient, 0.984). The proposed icELISA was highly sensitive, specific, rapid, and reliable for the detection of ZEN in food and feed samples. Full article
Show Figures

Figure 1

19 pages, 2882 KiB  
Article
Preparation and Characterization of Monoclonal Antibodies with High Affinity and Broad Class Specificity against Zearalenone and Its Major Metabolites
by Yanan Wang, Xiaofei Wang, Haitang Zhang, Hanna Fotina and Jinqing Jiang
Toxins 2021, 13(6), 383; https://doi.org/10.3390/toxins13060383 - 27 May 2021
Cited by 17 | Viewed by 4569
Abstract
This study aimed to detect and monitor total Zearalenone (ZEN) and its five homologs (ZENs) in cereals and feed. The monoclonal antibodies (mAbs) with a high affinity and broad class specificity against ZENs were prepared, and the conditions of a heterologous indirect competitive [...] Read more.
This study aimed to detect and monitor total Zearalenone (ZEN) and its five homologs (ZENs) in cereals and feed. The monoclonal antibodies (mAbs) with a high affinity and broad class specificity against ZENs were prepared, and the conditions of a heterologous indirect competitive ELISA (icELISA) were preliminarily optimized based on the ZEN mAbs. The immunogen ZEN-BSA was synthesized using the oxime active ester method (OAE) and identified using infrared (IR) and ultraviolet (UV). The coating antigen ZEN-OVA was obtained via the 1,4-butanediol diglycidyl ether method (BDE). Balb/c mice were immunized using a high ZEN-BSA dose with long intervals and at multiple sites. A heterologous indirect non-competitive ELISA (inELISA) and an icELISA were used to screen the suitable cell fusion mice and positive hybridoma cell lines. The ZEN mAbs were prepared by inducing ascites in vivo. The standard curve was established, and the sensitivity and specificity of the ZEN mAbs were determined under the optimized icELISA conditions. ZEN-BSA was successfully synthesized at a conjugation ratio of 17.2:1 (ZEN: BSA). Three hybridoma cell lines, 2D7, 3C2, and 4A10, were filtered, and their mAbs corresponded to an IgG1 isotype with a κ light chain. The mAbs titers were between (2.56 to 5.12) × 102 in supernatants and (1.28 to 5.12) × 105 in the ascites. Besides, the 50% inhibitive concentration (IC50) values were from 18.65 to 31.92 μg/L in the supernatants and 18.12 to 31.46 μg/L in the ascites. The affinity constant (Ka) of all of the mAbs was between 4.15 × 109 and 6.54 × 109 L/mol. The IC50 values of mAb 2D7 for ZEN, α-ZEL, β-ZEL, α-ZAL, β-ZAL and ZAN were 17.23, 16.71, 18.27, 16.39, 20.36 and 15.01 μg/L, and their cross-reactivities (CRs, %) were 100%, 103.11%, 94.31%, 105.13%, 84.63%, and 114.79%, respectively, under the optimized icELISA conditions. The limit of detection (LOD) for ZEN was 0.64 μg/L, and its linear working range was between 1.03 and 288.55 μg/L. The mAbs preparation and the optimization of icELISA conditions promote the potential development of a rapid test ELISA kit, providing an alternative method for detecting ZEN and its homologs in cereals and feed. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

12 pages, 4646 KiB  
Article
Modulating Linker Composition of Haptens Resulted in Improved Immunoassay for Histamine
by Lin Luo, Xiao-Qun Wei, Bao-Zhu Jia, Jin-Yi Yang, Yu-Dong Shen, Bruce Hammock, Jie-Xian Dong, Hong Wang, Hong-Tao Lei and Zhen-Lin Xu
Biomolecules 2019, 9(10), 597; https://doi.org/10.3390/biom9100597 - 11 Oct 2019
Cited by 19 | Viewed by 3925
Abstract
Histamine (HA) is an important food contaminant generated during food fermentation or spoilage. However, an immunoassay for direct (derivatization free) determination of HA has rarely been reported due to its small size to induce the desired antibodies by its current hapten-protein conjugates. In [...] Read more.
Histamine (HA) is an important food contaminant generated during food fermentation or spoilage. However, an immunoassay for direct (derivatization free) determination of HA has rarely been reported due to its small size to induce the desired antibodies by its current hapten-protein conjugates. In this work, despite violating the classical hapten design criteria which recommend introducing a linear aliphatic (phenyl free) linker into the immunizing hapten, a novel haptens, HA-245 designed and synthesized with a phenyl-contained linker, exhibited significantly enhanced immunological properties. Thus, a quality-improved monoclonal antibody (Mab) against HA was elicited by its hapten-carrier conjugates. Then, as the linear aliphatic linker contained haptens, Hapten B was used as linker-heterologous coating haptens to eliminate the recognition of linker antibodies. Indirect competitive ELISA (ic-ELISA) was developed with a 50% inhibition concentration (IC50) of 0.21 mg/L and a limit of detection (LOD) of 0.06 mg/L in buffer solution. The average recoveries of HA from spiked food samples for this ic-ELISA ranged from 84.1% and 108.5%, and the analysis results agreed well with those of referenced LC-MS/MS. This investigation not only realized derivatization-free immunoassay for HA, but also provided a valuable guidance for hapten design and development of immunoassay for small molecules. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Graphical abstract

14 pages, 1174 KiB  
Article
Specific and Generic Immunorecognition of Glycopeptide Antibiotics Promoted by Unique and Multiple Orientations of Hapten
by Maksim A. Burkin, Inna A. Galvidis and Sergei A. Eremin
Biosensors 2019, 9(2), 52; https://doi.org/10.3390/bios9020052 - 4 Apr 2019
Cited by 11 | Viewed by 5760
Abstract
Conjugation chemistry does not always provide adequate spatial orientation of hapten in immunogens for the best presentation of generic or individual epitopes. In the present study, the influence of unique and multiple orientations of immunizing hapten on the immune response repertoire was compared [...] Read more.
Conjugation chemistry does not always provide adequate spatial orientation of hapten in immunogens for the best presentation of generic or individual epitopes. In the present study, the influence of unique and multiple orientations of immunizing hapten on the immune response repertoire was compared to select generic recognition system. The glycopeptides, teicoplanin (TPL) and ristomycin (RSM), were conjugated to BSA to produce immunogens with unique and multiple orientations of haptens. Polyclonal antibodies generated against TPL conjugated through a single site were of uniform specificity and demonstrated selective TPL recognition, regardless of the coating conjugates design. The sensitivity (IC50) of 4 enzyme-linked immunosorbent assays (ELISAs) for TPL varied little within the 3.5–7.4 ng/mL, with a dynamic range of 0.2–100 ng/mL. RSM was coupled to BSA through several glycoside sites that evoked a wider repertoire of response. This first described anti-RSM antibody was selective for RSM in homologous hapten-coated ELISAs with IC50 values in the range 4.2–35 ng/mL. Among the heterologous antigens, periodate-oxidized TPL conjugated to gelatine was selected as the best binder of generic anti-RSM fraction. The developed ELISA showed group recognition of glycopeptides RSM, TPL, eremomycin, and vancomycin with cross-reactivity of 37–100% and a 10–10,000 ng/mL dynamic range. Thus, multiple presentations of immunizing hapten help expand the repertoire of immune responses and opportunities for the selection of the required fine-specificity agent. Full article
(This article belongs to the Special Issue Enzyme-linked Immunoassay)
Show Figures

Figure 1

15 pages, 765 KiB  
Article
Development of a Highly Sensitive and Specific Immunoassay for Determining Chrysoidine, A Banned Dye, in Soybean Milk Film
by Hongtao Lei, Jin Liu, Lijun Song, Yudong Shen, Simon A. Haughey, Haoxian Guo, Jinyi Yang, Zhenlin Xu, Yueming Jiang and Yuanming Sun
Molecules 2011, 16(8), 7043-7057; https://doi.org/10.3390/molecules16087043 - 17 Aug 2011
Cited by 17 | Viewed by 7245
Abstract
A highly specific and sensitive indirect competitive enzyme-linked immunosorbent assay (icELISA)was developed for the first time for the detection of chrysoidine, a dye banned in soybean milk film. Two haptens with different spacer arms were synthesized to produce antibodies. Both homologous and heterologous [...] Read more.
A highly specific and sensitive indirect competitive enzyme-linked immunosorbent assay (icELISA)was developed for the first time for the detection of chrysoidine, a dye banned in soybean milk film. Two haptens with different spacer arms were synthesized to produce antibodies. Both homologous and heterologous immunoassay formats were compared to enhance the icELISA sensitivity. The heterologous icELISA exhibited better performance, with an IC50 (50% inhibitory concentration) of 0.33 ng/mL, a limit of detection (LOD, 10% inhibitory concentration) of 0.04 ng/mL, and a limit of quantitation (LOQ, 20%–80% inhibitory concentration) from 0.09 to 4.9 ng/mL. The developed icELISA was high sensitive and specific, and was applied to determine chrysoidine in fortified soybean milk film samples. The results were in good agreement with that obtained by high-performance liquid chromatography (HPLC) analyses. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

Back to TopTop