Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,858)

Search Parameters:
Keywords = heterogeneous design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 401 KiB  
Article
The Impact of Mergers and Acquisitions on Firm Environmental Performance: Empirical Evidence from China
by Thi Hai Oanh Le and Jing Yan
Sustainability 2025, 17(15), 7018; https://doi.org/10.3390/su17157018 (registering DOI) - 1 Aug 2025
Abstract
In this study, we examine the impact of mergers and acquisitions (M&As) on firm environmental performance, aiming to address the gap in research and guide firms, investors, and policymakers toward more environmentally conscious decision-making in M&A. Using panel data from Chinese A-share listed [...] Read more.
In this study, we examine the impact of mergers and acquisitions (M&As) on firm environmental performance, aiming to address the gap in research and guide firms, investors, and policymakers toward more environmentally conscious decision-making in M&A. Using panel data from Chinese A-share listed firms (2008–2022), we estimate a two-way fixed effect model. The Propensity Score Matching and the instrumental variable method address potential endogeneity concerns, and robustness checks validate the findings. We found that M&As have a significantly positive effect on firm environmental performance, with heterogeneous impacts across regions, industries, and M&A types. The environmental benefits are most pronounced in heavily polluting industries and hybrid M&A deals. Eastern China shows more modest improvements. The results of mechanism tests revealed that M&As enhance environmental performance primarily by boosting total factor productivity and fostering innovation. This study offers a novel perspective by linking M&A activities to environmental sustainability, enriching the literature on both M&As and corporate environmental performance. We show that even conventional M&A deals (not sustainability-focused) can improve environmental performance through operational synergies. Expanding beyond polluting industries, we reveal how sector characteristics shape M&A’s environmental impacts. We identify practical mechanisms through which standard M&A activities can advance sustainability goals, helping firms balance economic and environmental objectives. It provides empirical evidence from China, an emerging market with distinct institutional and regulatory contexts. The findings offer guidance for firms engaging in M&A to strategically improve sustainability performance. Policymakers can leverage these insights to design incentives for M&A in pollution-intensive industries, aligning economic growth with environmental goals. By demonstrating that M&As can enhance environmental outcomes, this study supports the potential for market-driven mechanisms to contribute to broader societal sustainability objectives, such as reduced industrial pollution and greener production practices. Full article
25 pages, 7708 KiB  
Review
A Review of Heat Transfer and Numerical Modeling for Scrap Melting in Steelmaking Converters
by Mohammed B. A. Hassan, Florian Charruault, Bapin Rout, Frank N. H. Schrama, Johannes A. M. Kuipers and Yongxiang Yang
Metals 2025, 15(8), 866; https://doi.org/10.3390/met15080866 (registering DOI) - 1 Aug 2025
Abstract
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. [...] Read more.
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. To become carbon neutral, utilizing more scrap is one of the feasible solutions to achieve this goal. Addressing knowledge gaps regarding scrap heterogeneity (size, shape, and composition) is essential to evaluate the effects of increased scrap ratios in basic oxygen furnace (BOF) operations. This review systematically examines heat and mass transfer correlations relevant to scrap melting in BOF steelmaking, with a focus on low Prandtl number fluids (thick thermal boundary layer) and dense particulate systems. Notably, a majority of these correlations are designed for fluids with high Prandtl numbers. Even for the ones tailored for low Prandtl, they lack the introduction of the porosity effect which alters the melting behavior in such high temperature systems. The review is divided into two parts. First, it surveys heat transfer correlations for single elements (rods, spheres, and prisms) under natural and forced convection, emphasizing their role in predicting melting rates and estimating maximum shell size. Second, it introduces three numerical modeling approaches, highlighting that the computational fluid dynamics–discrete element method (CFD–DEM) offers flexibility in modeling diverse scrap geometries and contact interactions while being computationally less demanding than particle-resolved direct numerical simulation (PR-DNS). Nevertheless, the review identifies a critical gap: no current CFD–DEM framework simultaneously captures shell formation (particle growth) and non-isotropic scrap melting (particle shrinkage), underscoring the need for improved multiphase models to enhance BOF operation. Full article
Show Figures

Graphical abstract

14 pages, 279 KiB  
Article
FIB-4 Score as a Predictor of Eligibility for Elastography Exam in Patients with Polycystic Ovary Syndrome
by Maciej Migacz, Dagmara Pluta, Kamil Barański, Anna Kujszczyk, Marta Kochanowicz and Michał Holecki
Biomedicines 2025, 13(8), 1878; https://doi.org/10.3390/biomedicines13081878 (registering DOI) - 1 Aug 2025
Abstract
Background/objectives: Polycystic ovary syndrome (PCOS) and metabolic dysfunction-associated steatotic liver disease (MASLD) are common co-morbidities in women of reproductive age. PCOS is highly heterogeneous and is, therefore, divided into four phenotypes. MASLD leads to numerous systemic complications. Studies to date have shown an [...] Read more.
Background/objectives: Polycystic ovary syndrome (PCOS) and metabolic dysfunction-associated steatotic liver disease (MASLD) are common co-morbidities in women of reproductive age. PCOS is highly heterogeneous and is, therefore, divided into four phenotypes. MASLD leads to numerous systemic complications. Studies to date have shown an association between PCOS and MASLD. This study was designed to compare the FIB-4 score (based on age, alanine aminotransferase, aspartate aminotransferase and platelet count) and the results of shear wave elastography in assessing the risk of developing MASLD by patients with PCOS divided by phenotypes. Methods: The study enrolled 242 women age 18–35 years with PCOS diagnosed according to Rotterdam criteria, hospitalized at the Department of Gynaecological Endocrinology of the University Clinical Centre in Katowice. The study subjects were assigned to phenotypes A to D. Clinical and biochemical assessments were performed (including androgens and metabolic parameters), and the FIB-4 index was calculated. Liver fibrosis was evaluated by shear wave elastography. To balance the group sizes of phenotypes, oversampling with replacement was applied (PROC SURVEYSELECT, SAS), increasing the number of observations for phenotypes B, C, and D fivefold. Statistical analyses were performed based on data distribution (Shapiro–Wilk test), using ANOVA or the Kruskal–Wallis test with Dunn’s correction. Statistical significance was set at p < 0.05. Results: The FIB-4 score was the highest in phenotype B patients (0.50 ± 0.15), and the lowest in phenotypes A and C (0.42 ± 0.14). The highest rate of positive elastography findings was recorded in phenotype A patients (34.7%) and the lowest in phenotype C group (13.5%). Significant differences between the phenotypes were also found in terms of androgen levels, insulin, HOMA-IR, and the lipid profile. Among patients with positive elastography, the highest FIB-4 scores were recorded in phenotype C group (0.44 ± 0.06), but the differences between the phenotypes were not statistically significant. Conclusions: The FIB-4 score was the highest in phenotype B patients and differed significantly from phenotypes A, C and D. In the elastography exam, the fibrosis index was statistically significantly higher in phenotype A compared to other phenotypes. No correlation was detected between the FIB-4 index and positive elastography. The findings suggest that the FIB-4 index may be used for MASLD screening, but its usefulness as a predictor of eligibility for elastography requires more research. Full article
24 pages, 1396 KiB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 (registering DOI) - 1 Aug 2025
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
18 pages, 3741 KiB  
Article
The Mechanical Behavior of a Shield Tunnel Reinforced with Steel Plates Under Complex Strata
by Yang Yu, Yazhen Sun and Jinchang Wang
Buildings 2025, 15(15), 2722; https://doi.org/10.3390/buildings15152722 (registering DOI) - 1 Aug 2025
Abstract
The stability of shield tunnel segmental linings is highly sensitive to the lateral pressure coefficient, especially under weak, heterogeneous, and variable geological conditions. However, the mechanical behavior of steel plate-reinforced linings under such conditions remains insufficiently characterized. This study aims to investigate the [...] Read more.
The stability of shield tunnel segmental linings is highly sensitive to the lateral pressure coefficient, especially under weak, heterogeneous, and variable geological conditions. However, the mechanical behavior of steel plate-reinforced linings under such conditions remains insufficiently characterized. This study aims to investigate the effects of varying lateral pressures on the structural performance of reinforced tunnel linings. To achieve this, a custom-designed full-circumference loading and unloading self-balancing apparatus was developed for scaled-model testing of shield tunnels. The experimental methodology allowed for precise control of loading paths, enabling the simulation of realistic ground stress states and the assessment of internal force distribution, joint response, and load transfer mechanisms during the elastic stage of the structure. Results reveal that increased lateral pressure enhances the stiffness and bearing capacity of the reinforced lining. The presence and orientation of segment joints, as well as the bonding performance between epoxy resin and expansion bolts at the reinforcement interface, significantly influence stress redistribution in steel plate-reinforced zones. These findings not only deepen the understanding of tunnel behavior in complex geological environments but also offer practical guidance for optimizing reinforcement design and improving the durability and safety of shield tunnels. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 3580 KiB  
Article
Distributed Collaborative Data Processing Framework for Unmanned Platforms Based on Federated Edge Intelligence
by Siyang Liu, Nanliang Shan, Xianqiang Bao and Xinghua Xu
Sensors 2025, 25(15), 4752; https://doi.org/10.3390/s25154752 (registering DOI) - 1 Aug 2025
Abstract
Unmanned platforms such as unmanned aerial vehicles, unmanned ground vehicles, and autonomous underwater vehicles often face challenges of data, device, and model heterogeneity when performing collaborative data processing tasks. Existing research does not simultaneously address issues from these three aspects. To address this [...] Read more.
Unmanned platforms such as unmanned aerial vehicles, unmanned ground vehicles, and autonomous underwater vehicles often face challenges of data, device, and model heterogeneity when performing collaborative data processing tasks. Existing research does not simultaneously address issues from these three aspects. To address this issue, this study designs an unmanned platform cluster architecture inspired by the cloud-edge-end model. This architecture integrates federated learning for privacy protection, leverages the advantages of distributed model training, and utilizes edge computing’s near-source data processing capabilities. Additionally, this paper proposes a federated edge intelligence method (DSIA-FEI), which comprises two key components. Based on traditional federated learning, a data sharing mechanism is introduced, in which data is extracted from edge-side platforms and placed into a data sharing platform to form a public dataset. At the beginning of model training, random sampling is conducted from the public dataset and distributed to each unmanned platform, so as to mitigate the impact of data distribution heterogeneity and class imbalance during collaborative data processing in unmanned platforms. Moreover, an intelligent model aggregation strategy based on similarity measurement and loss gradient is developed. This strategy maps heterogeneous model parameters to a unified space via hierarchical parameter alignment, and evaluates the similarity between local and global models of edge devices in real-time, along with the loss gradient, to select the optimal model for global aggregation, reducing the influence of device and model heterogeneity on cooperative learning of unmanned platform swarms. This study carried out extensive validation on multiple datasets, and the experimental results showed that the accuracy of the DSIA-FEI proposed in this paper reaches 0.91, 0.91, 0.88, and 0.87 on the FEMNIST, FEAIR, EuroSAT, and RSSCN7 datasets, respectively, which is more than 10% higher than the baseline method. In addition, the number of communication rounds is reduced by more than 40%, which is better than the existing mainstream methods, and the effectiveness of the proposed method is verified. Full article
Show Figures

Figure 1

22 pages, 626 KiB  
Systematic Review
Exercise as Modulator of Brain-Derived Neurotrophic Factor in Adolescents: A Systematic Review of Randomized Controlled Trials
by Markel Rico-González, Daniel González-Devesa, Carlos D. Gómez-Carmona and Adrián Moreno-Villanueva
Sports 2025, 13(8), 253; https://doi.org/10.3390/sports13080253 - 1 Aug 2025
Abstract
Adolescence represents a critical period of neurodevelopment during which brain-derived neurotrophic factor (BDNF) plays a fundamental role in neuronal survival and synaptic plasticity. While exercise-BDNF relationships are well-documented in adults, evidence in adolescents remains limited and inconsistent. This systematic review examined the effects [...] Read more.
Adolescence represents a critical period of neurodevelopment during which brain-derived neurotrophic factor (BDNF) plays a fundamental role in neuronal survival and synaptic plasticity. While exercise-BDNF relationships are well-documented in adults, evidence in adolescents remains limited and inconsistent. This systematic review examined the effects of exercise modalities on circulating BDNF concentrations in adolescent populations. A systematic search was conducted following PRISMA guidelines across multiple databases (FECYT, PubMed, SPORTDiscus, ProQuest Central, SCOPUS, Cochrane Library) through June 2025. Inclusion criteria comprised adolescents, exercise interventions, BDNF outcomes, and randomized controlled trial design. Methodological quality was assessed using the PEDro scale. From 130 initially identified articles, 8 randomized controlled trials were included, with 4 rated as excellent and the other 4 as good quality. Exercise modalities included aerobic, resistance, concurrent, high-intensity interval training, Taekwondo, and whole-body vibration, with durations ranging 6–24 weeks. Four studies demonstrated statistically significant BDNF increases following exercise interventions, four showed no significant changes, and one reported transient reduction. Positive outcomes occurred primarily with vigorous-intensity protocols implemented for a minimum of six weeks. Meta-analysis was not feasible due to high heterogeneity in populations, interventions, and control conditions. Moreover, variation in post-exercise sampling timing further limited comparability of BDNF results. Future research should standardize protocols and examine longer interventions to clarify exercise-BDNF relationships in adolescents. Full article
(This article belongs to the Special Issue Neuromechanical Adaptations to Exercise and Sports Training)
Show Figures

Figure 1

29 pages, 6397 KiB  
Article
Task Travel Time Prediction Method Based on IMA-SURBF for Task Dispatching of Heterogeneous AGV System
by Jingjing Zhai, Xing Wu, Qiang Fu, Ya Hu, Peihuang Lou and Haining Xiao
Biomimetics 2025, 10(8), 500; https://doi.org/10.3390/biomimetics10080500 (registering DOI) - 1 Aug 2025
Abstract
The heterogeneous automatic guided vehicle (AGV) system, composed of several AGVs with different load capability and handling function, has good flexibility and agility to operational requirements. Accurate task travel time prediction (T3P) is vital for the efficient operation of heterogeneous AGV systems. However, [...] Read more.
The heterogeneous automatic guided vehicle (AGV) system, composed of several AGVs with different load capability and handling function, has good flexibility and agility to operational requirements. Accurate task travel time prediction (T3P) is vital for the efficient operation of heterogeneous AGV systems. However, T3P remains a challenging problem due to individual task correlations and dynamic changes in model input/output dimensions. To address these challenges, a biomimetics-inspired learning framework based on a radial basis function (RBF) neural network with an improved mayfly algorithm and a selective update strategy (IMA-SURBF) is proposed. Firstly, a T3P model is constructed by using travel-influencing factors as input and task travel time as output of the RBF neural network, where the input/output dimension is determined dynamically. Secondly, the improved mayfly algorithm (IMA), a biomimetic metaheuristic method, is adopted to optimize the initial parameters of the RBF neural network, while a selective update strategy is designed for parameter updates. Finally, simulation experiments on model design, parameter initialization, and comparison with deep learning-based models are conducted in a complex assembly line scenario to validate the accuracy and efficiency of the proposed method. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

13 pages, 906 KiB  
Systematic Review
Mobile Health Applications for Secondary Prevention After Myocardial Infarction or PCI: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
by Ioannis Skalidis, Henri Lu, Niccolo Maurizi, Stephane Fournier, Grigorios Tsigkas, Anastasios Apostolos, Stephane Cook, Juan F. Iglesias, Philippe Garot, Thomas Hovasse, Antoinette Neylon, Thierry Unterseeh, Jerome Garot, Nicolas Amabile, Neila Sayah, Francesca Sanguineti, Mariama Akodad and Panagiotis Antiochos
Healthcare 2025, 13(15), 1881; https://doi.org/10.3390/healthcare13151881 - 1 Aug 2025
Abstract
Background: Mobile health applications have emerged as a novel tool to support secondary prevention after myocardial infarction (MI) or percutaneous coronary intervention (PCI). However, the impact of app-based interventions on clinically meaningful outcomes such as hospital readmissions remains uncertain. Objective: To systematically evaluate [...] Read more.
Background: Mobile health applications have emerged as a novel tool to support secondary prevention after myocardial infarction (MI) or percutaneous coronary intervention (PCI). However, the impact of app-based interventions on clinically meaningful outcomes such as hospital readmissions remains uncertain. Objective: To systematically evaluate the effectiveness of smartphone app-based interventions in reducing unplanned hospital readmissions among post-MI/PCI patients. Methods: A systematic search of PubMed was conducted for randomized controlled trials published between January 2020 and April 2025. Eligible studies evaluated smartphone apps designed for secondary cardiovascular prevention and reported on unplanned hospital readmissions. Risk ratios (RRs) and 95% confidence intervals (CIs) were pooled using a random-effects model. Subgroup analyses were performed based on follow-up duration and user adherence. Results: Four trials encompassing 827 patients met inclusion criteria. App-based interventions were associated with a significant reduction in unplanned hospital readmissions compared to standard care (RR 0.45; 95% CI: 0.23–0.89; p = 0.0219). Greater benefits were observed in studies with longer follow-up durations and higher adherence rates. Improvements in patient-reported outcomes, including health-related quality of life, were also documented. Heterogeneity was moderate. Major adverse cardiovascular events (MACEs) were reported in only two studies and were not analyzed due to inconsistent definitions and low event rates. Conclusions: Smartphone applications for post-MI/PCI care are associated with reduced unplanned hospital readmissions and improved patient-reported outcomes. These tools may play a meaningful role in future cardiovascular care models, especially when sustained engagement and personalized features are prioritized. Full article
(This article belongs to the Special Issue Smart and Digital Health)
Show Figures

Figure 1

36 pages, 1921 KiB  
Article
Policy Synergies for Advancing Energy–Environmental Productivity and Sustainable Urban Development: Empirical Evidence from China’s Dual-Pilot Energy Policies
by Si Zhang and Xiaodong Zhu
Sustainability 2025, 17(15), 6992; https://doi.org/10.3390/su17156992 (registering DOI) - 1 Aug 2025
Abstract
Achieving synergies between government-led and market-based policy instruments is critical to advancing Energy–Environmental Productivity and Sustainable Urban Development. This study investigates the effects of China’s dual-pilot energy policies (New Energy Demonstration Cities (NEDCs) and Energy Consumption Permit Trading (ECPT)) on urban environmental productivity [...] Read more.
Achieving synergies between government-led and market-based policy instruments is critical to advancing Energy–Environmental Productivity and Sustainable Urban Development. This study investigates the effects of China’s dual-pilot energy policies (New Energy Demonstration Cities (NEDCs) and Energy Consumption Permit Trading (ECPT)) on urban environmental productivity (UEP) across 279 prefecture-level cities from 2006 to 2023. Utilizing a Non-Radial Directional Distance Function (NDDF) approach, combined with Difference-in-Differences (DID) estimation and spatial econometric models, the analysis reveals that these synergistic policies significantly enhance both comprehensive and net measures of UEP. Mechanism analysis highlights the roles of industrial restructuring, technological innovation, and energy transition in driving these improvements, while heterogeneity analysis indicates varying effects across different city types. Spatial spillover analysis further demonstrates that policy impacts extend beyond targeted cities, contributing to broader regional gains in UEP. These findings offer important insights for the design of integrated energy and environmental policies and support progress toward key Sustainable Development Goals (SDG 7, SDG 11, and SDG 12). Full article
Show Figures

Figure 1

28 pages, 2147 KiB  
Systematic Review
Immunogenicity, Safety, and Protective Efficacy of Mucosal Vaccines Against Respiratory Infectious Diseases: A Systematic Review and Meta-Analysis
by Jiaqi Chen, Weitong Lin, Chaokai Yang, Wenqi Lin, Xinghui Cheng, Haoyuan He, Xinhua Li and Jingyou Yu
Vaccines 2025, 13(8), 825; https://doi.org/10.3390/vaccines13080825 (registering DOI) - 31 Jul 2025
Abstract
Background/Objectives: Mucosal vaccines, delivered intranasally or via inhalation, are being studied for respiratory infectious diseases like COVID-19 and influenza. These vaccines aim to provide non-invasive administration and strong immune responses at infection sites, making them a promising area of research. This systematic review [...] Read more.
Background/Objectives: Mucosal vaccines, delivered intranasally or via inhalation, are being studied for respiratory infectious diseases like COVID-19 and influenza. These vaccines aim to provide non-invasive administration and strong immune responses at infection sites, making them a promising area of research. This systematic review and meta-analysis assessed their immunogenicity, safety, and protective efficacy. Methods: The study design was a systematic review and meta-analysis, searching PubMed and Cochrane databases up to 30 May 2025. Inclusion criteria followed the PICOS framework, focusing on mucosal vaccines for COVID-19, influenza, RSV, pertussis, and tuberculosis. Results: A total of 65 studies with 229,614 participants were included in the final analysis. Mucosal COVID-19 vaccines elicited higher neutralizing antibodies compared to intramuscular vaccines (SMD = 2.48, 95% CI: 2.17–2.78 for wild-type; SMD = 1.95, 95% CI: 1.32–2.58 for Omicron), with varying efficacy by route (inhaled VE = 47%, 95% CI: 22–74%; intranasal vaccine VE = 17%, 95% CI: 0–31%). Mucosal influenza vaccines protected children well (VE = 62%, 95% CI: 30–46%, I2 = 17.1%), but seroconversion rates were lower than those of intramuscular vaccines. RSV and pertussis vaccines had high seroconversion rates (73% and 52%, respectively). Tuberculosis vaccines were reviewed systemically, exhibiting robust cellular immunogenicity. Safety was comparable to intramuscular vaccines or placebo, with no publication bias detected. Conclusions: Current evidence suggests mucosal vaccines are immunogenic, safe, and protective, particularly for respiratory diseases. This review provides insights for future research and vaccination strategies, though limitations include varying efficacy by route and study heterogeneity. Full article
(This article belongs to the Special Issue Immune Correlates of Protection in Vaccines, 2nd Edition)
Show Figures

Figure 1

22 pages, 300 KiB  
Article
Research on the Mechanisms and Pathways of Digital Economy—Driven Agricultural Green Development: Evidence from Sichuan Province, China
by Changhong Chen and Yule Wang
Sustainability 2025, 17(15), 6980; https://doi.org/10.3390/su17156980 (registering DOI) - 31 Jul 2025
Abstract
This study endeavors to elucidate the mechanisms and pathways through which the digital economy shapes agricultural green development, providing theoretical underpinnings and practical guidance for the green transformation of regional agriculture. (1) Using panel data from 18 prefecture-level cities in Sichuan Province (2013–2022), [...] Read more.
This study endeavors to elucidate the mechanisms and pathways through which the digital economy shapes agricultural green development, providing theoretical underpinnings and practical guidance for the green transformation of regional agriculture. (1) Using panel data from 18 prefecture-level cities in Sichuan Province (2013–2022), a comprehensive evaluation index system for agricultural green development was formulated. Fixed-effects, mediating-effects, and threshold-effects models were employed to systematically analyze the direct effects, transmission pathways, and nonlinear characteristics of the digital economy on agricultural green development. (2) The fixed-effects model shows that the digital economy markedly propels agricultural green development in Sichuan Province. The mediating-effects model verifies two transmission pathways: “digital economy → technological progression → agricultural green development” and “digital economy → industrial structure upgrading → agricultural green development”. The threshold-effects model suggests that when the digital economy is in the low-threshold interval, it exerts a suppressive impact on agricultural green development; however, once the threshold is surpassed, its promoting effect strengthens significantly. (3) The results demonstrate the following findings: First, the digital economy exerts a significant positive effect on agricultural green development. Second, this promoting effect exhibits significant nonlinear characteristics that vary with the level of digital economy development. Third, the impact manifests remarkable regional heterogeneity, necessitating context-specific development strategies. (4) Five optimization recommendations are proposed: promote the categorized development of agricultural digital technologies and industrial upgrading; advance digital infrastructure and technology adaptation in phases; design differentiated regional policies; establish a hierarchical and classified long-term guarantee mechanism; and strengthen the “industry-university-research-application” collaborative innovation and dynamic monitoring system. Full article
28 pages, 1804 KiB  
Article
The Penetration of Digital Currency for Sustainable and Inclusive Urban Development: Evidence from China’s e-CNY Pilot Using SDID-SCM
by Ying Chen and Ke Zhang
Sustainability 2025, 17(15), 6981; https://doi.org/10.3390/su17156981 (registering DOI) - 31 Jul 2025
Abstract
Against the backdrop of China’s fast-growing digital economy and its financial inclusion agenda, there is still little city-level evidence on whether the e-CNY pilot accelerates financial deepening at the grassroots. Using a balanced panel of 271 prefecture-and-above cities for 2016–2022, this study employs [...] Read more.
Against the backdrop of China’s fast-growing digital economy and its financial inclusion agenda, there is still little city-level evidence on whether the e-CNY pilot accelerates financial deepening at the grassroots. Using a balanced panel of 271 prefecture-and-above cities for 2016–2022, this study employs a staggered difference-in-differences (SDID) design augmented by the synthetic control method (SCM) to rigorously identify the policy effect of the e-CNY pilot. The results show that the pilot program significantly improves urban financial inclusion, contributing to more equitable access to financial services and supporting inclusive socio-economic development. Mechanism analysis suggests that the effect operates mainly through two channels, a merchant-coverage channel and a transaction-scale channel, with the former contributing the majority of the overall effect. Incorporating a migration-based mobility index shows that most studies’ focus on the merchant-coverage effect is amplified in cities under tight mobility restrictions but wanes where commercial networks are already saturated, whereas the transaction-scale channel is largely insensitive to mobility shocks. Heterogeneity tests further indicate stronger gains in non-provincial capital cities and in the eastern and central regions. Overall, the study uncovers a “penetration-inclusion” network logic and provides policy insights for advancing sustainable financial inclusion through optimized terminal deployment, merchant incentives, and diversified scenario design. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

26 pages, 2036 KiB  
Article
Mission Planning for UAV Swarm with Aircraft Carrier Delivery: A Decoupled Framework
by Hongyun Zhang, Bin Li, Lei Wang, Yujie Cheng, Yu Ding, Chen Lu, Haijun Peng and Xinwei Wang
Aerospace 2025, 12(8), 691; https://doi.org/10.3390/aerospace12080691 (registering DOI) - 31 Jul 2025
Abstract
Due to the limited endurance of UAVs, especially in scenarios involving large areas and dense target nodes, it is challenging for multiple UAVs to complete diverse tasks while ensuring timely execution. Toward this, we propose a cross-platform system consisting of an aircraft carrier [...] Read more.
Due to the limited endurance of UAVs, especially in scenarios involving large areas and dense target nodes, it is challenging for multiple UAVs to complete diverse tasks while ensuring timely execution. Toward this, we propose a cross-platform system consisting of an aircraft carrier (AC) and multiple UAVs, which makes unified task planning for included heterogeneous platforms to maximize the efficiency of the entire combat system. The carrier-based UAV swarm mission planning problem is formulated to minimize completion time and resource utilization, taking into account large-scale targets, multi-type tasks, and multi-obstacle environments. Since the problem is complex, we design a decoupled framework to simplify the solution by decomposing it into two levels: upper-level AC path planning and bottom-level multi-UAV cooperative mission planning. At the upper level, a drop point determination method and a discrete genetic algorithm incorporating improved A* (DGAIIA) are proposed to plan the AC’s path in the presence of no-fly zones and radar threats. At the bottom level, an improved differential evolution algorithm with a market mechanism (IDEMM) is proposed to minimize task completion time and maximize UAV utilization. Specifically, a dual-switching search strategy and a neighborhood-first buying-and-selling mechanism are developed to improve the search efficiency of the IDEMM. Simulation results validate the effectiveness of both the DGAIIA and IDEMM. An animation of the simulation results is available at simulation section. Full article
Show Figures

Figure 1

17 pages, 6856 KiB  
Article
Selection of Optimal Parameters for Chemical Well Treatment During In Situ Leaching of Uranium Ores
by Kuanysh Togizov, Zhiger Kenzhetaev, Akerke Muzapparova, Shyngyskhan Bainiyazov, Diar Raushanbek and Yuliya Yaremkiv
Minerals 2025, 15(8), 811; https://doi.org/10.3390/min15080811 (registering DOI) - 31 Jul 2025
Abstract
The aim of this study was to improve the efficiency of in situ uranium leaching by developing a specialized methodology for selecting rational parameters for the chemical treatment of production wells. This approach was designed to enhance the filtration properties of ores and [...] Read more.
The aim of this study was to improve the efficiency of in situ uranium leaching by developing a specialized methodology for selecting rational parameters for the chemical treatment of production wells. This approach was designed to enhance the filtration properties of ores and extend the uninterrupted operation period of wells, considering the clay content of the productive horizon, the geological characteristics of the ore-bearing layer, and the composition of precipitation-forming materials. The mineralogical characteristics of ore and precipitate samples formed during the in situ leaching of uranium under various mining and geological conditions at a uranium deposit in the Syrdarya depression were identified using an X-ray diffraction analysis. It was established that ores of the Santonian stage are relatively homogeneous and consist mainly of quartz. During well operation, the precipitates formed are predominantly gypsum, which has little impact on the filtration properties of the ore. Ores of the Maastrichtian stage are less homogeneous and mainly composed of quartz and smectite, with minor amounts of potassium feldspar and kaolinite. The leaching of these ores results in the formation of gypsum with quartz impurities, which gradually reduces the filtration properties of the ore. Ores of the Campanian stage are heterogeneous, consisting mainly of quartz with varying proportions of clay minerals and gypsum. The leaching of these ores generates a variety of precipitates that significantly reduce the filtration properties of the productive horizon. Effective compositions and concentrations of decolmatant (clog removal) solutions were selected under laboratory conditions using a specially developed methodology and a TESCAN MIRA scanning electron microscope. Based on a scanning electron microscope analysis of the samples, the effectiveness of a decolmatizing solution based on hydrochloric and hydrofluoric acids (taking into account the concentration of the acids in the solution) was established for the destruction of precipitate formation during the in situ leaching of uranium. Geological blocks were ranked by their clay content to select rational parameters of decolmatant solutions for the efficient enhancement of ore filtration properties and the prevention of precipitation formation. Pilot-scale testing of the selected decolmatant parameters under various mining and geological conditions allowed the optimal chemical treatment parameters to be determined based on the clay content and the composition of precipitates in the productive horizon. An analysis of pilot well trials using the new approach showed an increase in the uninterrupted operational period of wells by 30%–40% under average mineral acid concentrations and by 25%–45% under maximum concentrations with surfactant additives in complex geological settings. As a result, an effective methodology for ranking geological blocks based on their ore clay content and precipitate composition was developed to determine the rational parameters of decolmatant solutions, enabling a maximized filtration performance and an extended well service life. This makes it possible to reduce the operating costs of extraction, control the geotechnological parameters of uranium well mining, and improve the efficiency of the in situ leaching of uranium under complex mining and geological conditions. Additionally, the approach increases the environmental and operational safety during uranium ore leaching intensification. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

Back to TopTop