Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,993)

Search Parameters:
Keywords = hepatic metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 973 KiB  
Article
Normalization of Oxygen Levels Induces a Metabolic Reprogramming in Livers Exposed to Intermittent Hypoxia Mimicking Obstructive Sleep Apnea
by Miguel Á. Hernández-García, Beatriz Aldave-Orzáiz, Carlos Ernesto Fernández-García, Esther Fuertes-Yebra, Esther Rey, Ángela Berlana, Ramón Farré, Carmelo García-Monzón, Isaac Almendros, Pedro Landete and Águeda González-Rodríguez
Antioxidants 2025, 14(8), 971; https://doi.org/10.3390/antiox14080971 (registering DOI) - 7 Aug 2025
Abstract
Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), is strongly associated with metabolic syndrome and metabolic dysfunction-associated steatotic liver disease (MASLD). IH exacerbates MASLD progression through oxidative stress, inflammation, and lipid accumulation. This study aims to investigate the impact of oxygen normalization [...] Read more.
Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), is strongly associated with metabolic syndrome and metabolic dysfunction-associated steatotic liver disease (MASLD). IH exacerbates MASLD progression through oxidative stress, inflammation, and lipid accumulation. This study aims to investigate the impact of oxygen normalization on metabolic dysfunction in OSA patients using continuous positive airway pressure (CPAP) therapy, and in mice exposed to IH followed by a reoxygenation period. In the clinical study, 76 participants (44 OSA patients and 32 controls) were analyzed. OSA patients had higher insulin resistance, triglycerides, very low density lipoprotein (VLDL) content, and liver enzyme levels, along with a higher prevalence of liver steatosis. After 18 months of CPAP therapy, OSA patients showed significant improvements in insulin resistance, lipid profiles (total cholesterol and VLDL), liver function markers (AST and albumin), and steatosis risk scores (Fatty Liver Index and OWLiver test). In the experimental study, IH induced hepatic lipid accumulation, oxidative stress, and inflammation, and reoxygenation reversed these deleterious effects in mice. At the molecular level, IH downregulated fatty acid oxidation (FAO)-related genes, thus impairing the FAO process. Reoxygenation maintained elevated levels of lipogenic genes but restored FAO gene expression and activity, suggesting enhanced lipid clearance despite ongoing lipogenesis. Indeed, serum β hydroxybutyrate, a key marker of hepatic FAO in patients, was impaired in OSA patients but normalized after CPAP therapy, supporting improved FAO function. CPAP therapy improves lipid profiles, liver function, and MASLD progression in OSA patients. Experimental findings highlight the therapeutic potential of oxygen normalization in reversing IH-induced liver damage by FAO pathway restoration, indicating a metabolic reprogramming in the liver. Full article
(This article belongs to the Special Issue Oxidative Stress in Sleep Disorders)
18 pages, 3212 KiB  
Article
Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice
by Mon-Chien Lee, Ting-Yin Cheng, Ping-Jui Lin, Ting-Chun Lin, Chia-Hsuan Chou, Chao-Yuan Chen and Chi-Chang Huang
Nutrients 2025, 17(15), 2568; https://doi.org/10.3390/nu17152568 - 7 Aug 2025
Abstract
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate [...] Read more.
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate clearance of fatigue-associated by-products. Objective: This study aimed to determine whether live or heat-inactivated Lacticaseibacillus paracasei NB23 can enhance exercise endurance and attenuate fatigue biomarkers in a murine model. Methods: Forty male Institute of Cancer Research (ICR) mice were randomized into four groups (n = 10 each) receiving daily gavage for six weeks with vehicle, heat-killed NB23 (3 × 1010 cells/mouse/day), low-dose live NB23 (1 × 1010 CFU/mouse/day), or high-dose live NB23 (3 × 1010 CFU/mouse/day). Forelimb grip strength and weight-loaded swim-to-exhaustion tests assessed performance. Blood was collected post-exercise to measure serum lactate, ammonia, blood urea nitrogen (BUN), and creatine kinase (CK). Liver and muscle glycogen content was also quantified, and safety was confirmed by clinical-chemistry panels and histological examination. Results: NB23 treatment produced dose-dependent improvements in grip strength (p < 0.01) and swim endurance (p < 0.001). All NB23 groups exhibited significant reductions in post-exercise lactate (p < 0.0001), ammonia (p < 0.001), BUN (p < 0.001), and CK (p < 0.0001). Hepatic and muscle glycogen stores rose by 41–59% and 65–142%, respectively (p < 0.001). No changes in food or water intake, serum clinical-chemistry parameters, or tissue histology were observed. Conclusions: Our findings suggest that both live and heat-treated L. paracasei NB23 may contribute to improved endurance performance, increased energy reserves, and faster clearance of fatigue-related metabolites in our experimental model. However, these results should be interpreted cautiously given the exploratory nature and limitations of our study. Full article
Show Figures

Figure 1

14 pages, 574 KiB  
Article
Self-Reported Weight Gain After the Age of 20 and Risk of Steatotic Liver Disease
by Masayo Iwasa, Naoki Ozu, Hajime Yamakage, Hisashi Kato, Misato Ishikawa, Megumi Kanasaki, Izuru Masuda, Masashi Tanaka and Noriko Satoh-Asahara
Nutrients 2025, 17(15), 2566; https://doi.org/10.3390/nu17152566 - 6 Aug 2025
Abstract
Background/Objectives: We aimed to identify questionnaire items associated with an increased risk of developing hepatic steatosis in the general population. Methods: A total of 15,063 individuals aged ≥20 years who underwent general health checkups and had no hepatic steatosis at baseline [...] Read more.
Background/Objectives: We aimed to identify questionnaire items associated with an increased risk of developing hepatic steatosis in the general population. Methods: A total of 15,063 individuals aged ≥20 years who underwent general health checkups and had no hepatic steatosis at baseline were included. The relationship between questionnaire data at baseline and hepatic steatosis incidence over a median 4.2-year follow-up was investigated across body mass index (BMI) categories. Results: Among 15,063 individuals (mean [SD] age, 47.1 [10.2] years; 6769 [44.9%] male; mean [SD] BMI, 21.4 [2.6] kg/m2), 1889 individuals (12.5%) developed hepatic steatosis during follow-up. After adjusting for age, sex, and factors related to metabolic diseases and liver injury, the strongest questionnaire-based risk factor for hepatic steatosis was self-reported weight gain of 10 kg or more after the age of 20 across all BMI categories: total population (hazard ratio [HR], 2.11; 95% confidence interval [CI], 1.90–2.34; p < 0.001), Category 1 (BMI < 22) (HR, 2.33; 95% CI, 1.86–2.91; p < 0.001), Category 2 (BMI 22 to <25) (HR, 1.43; 95% CI, 1.25–1.63; p < 0.001), and Category 3 (BMI ≥ 25) (HR, 1.41; 95% CI, 1.12–1.77; p = 0.003). Conclusions: In this cohort study, self-reported weight gain of 10 kg or more after the age of 20 was associated with an increased risk of hepatic steatosis, independent of baseline BMI. Questionnaires capturing weight gain history may support universal screening efforts to identify individuals at elevated risk. Full article
(This article belongs to the Special Issue The Impact of Dietary and Lifestyle Interventions on Liver Diseases)
Show Figures

Figure 1

18 pages, 3229 KiB  
Article
AMPK-Targeting Effects of (−)-Epicatechin Gallate from Hibiscus sabdariffa Linne Leaves on Dual Modulation of Hepatic Lipid Accumulation and Glycogen Synthesis in an In Vitro Oleic Acid Model
by Hui-Hsuan Lin, Pei-Tzu Wu, Yu-Hsuan Liang, Ming-Shih Lee and Jing-Hsien Chen
Int. J. Mol. Sci. 2025, 26(15), 7612; https://doi.org/10.3390/ijms26157612 - 6 Aug 2025
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) begins with hepatic lipid accumulation and triggers insulin resistance. Hibiscus leaf extract exhibits antioxidant and anti-atherosclerotic activities, and is rich in (−)-epicatechin gallate (ECG). Despite ECG’s well-known pharmacological activities and its total antioxidant capacity being stronger than [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) begins with hepatic lipid accumulation and triggers insulin resistance. Hibiscus leaf extract exhibits antioxidant and anti-atherosclerotic activities, and is rich in (−)-epicatechin gallate (ECG). Despite ECG’s well-known pharmacological activities and its total antioxidant capacity being stronger than that of other catechins, its regulatory effects on MASLD have not been fully described previously. Therefore, this study attempted to evaluate the anti-MASLD potential of ECG isolated from Hibiscus leaves on abnormal lipid and glucose metabolism in hepatocytes. First, oleic acid (OA) was used as an experimental model to induce lipid dysmetabolism in human primary hepatocytes. Treatment with ECG can significantly (p < 0.05) reduce the OA-induced cellular lipid accumulation. Nile red staining revealed, compared to the OA group, the inhibition percentages of 29, 61, and 82% at the tested doses of ECG, respectively. The beneficial effects of ECG were associated with the downregulation of SREBPs/HMGCR and upregulation of PPARα/CPT1 through targeting AMPK. Also, ECG at 0.4 µM produced a significant (p < 0.01) decrease in oxidative stress by 83%, and a marked (p < 0.05) increase in glycogen synthesis by 145% on the OA-exposed hepatocytes with insulin signaling blockade. Mechanistic assays indicated lipid and glucose metabolic homeostasis of ECG might be mediated via regulation of lipogenesis, fatty acid β-oxidation, and insulin resistance, as confirmed by an AMPK inhibitor. These results suggest ECG is a dual modulator of lipid and carbohydrate dysmetabolism in hepatocytes. Full article
Show Figures

Figure 1

16 pages, 1816 KiB  
Article
Association Between Uric Acid to HDL-C Ratio and Liver Transaminase Abnormalities: Insights from a Large-Scale General Population Study
by Abdulaziz M. Almuqrin, Mousa H. Muqri, Ahmed M. Basudan and Yazeed Alshuweishi
Medicina 2025, 61(8), 1417; https://doi.org/10.3390/medicina61081417 - 5 Aug 2025
Abstract
Background and Objectives: The uric acid to HDL-cholesterol ratio (UHR) has recently emerged as a promising biomarker reflecting systemic inflammation and metabolic disturbances. Elevated liver transaminases are clinical indicators of hepatic injury and underlying metabolic dysfunction. Many Middle Eastern countries face constrained [...] Read more.
Background and Objectives: The uric acid to HDL-cholesterol ratio (UHR) has recently emerged as a promising biomarker reflecting systemic inflammation and metabolic disturbances. Elevated liver transaminases are clinical indicators of hepatic injury and underlying metabolic dysfunction. Many Middle Eastern countries face constrained clinical and laboratory resources, where access to comprehensive diagnostic tools may be limited. In such settings, identifying simple and easily accessible markers could offer significant practical value in detecting and monitoring health disorders. This study investigates the potential association between UHR and elevated liver transaminases levels in the Saudi general population. Materials and Methods: This retrospective cross-sectional study included 9618 subjects, and the association between the UHR and elevated liver transaminases, alanine transaminase (ALT), and aspartate transaminase (AST), was comprehensively analysed. In addition, the study assessed risk indicators including the prevalence ratio (PR) and odds ratio (OR) as well as the diagnostic accuracy of UHR and C-reactive protein (CRP) in detecting liver transaminases abnormalities, with analyses stratified by age and gender. Results: UHR was significantly elevated in subjects with increased ALT and AST activities, and this pattern was consistent across all age and gender categories. High UHR was significantly associated with elevated ALT (OR = 2.32, 95% CI: 2.12–2.53, p < 0.001) and AST (OR = 1.38, 95% CI: 1.25–1.52, p < 0.001), with stronger associations observed in males and for ALT activity. In addition, elevated UHR was more prevalent among individuals with increased liver transaminase activities. Receiver operating characteristic (ROC) analysis showed that UHR outperformed CRP in identifying elevated liver transaminases, with better discriminative ability for ALT than AST activity. Conclusions: These findings highlight a significant association between UHR and liver transaminase abnormalities in the general population, underscoring the potential utility of UHR as a simple and accessible indicator for liver function assessment in clinical settings. Full article
(This article belongs to the Section Epidemiology & Public Health)
Show Figures

Figure 1

15 pages, 3048 KiB  
Article
Hydrogen-Rich Water Attenuates Diarrhea in Weaned Piglets via Oxidative Stress Alleviation
by Pengfei Zhang, Jingyu Yang, Zhuoda Lu, Qianxi Liang, Xing Yang, Junchao Wang, Jinbiao Guo and Yunxiang Zhao
Biology 2025, 14(8), 997; https://doi.org/10.3390/biology14080997 - 5 Aug 2025
Viewed by 25
Abstract
Early weaning of piglets elicits weaning stress, which in turn induces oxidative stress and consequently impairs growth and development. Hydrogen-rich water (HRW), characterized by selective antioxidant properties, mitigates oxidative stress damage and serves as an ideal intervention. This study aimed to evaluate the [...] Read more.
Early weaning of piglets elicits weaning stress, which in turn induces oxidative stress and consequently impairs growth and development. Hydrogen-rich water (HRW), characterized by selective antioxidant properties, mitigates oxidative stress damage and serves as an ideal intervention. This study aimed to evaluate the effects of HRW on weaned piglets, specifically investigating its impact on growth performance, diarrhea incidence, antioxidant function, intestinal morphology, gut microbiota, and hepatic metabolites. The results demonstrate that HRW significantly increased the average daily feed intake and significantly reduced the diarrhea rate in weaned piglets. Analysis of serum oxidative stress indicators revealed that HRW significantly elevated the activities of total antioxidant capacity and total superoxide dismutase while significantly decreasing malondialdehyde concentration. Assessment of intestinal morphology showed that HRW significantly increased the villus height to crypt depth ratio in the duodenum, jejunum, and ileum. Microbial analysis indicated that HRW significantly increased the abundance of Prevotella in the colon. Furthermore, HRW increased the abundance of beneficial bacteria, such as Akkermansia, in the jejunum and cecum, while concurrently reducing the abundance of harmful bacteria like Escherichia. Hepatic metabolite profiling revealed that HRW significantly altered the metabolite composition in the liver of weaned piglets. Differentially abundant metabolites were enriched in oxidative stress-related KEGG pathways, including ABC transporters; pyruvate metabolism; autophagy; FoxO signaling pathway; glutathione metabolism; ferroptosis; and AMPK signaling pathways. In conclusion, HRW alleviates diarrhea and promotes growth in weaned piglets by enhancing antioxidant capacity. These findings provide a scientific foundation for the application of HRW in swine production and serve as a reference for further exploration into the mechanisms underlying HRW’s effects on animal health and productivity. Full article
Show Figures

Figure 1

19 pages, 3149 KiB  
Article
Promoter H3K4me3 and Gene Expression Involved in Systemic Metabolism Are Altered in Fetal Calf Liver of Nutrient-Restricted Dams
by Susumu Muroya, Koichi Ojima, Saki Shimamoto, Takehito Sugasawa and Takafumi Gotoh
Int. J. Mol. Sci. 2025, 26(15), 7540; https://doi.org/10.3390/ijms26157540 - 4 Aug 2025
Viewed by 180
Abstract
Maternal undernutrition (MUN) causes severe metabolic disruption in the offspring of mammals. Here we determined the role of histone modification in hepatic gene expression in late-gestation fetuses of nutritionally restricted cows, an established model using low-nutrition (LN) and high-nutrition (HN) conditions. The chromatin [...] Read more.
Maternal undernutrition (MUN) causes severe metabolic disruption in the offspring of mammals. Here we determined the role of histone modification in hepatic gene expression in late-gestation fetuses of nutritionally restricted cows, an established model using low-nutrition (LN) and high-nutrition (HN) conditions. The chromatin immunoprecipitation sequencing results show that genes with an altered trimethylation of histone 3 lysine 4 (H3K4me3) are associated with cortisol synthesis and secretion, the PPAR signaling pathway, and aldosterone synthesis and secretion. Genes with the H3K27me3 alteration were associated with glutamatergic synapse and gastric acid secretion. Compared to HN fetuses, promoter H3K4me3 levels in LN fetuses were higher in GDF15, IRF2BP2, PPP1R3B, and QRFPR but lower in ANGPTL4 and APOA5. Intriguingly, genes with the greatest expression changes (>1.5-fold) exhibited the anticipated up-/downregulation from elevated or reduced H3K4me3 levels; however, a significant relationship was not observed between promoter CpG methylation or H3K27me3 and the gene set with the greatest expression changes. Furthermore, the stress response genes EIF2A, ATF4, DDIT3, and TRIB3 were upregulated in the MUN fetal liver, suggesting involvement of the response in GDF15 activation. Thus, H3K4me3 likely plays a crucial role in MUN-induced physiological adaptation, altering the hepatic gene expression responsible for the integrated stress response and systemic energy metabolism, especially circulating lipoprotein lipase regulation. Full article
(This article belongs to the Special Issue Ruminant Physiology: Digestion, Metabolism, and Endocrine System)
Show Figures

Figure 1

18 pages, 2745 KiB  
Article
Obesity-Induced MASLD Is Reversed by Capsaicin via Hepatic TRPV1 Activation
by Padmamalini Baskaran, Ryan Christensen, Kimberley D. Bruce and Robert H. Eckel
Curr. Issues Mol. Biol. 2025, 47(8), 618; https://doi.org/10.3390/cimb47080618 - 4 Aug 2025
Viewed by 127
Abstract
Background and Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder associated with metabolic risk factors such as obesity, type 2 diabetes, and cardiovascular disease. If left untreated, the accumulation of excess hepatic fat can lead to inflammation, fibrosis, cirrhosis, [...] Read more.
Background and Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder associated with metabolic risk factors such as obesity, type 2 diabetes, and cardiovascular disease. If left untreated, the accumulation of excess hepatic fat can lead to inflammation, fibrosis, cirrhosis, hepatocellular carcinoma, and ultimately liver failure. Capsaicin (CAP), the primary pungent compound in chili peppers, has previously been shown to prevent weight gain in high-fat diet (HFD)-induced obesity models. In this study, we investigated the potential of dietary CAP to prevent HFD-induced MASLD. Methods: C57BL/6 mice were fed an HFD (60% kcal from fat) with or without 0.01% CAP supplementation for 26 weeks. We evaluated CAP’s effects on hepatic fat accumulation, inflammation, and mitochondrial function to determine its role in preventing MASLD. Results: CAP acts as a potent and selective agonist of the transient receptor potential vanilloid 1 (TRPV1) channel. We confirmed TRPV1 expression in the liver and demonstrated that CAP activates hepatic TRPV1, thereby preventing steatosis, improving insulin sensitivity, reducing inflammation, and enhancing fatty acid oxidation. These beneficial effects were observed in wild-type but not in TRPV1 knockout mice. Mechanistically, CAP-induced TRPV1 activation promotes calcium influx and activates AMPK, which leads to SIRT1-dependent upregulation of PPARα and PGC-1α, enhancing mitochondrial biogenesis and lipid metabolism. Conclusions: Our findings suggest that dietary CAP prevents MASLD through TRPV1 activation. TRPV1 signaling represents a promising therapeutic target for the prevention and management of MASLD in individuals with metabolic disorders. Full article
(This article belongs to the Special Issue Mechanisms and Pathophysiology of Obesity)
Show Figures

Graphical abstract

17 pages, 972 KiB  
Article
SARS-CoV-2 Main Protease Dysregulates Hepatic Insulin Signaling and Glucose Uptake: Implications for Post-COVID-19 Diabetogenesis
by Praise Tatenda Nhau, Mlindeli Gamede, Andile Khathi and Ntethelelo Sibiya
Pathophysiology 2025, 32(3), 39; https://doi.org/10.3390/pathophysiology32030039 - 4 Aug 2025
Viewed by 129
Abstract
Background: There is growing evidence suggesting that SARS-CoV-2 may contribute to metabolic dysfunction. SARS-CoV-2 infection is associated with systemic inflammation, oxidative stress, and metabolic dysregulation, all of which may impair liver function and promote glucose intolerance. This study investigated the role of SARS-CoV-2, [...] Read more.
Background: There is growing evidence suggesting that SARS-CoV-2 may contribute to metabolic dysfunction. SARS-CoV-2 infection is associated with systemic inflammation, oxidative stress, and metabolic dysregulation, all of which may impair liver function and promote glucose intolerance. This study investigated the role of SARS-CoV-2, specifically its Main Protease (Mpro), in accelerating insulin resistance and metabolic dysfunction in HepG2 cells in vitro. Methods: HepG2 cells were treated with varying concentrations of Mpro (2.5, 5, 10, 20, 40, 80, and 160 nmol/mL) for 24 h to assess cytotoxicity and glucose uptake. Based on initial findings, subsequent assays focused on higher concentrations (40, 80, and 160 nmol/mL). The effects of Mpro on cell viability, protein kinase B (AKT) expression, matrix metallopeptidase-1 (MMP1), dipeptidyl peptidase 4 (DPP4), interleukin-6 (IL-6) expression, and lipid peroxidation were investigated. Results: Our findings reveal that the SARS-CoV-2 Mpro treatment led to a concentration-dependent reduction in glucose uptake in HepG2 cells. Additionally, the Mpro treatment was associated with reduced insulin-stimulated AKT activation, particularly at higher concentrations. Inflammatory markers such as IL-6 were elevated in the extracellular medium, while DPP4 expression was decreased. However, extracellular soluble DPP4 (sDPP4) levels did not show a significant change. Despite these changes, cell viability remained relatively unaffected, suggesting that the HepG2 cells were able to maintain overall metabolic functions under Mpro exposure. Conclusions: This study demonstrated the concentration-dependent impairment of hepatic glucose metabolism, insulin signaling, and inflammatory pathways in HepG2 cells acutely exposed to the SARS-CoV-2 Mpro. These findings warrant further investigation to explore the long-term metabolic effects of SARS-CoV-2 and its proteases in the liver and to develop potential therapeutic approaches for post-viral metabolic complications. Full article
Show Figures

Graphical abstract

33 pages, 1872 KiB  
Review
Exploring the Epidemiologic Burden, Pathogenetic Features, and Clinical Outcomes of Primary Liver Cancer in Patients with Type 2 Diabetes Mellitus (T2DM) and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A Scoping Review
by Mario Romeo, Fiammetta Di Nardo, Carmine Napolitano, Claudio Basile, Carlo Palma, Paolo Vaia, Marcello Dallio and Alessandro Federico
Diabetology 2025, 6(8), 79; https://doi.org/10.3390/diabetology6080079 - 4 Aug 2025
Viewed by 217
Abstract
Background/Objectives: Primary liver cancer (PLC), encompassing hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), constitutes a growing global health concern. Metabolic dysfunction-associated Steatotic Liver Disease (MASLD) and Type 2 diabetes mellitus (T2DM) represent a recurrent epidemiological overlap. Individuals with MASLD and T2DM (MASLD-T2DM) are [...] Read more.
Background/Objectives: Primary liver cancer (PLC), encompassing hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), constitutes a growing global health concern. Metabolic dysfunction-associated Steatotic Liver Disease (MASLD) and Type 2 diabetes mellitus (T2DM) represent a recurrent epidemiological overlap. Individuals with MASLD and T2DM (MASLD-T2DM) are at a higher risk of PLC. This scoping review highlights the epidemiological burden, the classic and novel pathogenetic frontiers, and the potential strategies optimizing the management of PLC in MASLD-T2DM. Methods: A systematic search of the PubMed, Medline, and SCOPUS electronic databases was conducted to identify evidence investigating the pathogenetic mechanisms linking MASLD and T2DM to hepatic carcinogenesis, highlighting the most relevant targets and the relatively emerging therapeutic strategies. The search algorithm included in sequence the filter words: “MASLD”, “liver steatosis”, “obesity”, “metabolic syndrome”, “body composition”, “insulin resistance”, “inflammation”, “oxidative stress”, “metabolic dysfunction”, “microbiota”, “glucose”, “immunometabolism”, “trained immunity”. Results: In the MASD-T2DM setting, insulin resistance (IR) and IR-induced mechanisms (including chronic inflammation, insulin/IGF-1 axis dysregulation, and autophagy), simultaneously with the alterations of gut microbiota composition and functioning, represent crucial pathogenetic factors in hepatocarcinogenesis. Besides, the glucose-related metabolic reprogramming emerged as a crucial pathogenetic moment contributing to cancer progression and immune evasion. In this scenario, lifestyle changes, simultaneously with antidiabetic drugs targeting IR-related effects and gut-liver axis, in parallel with novel approaches modulating immunometabolic pathways, represent promising strategies. Conclusions: Metabolic dysfunction, classically featuring MASLD-T2DM, constitutes a continuously expanding global issue, as well as a critical driver in PLC progression, demanding integrated and personalized interventions to reduce the future burden of disease. Full article
Show Figures

Figure 1

15 pages, 980 KiB  
Article
Wilson’s Disease in Oman: A National Cohort Study of Clinical Spectrum, Diagnostic Delay, and Long-Term Outcomes
by Said A. Al-Busafi, Juland N. Al Julandani, Zakariya Alismaeili and Juhaina J. Al Raisi
Clin. Pract. 2025, 15(8), 144; https://doi.org/10.3390/clinpract15080144 - 3 Aug 2025
Viewed by 158
Abstract
Background/Objectives: Wilson’s disease (WD) is a rare autosomal recessive disorder of copper metabolism that results in hepatic, neurological, and psychiatric manifestations. Despite being described globally, data from the Middle East remains limited. This study presents the first comprehensive national cohort analysis of [...] Read more.
Background/Objectives: Wilson’s disease (WD) is a rare autosomal recessive disorder of copper metabolism that results in hepatic, neurological, and psychiatric manifestations. Despite being described globally, data from the Middle East remains limited. This study presents the first comprehensive national cohort analysis of WD in Oman, examining clinical features, diagnostic challenges, treatment patterns, and long-term outcomes. Methods: A retrospective cohort study was conducted on 36 Omani patients diagnosed with WD between 2013 and 2020 at Sultan Qaboos University Hospital using AASLD diagnostic criteria. Clinical presentation, biochemical parameters, treatment regimens, and progression-free survival were analyzed. Results: The median age at diagnosis was 14.5 years, with a slight female predominance (55.6%). Clinical presentation varied: 25% had hepatic symptoms, 22.2% had mixed hepatic-neurological features, and 16.7% presented with neurological symptoms alone. Asymptomatic cases identified via family screening accounted for 33.3%. Diagnostic delays were most pronounced among patients presenting with neurological symptoms. A positive family history was reported in 88.9% of cases, suggesting strong familial clustering despite a low rate of consanguinity (5.6%). Regional distribution was concentrated in Ash Sharqiyah North and Muscat. Chelation therapy with trientine or penicillamine, often combined with zinc, was the mainstay of treatment. Treatment adherence was significantly associated with improved progression-free survival (p = 0.012). Conclusions: WD in Oman is marked by heterogeneous presentations, frequent diagnostic delays, and strong familial clustering. Early detection through cascade screening and sustained treatment adherence are critical for favorable outcomes. These findings support the need for national screening policies and structured long-term care models for WD in the region. Full article
Show Figures

Figure 1

15 pages, 1899 KiB  
Article
Lipidomic Profile of Individuals Infected by Schistosoma mansoni
by Thainá Rodrigues de Souza Fialho, Ronald Alves dos Santos, Yuri Tabajara, Ane Caroline Casaes, Michael Nascimento Macedo, Bruna Oliveira Lopes Souza, Kelvin Edson Marques de Jesus, Leonardo Paiva Farias, Camilla Almeida Menezes, Isadora Cristina de Siqueira, Carlos Arterio Sorgi, Adriano Queiroz and Ricardo Riccio Oliveira
Int. J. Mol. Sci. 2025, 26(15), 7491; https://doi.org/10.3390/ijms26157491 - 2 Aug 2025
Viewed by 190
Abstract
Schistosoma mansoni infection is associated with hepatic inflammation and fibrosis, but its systemic metabolic effects remain poorly understood. This study aimed to investigate changes in the serum lipidomic profile associated with S. mansoni infection and parasite load in individuals from an endemic area. [...] Read more.
Schistosoma mansoni infection is associated with hepatic inflammation and fibrosis, but its systemic metabolic effects remain poorly understood. This study aimed to investigate changes in the serum lipidomic profile associated with S. mansoni infection and parasite load in individuals from an endemic area. This cross-sectional analysis was nested within a longitudinal cohort study conducted in northeastern Brazil. Parasitological diagnosis and quantification were performed using the Kato–Katz technique. A total of 45 individuals were selected and divided into three groups: high parasite load (HL), low parasite load (LL), and uninfected controls (NegE). Serum samples were analyzed using mass-spectrometry-based lipidomics. The most abundant lipid subclasses across all groups were phosphatidylcholines (PC), triacylglycerols (TAG), and phosphatidylethanolamines (PE). However, individuals in the HL group exhibited distinct lipidomic profiles, with increased levels of specific phosphatidylinositols (PI) and reduced levels of certain TAG species compared to the NegE group. These changes may reflect host–parasite interactions and immune–metabolic alterations driven by intense infection. Our findings suggest that S. mansoni infection, particularly at higher parasite burdens, can influence the host’s serum lipid profile and may contribute to metabolic disturbances in endemic populations. Full article
(This article belongs to the Special Issue Omics Science and Research in Human Health and Disease)
Show Figures

Figure 1

15 pages, 2024 KiB  
Article
Oxy210 Inhibits Hepatic Expression of Senescence-Associated, Pro-Fibrotic, and Pro-Inflammatory Genes in Mice During Development of MASH and in Hepatocytes In Vitro
by Feng Wang, Simon T. Hui, Frank Stappenbeck, Dorota Kaminska, Aldons J. Lusis and Farhad Parhami
Cells 2025, 14(15), 1191; https://doi.org/10.3390/cells14151191 - 2 Aug 2025
Viewed by 308
Abstract
Background: Senescence, a state of permanent cell cycle arrest, is a complex cellular phenomenon closely affiliated with age-related diseases and pathological fibrosis. Cellular senescence is now recognized as a significant contributor to organ fibrosis, largely driven by transforming growth factor beta (TGF-β) signaling, [...] Read more.
Background: Senescence, a state of permanent cell cycle arrest, is a complex cellular phenomenon closely affiliated with age-related diseases and pathological fibrosis. Cellular senescence is now recognized as a significant contributor to organ fibrosis, largely driven by transforming growth factor beta (TGF-β) signaling, such as in metabolic dysfunction-associated steatohepatitis (MASH), idiopathic pulmonary fibrosis (IPF), chronic kidney disease (CKD), and myocardial fibrosis, which can lead to heart failure, cystic fibrosis, and fibrosis in pancreatic tumors, to name a few. MASH is a progressive inflammatory and fibrotic liver condition that has reached pandemic proportions, now considered the largest non-viral contributor to the need for liver transplantation. Methods: We previously studied Oxy210, an anti-fibrotic and anti-inflammatory, orally bioavailable, oxysterol-based drug candidate for MASH, using APOE*3-Leiden.CETP mice, a humanized hyperlipidemic mouse model that closely recapitulates the hallmarks of human MASH. In this model, treatment of mice with Oxy210 for 16 weeks caused significant amelioration of the disease, evidenced by reduced hepatic inflammation, lipid deposition, and fibrosis, atherosclerosis and adipose tissue inflammation. Results: Here we demonstrate increased hepatic expression of senescence-associated genes and senescence-associated secretory phenotype (SASP), correlated with the expression of pro-fibrotic and pro-inflammatorygenes in these mice during the development of MASH that are significantly inhibited by Oxy210. Using the HepG2 human hepatocyte cell line, we demonstrate the induced expression of senescent-associated genes and SASP by TGF-β and inhibition by Oxy210. Conclusions: These findings further support the potential therapeutic effects of Oxy210 mediated in part through inhibition of senescence-driven hepatic fibrosis and inflammation in MASH and perhaps in other senescence-associated fibrotic diseases. Full article
Show Figures

Graphical abstract

20 pages, 3258 KiB  
Article
Loss of SVIP Results in Metabolic Reprograming and Increased Retention of Very-Low-Density Lipoproteins in Hepatocytes
by Vandana Sekhar, Thomas Andl and Shadab A. Siddiqi
Int. J. Mol. Sci. 2025, 26(15), 7465; https://doi.org/10.3390/ijms26157465 - 1 Aug 2025
Viewed by 219
Abstract
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance [...] Read more.
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance of discerning the role of different cellular proteins involved in VLDL biogenesis, transport, and secretion. Small VCP-Interacting Protein (SVIP) has been identified as a component of VLDL transport vesicles and VLDL secretion. This study evaluates the cellular effects stemming from the CRISPR-Cas9-mediated depletion of SVIP in rat hepatocytes. The SVIP-knockout (KO) cells display an increased VLDL retention with elevated intracellular levels of ApoB100 and neutral lipid staining. RNA sequencing studies reveal an impaired PPARα and Nrf2 signaling in the SVIP KO cells, implying a state of metabolic reprograming, with a shift from fatty acid uptake, synthesis, and oxidation to cells favoring the activation of glucose by impaired glycogen storage and increased glucose release. Additionally, SVIP KO cells exhibit a transcriptional profile indicative of acute phase response (APR) in hepatocytes. Many inflammatory markers and genes associated with APR are upregulated in the SVIP KO hepatocytes. In accordance with an APR-like response, the cells also demonstrate an increase in mRNA expression of genes associated with protein synthesis. Together, our data demonstrate that SVIP is critical in maintaining hepatic lipid homeostasis and metabolic balance by regulating key pathways such as PPARα, Nrf2, and APR. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

33 pages, 8604 KiB  
Article
Sulforaphane-Rich Broccoli Sprout Extract Promotes Hair Regrowth in an Androgenetic Alopecia Mouse Model via Enhanced Dihydrotestosterone Metabolism
by Laxman Subedi, Duc Dat Le, Eunbin Kim, Susmita Phuyal, Arjun Dhwoj Bamjan, Vinhquang Truong, Nam Ah Kim, Jung-Hyun Shim, Jong Bae Seo, Suk-Jung Oh, Mina Lee and Jin Woo Park
Int. J. Mol. Sci. 2025, 26(15), 7467; https://doi.org/10.3390/ijms26157467 - 1 Aug 2025
Viewed by 382
Abstract
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on [...] Read more.
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on keratinocytes, dermal fibroblasts, and dermal papilla cells, showing greater in vitro activity than sulforaphane (SFN) and minoxidil under the tested conditions, while maintaining low cytotoxicity. In a testosterone-induced AGA mouse model, oral BSE significantly accelerated hair regrowth, with 20 mg/kg achieving 99% recovery by day 15, alongside increased follicle length, density, and hair weight. Mechanistically, BSE upregulated hepatic and dermal DHT-metabolizing enzymes (Akr1c21, Dhrs9) and activated Wnt/β-catenin signaling in the skin, suggesting dual actions via androgen metabolism modulation and follicular regeneration. Pharmacokinetic analysis revealed prolonged SFN plasma exposure following BSE administration, and in silico docking showed strong binding affinities of key BSE constituents to Akr1c2 and β-catenin. No systemic toxicity was observed in liver histology. These findings indicate that BSE may serve as a safe, effective, and multitargeted natural therapy for AGA. Further clinical studies are needed to validate its efficacy in human populations. Full article
Show Figures

Figure 1

Back to TopTop