A Broad-Spectrum Monoclonal Antibody-Based Heterologous ic-ELISA for the Detection of Multiple Pyrethroids in Water, Milk, Celery, and Leek
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Animals and Cells
2.3. Synthesis of Haptens
2.3.1. Synthesis of Hapten A
2.3.2. Synthesis of Hapten B
2.3.3. Synthesis of Hapten C
2.4. Synthesis of Antigens
2.4.1. Synthesis of A-DCC-KLH, A-DCC-BSA, and A-DCC-OVA
2.4.2. Synthesis of B-DCC-BSA
2.4.3. Synthesis of C-DCC-OVA
2.5. Preparation of mAb
2.6. ic-ELISA Procedure
2.7. Standard Curve and Cross-Reactivity (CR) for ic-ELISA
2.8. Sample Preparation
2.9. Validation of the ic-ELISA
3. Results and Discussion
3.1. Design and Characterization of Haptens
3.2. Characterization of Antigens
3.3. Identification of Antiserum and mAb
3.4. Development and Optimization of ic-ELISA
3.5. The Standard Curve and the CR for the ic-ELISA
3.6. Validation of the ic-ELISA Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matsuo, N. Discovery and development of pyrethroid insecticides. Proc. Jpn. Acad. B-Phys. 2019, 95, 378–400. [Google Scholar] [CrossRef]
- Renée Prater, M.; Gogal, R.M.; Blaylock, B.L.; Longstreth, J.; Holladay, S.D. Single-dose topical exposure to the pyrethroid insecticide, permethrin in C57BL/6N mice: Effects on thymus and spleen. Food Chem. Toxicol. 2002, 40, 1863–1873. [Google Scholar] [CrossRef]
- Deng, F.; Sun, J.; Dou, R.; Yu, X.; Wei, Z.; Yang, C.; Zeng, X.; Zhu, X. Contamination of pyrethroids in agricultural soils from the Yangtze River Delta, China. Sci. Total Environ. 2020, 731, 139181. [Google Scholar] [CrossRef]
- María, A.M.; Irma, A.; José, L.R.; Marta, M.; David, R.M.; Castellano, V.; Bernardo, L.T.; María, R.M.L.; Arturo, A. Pyrethroid insecticide lambda-cyhalothrin induces hepatic cytochrome P450 enzymes, oxidative stress and apoptosis in rats. Sci. Total Environ. 2018, 631–632, 1371–1382. [Google Scholar] [CrossRef]
- Nagarjuna, A.; Doss, P. Acute oral toxicity and histopathological studies of cypermethrin in rats. Indian J. Anim. Res. 2009, 43, 235–240. [Google Scholar]
- Tang, W.; Wang, D.; Wang, J.; Wu, Z.; Li, L.; Huang, M.; Su, X.; Yan, D. Pyrethroid pesticide residues in the global environment: An overview. Chemosphere 2018, 191, 990–1007. [Google Scholar] [CrossRef]
- Saillenfait, A.M.; Ndiaye, D.; Sabaté, J.P. Pyrethroids: Exposure and health effects–An update. Int. J. Hyg. Environ. Health 2015, 218, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zhang, X.; Huang, J.; Chen, C.; Chen, Z.; Liu, L.; Zhang, G.; Yang, J.; Zhang, Z.; Lin, Z.; et al. Fenpropathrin, a Widely Used Pesticide, Causes Dopaminergic Degeneration. Mol. Neurobiol. 2015, 53, 995–1008. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Pan, W.; Zhao, S.; Zhao, Y.; Zhu, Y.; Liu, J.; Liu, W. Relationships of Pyrethroid Exposure with Gonadotropin Levels and Pubertal Development in Chinese Boys. Environ. Sci. Technol. 2017, 51, 6379–6386. [Google Scholar] [CrossRef]
- Xu, H.; Mao, Y.; Xu, B. Association between pyrethroid pesticide exposure and hearing loss in adolescents. Environ. Res. 2020, 187, 109640. [Google Scholar] [CrossRef]
- Shafer, T.J.; Meyer, D.A.; Crofton, K.M. Developmental Neurotoxicity of Pyrethroid Insecticides: Critical Review and Future Research Needs. Environ. Health Perspect. 2005, 113, 123–136. [Google Scholar] [CrossRef]
- Gatto, M.P.; Fioretti, M.; Fabrizi, G.; Gherardi, M.; Strafella, E.; Santarelli, L. Effects of potential neurotoxic pesticides on hearing loss: A review. Neuro Toxicol. 2014, 42, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Joode, B.W.; Mora, A.M.; Lindh, C.; Bonilla, D.H.; Córdoba, L.; Wesseling, C.; Hoppin, J.A.; Mergler, D. Pesticide exposure and neurodevelopment in children aged 6–9 years from Talamanca, Costa Rica. Cortex 2016, 85, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Koureas, M.; Tsakalof, A.; Tsatsakis, A.; Hadjichristodoulou, C. Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes. Toxicol. Lett. 2012, 210, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Zang, X.; Wang, M.; Chang, Q.; Zhang, S.; Wang, C. Fibrous boron nitride nanocomposite for magnetic solid phase extraction of ten pesticides prior to the quantitation by gas chromatography. Microchim. Acta 2018, 185, 561. [Google Scholar] [CrossRef]
- Riaz, G.; Tabinda, A.B.; Kashif, M.; Yasar, A.; Mahmood, A.; Rasheed, R.; Khan, M.I.; Iqbal, J.; Siddique, S.; Mahfooz, Y. Monitoring and spatiotemporal variations of pyrethroid insecticides in surface water, sediment, and fish of the river Chenab Pakistan. Environ. Sci. Pollut. Res. 2018, 25, 22584–22597. [Google Scholar] [CrossRef]
- Oliveira, L.G.; Kurz, M.H.S.; Guimarães, M.C.M.; Martins, M.L.; Prestes, O.D.; Zanella, R.; Ribeiro, J.N.S.; Gonçalves, F.F. Development and validation of a method for the analysis of pyrethroid residues in fish using GC–MS. Food Chem. 2019, 297, 124944. [Google Scholar] [CrossRef]
- Mao, X.; Wan, Y.; Li, Z.; Chen, L.; Lew, H.; Yang, H. Analysis of organophosphorus and pyrethroid pesticides in organic and conventional vegetables using QuEChERS combined with dispersive liquid-liquid microextraction based on the solidification of floating organic droplet. Food Chem. 2020, 309, 125755. [Google Scholar] [CrossRef]
- Tuck, S.; Furey, A.; Crooks, S.R.H.; Danaher, M. A review of methodology for the analysis of pyrethrin and pyrethroid residues in food of animal origin. Food Addit. Contam. Part A 2018, 35, 911–940. [Google Scholar] [CrossRef]
- Cui, N.; Cao, L.; Sui, J.; Hong, L.; Han, X.; Chen, X.; Xie, H.; Sun, X. Quick and convenient construction of lambda-cyhalothrin antigen for the generation of specific antibody. Anal. Biochem. 2020, 597, 113669. [Google Scholar] [CrossRef]
- Gao, H.; Ling, Y.; Xu, T.; Zhu, W.; Jing, H.; Sheng, W.; Li, Q.X.; Li, J. Development of an Enzyme-Linked Immunosorbent Assay for the Pyrethroid Insecticide Cyhalothrin. J. Agric. Food Chem. 2006, 54, 5284–5291. [Google Scholar] [CrossRef] [PubMed]
- Fruhmann, P.; Sanchís, A.; Mayerhuber, L.; Vanka, T.; Kleber, C.; Salvador, J.P.; Marco, M.P. Immunoassay and amperometric biosensor approaches for the detection of deltamethrin in seawater. Anal. Bioanal. Chem. 2018, 410, 5923–5930. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Zhang, Q.; Zhang, W.; Gee, S.J.; Li, P. Development of a Monoclonal Antibody-Based Enzyme Immunoassay for the Pyrethroid Insecticide Deltamethrin. J. Agric. Food Chem. 2010, 58, 8189–8195. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.K.; Cerasoli, D.M.; Lenz, D.E. Role of immunogen design in induction of soman-specific monoclonal antibodies. Immunol. Lett. 2005, 96, 121–127. [Google Scholar] [CrossRef]
- Fránek, M.; Diblíková, I.; Černoch, I.; Vass, M.; Hruška, K. Broad-Specificity Immunoassays for Sulfonamide Detection: Immunochemical Strategy for Generic Antibodies and Competitors. Anal. Chem. 2006, 78, 1559–1567. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, W.; Wang, X.; Li, P. Immunoassay Development for the Class-Specific Assay for Types I and II Pyrethroid Insecticides in Water Samples. Molecules 2010, 15, 164–177. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Liu, Y.; Guo, Y.; Xie, R.; Gui, W.; Zhu, G. Development of a Mab-Based Heterologous Immunoassay for the Broad-Selective Determination of Organophosphorus Pesticides. J. Agric. Food Chem. 2010, 58, 5658–5663. [Google Scholar] [CrossRef]
- Shan, G.; Huang, H.; Stoutamire, D.W.; Gee, S.J.; Leng, G.; Hammock, B.D. A sensitive class specific immunoassay for the detection of pyrethroid metabolites in human urine. Chem. Res. Toxicol. 2004, 17, 218–225. [Google Scholar] [CrossRef]
- National Food Safety Standard—Maximum Residue Limits for Pesticides in Food. 2021. Available online: http://www.trans1.cn/translation/show.php?itemid=2694 (accessed on 3 September 2022).
- European Union Pesticides Database. 2017. Available online: https://data.europa.eu/eli/reg/2017/626/oj (accessed on 3 September 2022).
Immunogen | No. | Dose (μg) | Titer (1: X 1) | (1 − B/B0) % 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |||
A-DCC-KLH | 4 | 50 | 16,000 | 16,000 | 16,000 | 16,000 | 48 | 49 | 47 | 50 |
A-DCC-KLH | 4 | 100 | 16,000 | 16,000 | 32,000 | 16,000 | 49 | 53 | 50 | 51 |
A-DCC-BSA | 4 | 50 | 16,000 | 16,000 | 8000 | 8000 | 5 | 4 | 7 | 8 |
A-DCC-BSA | 4 | 100 | 16,000 | 16,000 | 8000 | 8000 | 16 | 8 | 17 | 12 |
Coating Antigen | Antiserum 1 | Antiserum 2 | Antiserum 3 | Antiserum 4 | ||||
---|---|---|---|---|---|---|---|---|
Titer | (1 − B/B0)% 1 | Titer | (1 − B/B0)% 1 | Titer | (1 − B/B0)% 1 | Titer | (1 − B/B0)% 1 | |
A-DCC-BSA | 16,000 | 15 | 16,000 | 11 | 16,000 | 22 | 16,000 | 20 |
A-DCC-OVA | 8000 | 22 | 8000 | 32 | 8000 | 7 | 4000 | 5 |
B-DCC-BSA | 16,000 | 48 | 16,000 | 50 | 32,000 | 58 | 16,000 | 51 |
C-DCC-OVA | 800 | 15 | 800 | 10 | 4000 | 3 | 4000 | 2 |
Hapten | Antibody | Analyte | IC50 (μg/L) | CR (%) |
---|---|---|---|---|
mAb | Cypermethrin | 129.1 | 100.0 | |
β-Cypermethrin | 199.6 | 64.7 | ||
Cyfluthrin | 215.5 | 59.9 | ||
Fenpropathrin | 220.3 | 58.6 | ||
λ-Cyhalothrin | 226.9 | 56.9 | ||
β-Cyfluthrin | 241.7 | 53.4 | ||
Deltamethrin | 591.2 | 21.8 | ||
Fenvalerate | 763.1 | 16.9 | ||
pAb | λ-Cyhalothrin | 40.1 | 100.0 | |
Deltamethrin | 802.6 | 5.0 | ||
Cypermethrin | 802.6 | 5.0 | ||
Cyfluthrin | 401.3 | 10.0 | ||
mAb | Phenothrin | 204.0 | 100.0 | |
Permethrin | 325.0 | 62.8 | ||
Deltamethrin | 52.0 | 392.3 | ||
Cypermethrin | 49.0 | 416.3 | ||
Cyhalothrin | 58.0 | 351.7 | ||
pAb | Cyhalothrin | 37.2 | 100.0 | |
Cypermethrin | 1488.0 | 2.5 | ||
mAb | Deltamethrin | 17.0 | 100.0 | |
pAb | Phenoxybenzoic acid | 1.7 | 100.0 | |
4-Fluoro-3-phenoxybenzoic acid | 2.3 | 72.0 |
Samples | Compounds | LOD (μg/kg) | LOQ (μg/kg) | Spiked Level (μg/kg) | Recovery (%) | CV (%) |
---|---|---|---|---|---|---|
Water | Cypermethrin | 25.2 | 44.4 | 40, 80, 160 | 77.4–96.6 | 6.1–9.8 |
β-Cypermethrin | 24.4 | 36.6 | 40, 80, 160 | 90.5–102.7 | 5.5–12.7 | |
Cyfluthrin | 36.0 | 54.7 | 60, 120, 240 | 92.7–101.8 | 9.0–11.0 | |
λ-Cyhalothrin | 43.2 | 55.8 | 50, 100, 200 | 92.7–103.0 | 5.0–13.1 | |
β-Cyfluthrin, | 46.0 | 58.3 | 50, 100, 200 | 74.1–105.4 | 3.9–14.8 | |
Fenpropathrin | 40.0 | 56.1 | 50, 100, 200 | 93.3–106.7 | 3.0–14.8 | |
Deltamethrin | 25.2 | 44.4 | 75, 150, 300 | 89.8–102.3 | 5.8–11.5 | |
Fenvalerate | 45.7 | 75.1 | 75, 150, 300 | 81.9–91.0 | 5.3–7.3 | |
Milk | Cypermethrin | 37.5 | 53.3 | 50(MRL), 100, 200 | 82.8–104.2 | 4.3–14.0 |
β-Cypermethrin | 37.5 | 52.8 | 50(MRL), 100, 200 | 103.0–106.2 | 4.0–12.4 | |
Cyfluthrin | 59.0 | 87.0 | 80, 160, 320 | 84.9–96.6 | 3.8–10.2 | |
λ-Cyhalothrin | 52.7 | 82.8 | 80, 160, 200(MRL), 320 | 83.9–100.5 | 4.5–12.3 | |
β-Cyfluthrin, | 57.4 | 80.6 | 80, 160, 320 | 79.4–102.6 | 6.7–12.5 | |
Fenpropathrin | 52.0 | 81.0 | 80, 160, 320 | 66.4–92.5 | 5.5–10.8 | |
Deltamethrin | 67.4 | 95.4 | 100, 200, 400 | 96.3–103.8 | 4.6–10.5 | |
Fenvalerate | 68.9 | 96.9 | 100(MRL), 200, 400 | 86.4–103.7 | 6.2–12.3 | |
Celery | Cypermethrin | 68.5 | 97.2 | 100, 200, 400, 1000(MRL) | 75.7–102.3 | 4.6–13.1 |
β-Cypermethrin | 65.5 | 102.6 | 100, 200, 400, 1000(MRL) | 77.9–99.9 | 3.4–9.6 | |
Cyfluthrin | 68.6 | 97.3 | 100, 200, 400, 500(MRL) | 82.9–108.5 | 2.9–11.4 | |
λ-Cyhalothrin | 72.1 | 104.3 | 100, 200, 400, 500(MRL) | 88.0–102.5 | 1.1–3.7 | |
β-Cyfluthrin, | 72.7 | 102.1 | 100, 200, 400, 500(MRL) | 79.1–92.0 | 3.3–7.9 | |
Fenpropathrin | 64.1 | 96.3 | 100, 200, 400, 1000(MRL) | 72.6–93.5 | 3.9–5.1 | |
Deltamethrin | 143.6 | 183.5 | 200, 400, 800, 2000 | 72.9–99.3 | 5.4–13.4 | |
Fenvalerate | 148.4 | 185.5 | 200, 400, 800 | 93.0–98.8 | 2.1–8.6 | |
Leek | Cypermethrin | 72.2 | 99.5 | 100, 200, 400, 1000(MRL) | 74.9–107.4 | 4.6–10.6 |
β-Cypermethrin | 67.4 | 93.3 | 100, 200, 400, 1000(MRL) | 78.7–112.4 | 4.5–9.4 | |
Cyfluthrin | 64.1 | 95.6 | 100, 200, 400, 500(MRL) | 65.1–108.2 | 4.2–7.9 | |
λ-Cyhalothrin | 75.8 | 105.2 | 100, 200, 400, 500(MRL) | 85.9–100.5 | 3.2–10.8 | |
β-Cyfluthrin, | 67.3 | 100.9 | 100, 200, 400, 500(MRL) | 73.1–106.2 | 5.2–8.1 | |
Fenpropathrin | 65.6 | 97.1 | 100, 200, 400, 1000(MRL) | 71.9–99.2 | 2.6–8.9 | |
Deltamethrin | 152.2 | 188.6 | 200, 400, 800 | 92.3–97.9 | 3.5–6.6 | |
Fenvalerate | 142.1 | 181.5 | 200, 400, 800 | 94.6–105.7 | 1.5–7.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, S.; Zhang, D.; Xu, Z.; Shen, Y.; Wang, Y. A Broad-Spectrum Monoclonal Antibody-Based Heterologous ic-ELISA for the Detection of Multiple Pyrethroids in Water, Milk, Celery, and Leek. Foods 2025, 14, 768. https://doi.org/10.3390/foods14050768
Hou S, Zhang D, Xu Z, Shen Y, Wang Y. A Broad-Spectrum Monoclonal Antibody-Based Heterologous ic-ELISA for the Detection of Multiple Pyrethroids in Water, Milk, Celery, and Leek. Foods. 2025; 14(5):768. https://doi.org/10.3390/foods14050768
Chicago/Turabian StyleHou, Sulin, Dandan Zhang, Zhenyu Xu, Yun Shen, and Yulian Wang. 2025. "A Broad-Spectrum Monoclonal Antibody-Based Heterologous ic-ELISA for the Detection of Multiple Pyrethroids in Water, Milk, Celery, and Leek" Foods 14, no. 5: 768. https://doi.org/10.3390/foods14050768
APA StyleHou, S., Zhang, D., Xu, Z., Shen, Y., & Wang, Y. (2025). A Broad-Spectrum Monoclonal Antibody-Based Heterologous ic-ELISA for the Detection of Multiple Pyrethroids in Water, Milk, Celery, and Leek. Foods, 14(5), 768. https://doi.org/10.3390/foods14050768