Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = hemp concrete

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5924 KiB  
Article
Thermal Performance of Bio-Based Materials for Sustainable Building Insulation: A Numerical Study
by Labouda Ba, Abdelkrim Trabelsi, Tien Tung Ngo, Prosper Pliya, Ikram El Abbassi and Cheikh Sidi Ethmane Kane
Fibers 2025, 13(5), 52; https://doi.org/10.3390/fib13050052 - 30 Apr 2025
Viewed by 1589
Abstract
This study investigates the thermal and energy performance of various bio-based materials, including Typha Australis, straw, banana fiber, Alfa fiber, peanut shells, and VSS (a blend of wood pulp, cotton, flax, and hemp), in comparison to conventional concrete. A combined approach integrating numerical [...] Read more.
This study investigates the thermal and energy performance of various bio-based materials, including Typha Australis, straw, banana fiber, Alfa fiber, peanut shells, and VSS (a blend of wood pulp, cotton, flax, and hemp), in comparison to conventional concrete. A combined approach integrating numerical simulations and experimental analyses was employed to ensure robust and comprehensive insights. COMSOL Multiphysics was utilized for detailed thermal modeling of wall assemblies, while TRNSYS enabled dynamic simulations to evaluate the impact of these materials on overall cooling energy demand. The results demonstrate that bio-based materials offer significantly improved thermal insulation, reducing air conditioning needs by over 30% relative to concrete, with banana fiber exhibiting the highest performance. This study underscores the need for industrial-scale optimization, supportive regulatory frameworks, and real-world implementation to promote broader adoption. Despite their strong potential, challenges remain, particularly regarding cost-effectiveness, durability, and market penetration. Ultimately, this research advocates for a transition toward more sustainable and environmentally conscious construction practices, aligning with efforts to reduce CO2 emissions and enhance building energy efficiency. Full article
Show Figures

Figure 1

18 pages, 4764 KiB  
Article
Hemp Concrete with Mineral Additives as a Durable and Fire-Resistant Material in Green Construction
by Elżbieta Janowska-Renkas, Anna Król, Igor Klementowski and Michał Sokolski
Materials 2025, 18(9), 1905; https://doi.org/10.3390/ma18091905 - 23 Apr 2025
Viewed by 1331
Abstract
In this work, to enhance the compressive strength and evaluate the fire resistance of hemp concrete, we incorporated mineral additives such as FBC fly ash and metakaolin. This paper investigates the thermal conductivity, compressive strength, flammability, and fire resistance of hempcrete and the [...] Read more.
In this work, to enhance the compressive strength and evaluate the fire resistance of hemp concrete, we incorporated mineral additives such as FBC fly ash and metakaolin. This paper investigates the thermal conductivity, compressive strength, flammability, and fire resistance of hempcrete and the influence of mineral additives in the form of fly ash from fluidized bed combustion (FBC) and metakaolin on these properties. A fly ash content of 20% by weight of the binder resulted in an increase of 26% in compressive strength and about 6% in thermal conductivity compared to hemp concrete without mineral additives. The use of metakaolin in the amount of 15% by weight of the binder resulted in a 21% increase in compressive strength values with an increase in the thermal conductivity coefficient of only 0.5%. Flammability tests by direct application of a gas torch flame to the specimen surface proved the lack of flammability and spontaneous fire extinguishing ability of hempcrete. In turn, fire resistance tests showed much higher resistance to high temperatures for hempcrete modified with metakaolin, where the recorded mass loss during a 15 min test at 500 °C was ca. 58% less than in hempcrete without mineral additives, and when FBC fly ash was used, the mass loss was ca. 37% less. The obtained results are satisfactory in terms of the physico-mechanical properties of hempcrete. They also enable the replacement of traditional construction materials with waste-derived materials from other sectors of the economy, which, in the long term, will contribute to the development of green construction and support the principles of the circular economy. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

23 pages, 7536 KiB  
Article
Development of Sustainable Polymer Composites Containing Waste Glass and Natural Fibers for Strengthening Purposes
by Cihan Karademir, Hasan Murat Tanarslan, Çağlar Yalçınkaya, Mustafa Furkan Güler, Hasan Ateş, Kutlay Sever, Yasemin Seki and Metehan Atagür
Polymers 2025, 17(8), 1116; https://doi.org/10.3390/polym17081116 - 20 Apr 2025
Cited by 1 | Viewed by 884
Abstract
This study investigates the development of sustainable polymer composites for structural strengthening by incorporating waste glass fibers and natural fibers (flax and hemp) into an epoxy matrix, in response to the growing environmental concerns. Mechanical, thermal, and durability-related properties were evaluated through tensile [...] Read more.
This study investigates the development of sustainable polymer composites for structural strengthening by incorporating waste glass fibers and natural fibers (flax and hemp) into an epoxy matrix, in response to the growing environmental concerns. Mechanical, thermal, and durability-related properties were evaluated through tensile testing, dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), water absorption, and water immersion aging tests. Results showed that incorporating waste glass fibers enhanced the tensile strength and thermal decomposition temperature by 88% and 5.4%, respectively, compared to composites reinforced with solely natural fibers. Water absorption tests indicated that waste glass fiber-reinforced hybrid composites exhibited lower water uptake than flax and hemp fiber-reinforced composites. After water immersion, the tensile strength loss was recorded as 22, 25, and 8.5% for the composites reinforced with hemp, flax, and waste glass fiber, respectively. The findings confirm that incorporating waste glass fibers into natural fiber composites effectively mitigates moisture sensitivity and improves mechanical performance. Hybridizing flax and hemp fibers with waste glass fibers provides a practical and sustainable approach to enhancing composite performance, making them a viable alternative for strengthening reinforced concrete structures requiring long-term resistance. The recycled waste glass fibers employed in this study offered comparable mechanical performance while drastically lowering raw material consumption and environmental impact, in contrast to virgin glass fibers frequently used in earlier investigations. This demonstrates how recycling-oriented composite design can provide both sustainability and performance benefits. Full article
Show Figures

Figure 1

18 pages, 2009 KiB  
Article
The Measurement of Hemp Concrete Thermal and Moisture Properties for an Effective Building Construction Proposal in Region of Slovakia (Central Europe)
by Richard Hrčka, Patrik Štompf, Stanislav Jochim, Marek Eduard Mikuš and Milan Iskra
Materials 2025, 18(7), 1651; https://doi.org/10.3390/ma18071651 - 3 Apr 2025
Viewed by 1389
Abstract
The construction industry is facing an increased demand to adopt sustainable green building materials to minimize the carbon footprint. Hemp concrete is a green building material not only because of its low embodied carbon but also because of its ability to regulate heat [...] Read more.
The construction industry is facing an increased demand to adopt sustainable green building materials to minimize the carbon footprint. Hemp concrete is a green building material not only because of its low embodied carbon but also because of its ability to regulate heat and relative humidity. Its thermal characteristics are often viewed as favorable for reducing the energy used to heat or cool indoor buildings. The current research is focused on the properties of hemp concrete from Slovak manufacturers which can be effectively used in construction as a replacement for conventional building materials and can also be effectively applied in building renovations. The basic thermal properties of hemp concrete, i.e., specific heat capacity, thermal conductivity, effusivity, thermal diffusivity, and lag time, were determined. The determination of all properties is dependent on the knowledge of heat fluxes at the surface and the density of samples. The insulation ability was expressed with a thermal conductivity of 0.099 W·m−1·K−1. The accumulation was expressed with a specific heat of 1540 J·kg−1·K−1 and density of 322 kg·m−3 in the air environment temperature of 22 °C and relative humidity of 50%. To assess moisture properties, the moisture content and the speed of molecules during diffusion and lag time, based on the thickness of the hemp concrete samples, were measured. The speed of water molecules during diffusion in hemp concrete was 8.6 × 10−7 m·s−1. The study shows that hemp concrete has interesting hydrothermal properties for use as an insulation layer in envelope structures. Thus, this material can be used effectively in the construction field in order to meet the requirements of the current standards, which aim to reduce energy and environmental impacts. Full article
Show Figures

Figure 1

20 pages, 1991 KiB  
Article
Thermal Insulation of Agricultural Buildings Using Different Biomass Materials
by Kamila Ewelina Mazur, Witold Jan Wardal, Jan Barwicki and Mikhail Tseyko
Energies 2025, 18(3), 636; https://doi.org/10.3390/en18030636 - 30 Jan 2025
Viewed by 1594
Abstract
The main goal of the article is to present the effectiveness of biomass as a thermal insulator and estimate the global potential for using biomass, considering the perspective of sustainable development and improving energy efficiency in agricultural building construction. The article presents two [...] Read more.
The main goal of the article is to present the effectiveness of biomass as a thermal insulator and estimate the global potential for using biomass, considering the perspective of sustainable development and improving energy efficiency in agricultural building construction. The article presents two types of piggery construction: one using typical materials like concrete and the other using biomass-based materials. The evaluation is based on carbon footprint and embodied energy indicators. The model calculations developed in this article may be used in the future for life cycle assessment (LCA) analyses of specific construction solutions for rural livestock buildings. Two model variants for constructing a pigsty with different insulating materials were compared. The TB (Traditional Building) variant consisted of layers of (AAC) Autoclaved Aerated Concrete, glass wool, and brick. The second model variant, HB (Hempcrete Building), was made of concrete blocks with the addition of industrial hemp (Cannabis sativa L.) shives. Regarding footprint evaluation, bio-based materials often have a net-negative carbon footprint due to the sequestration effect. The results showed a significant difference in the carbon footprint of both TB and HB solutions—the carbon footprint of the HB variant was only 9.02% of that of the TB variant. The insulation properties of hempcrete were also compared to those of the most frequently used insulating materials in construction, such as glass wool and rock wool. The novelty of the study lies in analyzing the potential use of biomass for thermal insulation in livestock buildings, considering various raw materials, including their industrial properties and the ecological benefits resulting from their implementation. In addition, the authors focused on biomass thermal insulation from the perspective of sustainable development and improving energy efficiency in building construction. Our evaluation and selection of the best solutions are based on the indicators of embodied energy and carbon footprint. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

25 pages, 6483 KiB  
Article
Optimization of the Properties of Eco-Concrete Dispersedly Reinforced with Hemp and Flax Natural Fibers
by Alexey N. Beskopylny, Evgenii M. Shcherban’, Sergei A. Stel’makh, Andrei Chernilnik, Diana Elshaeva, Oxana Ananova, Liya D. Mailyan and Viktor A. Muradyan
J. Compos. Sci. 2025, 9(2), 56; https://doi.org/10.3390/jcs9020056 - 25 Jan 2025
Cited by 1 | Viewed by 1205
Abstract
Dispersed reinforcement of concrete with various types of plant fibers is currently a fairly popular area in the field of construction materials science. The relevance of this topic is determined by the fact that the issue has not been studied on a large [...] Read more.
Dispersed reinforcement of concrete with various types of plant fibers is currently a fairly popular area in the field of construction materials science. The relevance of this topic is determined by the fact that the issue has not been studied on a large scale in comparison with concrete reinforced with artificial fibers, and the fact that these types of concrete meet the requirements of the Sustainable Development Goals. The purpose of this work was to evaluate the efficiency of using hemp fiber (HF) and flax fiber (FF) for the dispersed reinforcement of concrete, and to compare their efficiency and practical applicability in the construction industry. Before use, HF and FF were treated with a NaOH solution and stearic acid to increase their resistance to the aggressive alkaline environment of concrete. A total of 15 concrete compositions were made. The percentage of dispersed reinforcement for both types of fibers varied from 0.2% to 1.4%, with a step of 0.2%. The standard methods of mechanical testing and microscopy for investigation the properties of fresh and hardened concrete were applied. The optimum amount of HF in concrete was 0.6%, which provided an increase in compressive and flexural strength of 7.46% and 28.68%, respectively, and a decrease in water absorption of 13.58%. The optimum percentage of FF concrete reinforcement was 0.8%, which allowed an increase in compressive and flexural strength of 4.90% and 15.99%, respectively, and a decrease in water absorption of 10.23%. The results obtained during the experiment prove the possibility and effectiveness of the practical application of hemp and flax fibers in concrete composite technology. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution)
Show Figures

Figure 1

23 pages, 95742 KiB  
Article
Research on the Physical Properties of an Eco-Friendly Layered Geopolymer Composite
by Agnieszka Przybek and Michał Łach
Materials 2024, 17(19), 4937; https://doi.org/10.3390/ma17194937 - 9 Oct 2024
Cited by 1 | Viewed by 1729
Abstract
Building envelopes with natural fibers are the future of sustainable construction, combining ecology and energy efficiency. The geopolymer building envelope was reinforced with innovative composite bars and two types of natural insulation (coconut mats and flax/hemp non-woven fabrics) were used as the core [...] Read more.
Building envelopes with natural fibers are the future of sustainable construction, combining ecology and energy efficiency. The geopolymer building envelope was reinforced with innovative composite bars and two types of natural insulation (coconut mats and flax/hemp non-woven fabrics) were used as the core material. A 10 mol sodium hydroxide solution with an aqueous sodium silicate solution was used for the alkaline activation of the geopolymers. The purpose of this study was to confirm the feasibility of producing geopolymer composites with insulating layers made of renewable materials, which would have compressive strengths like those of C25/30-grade concrete and thermal conductivity coefficients like those of lightweight concrete. This publication presents the results of physicochemical tests on the base materials (oxide (XRF) and mineral phase (XRD) analysis as well as morphology and EDS) and studies the physical (density measurements), mechanical (flexural and compressive strength tests) and insulating properties (thermal conductivity measurements) of the finished sandwich partitions. The composites achieved a flexural strength of 7 MPa, a compressive strength of up to 30 MPa and a decrease in the thermal conductivity coefficient of about 60%. The research demonstrates contribution to sustainable construction by developing geopolymer composites, offering both structural integrity and superior thermal insulation. This innovation not only reduces reliance on traditional, carbon-intensive materials but also promotes the use of eco-friendly resources, significantly lowering the carbon footprint of construction. The integration of natural fibers into geopolymer matrices addresses key environmental concerns, advancing a rapidly growing field that aligns with global efforts toward energy efficiency, waste reduction, and circular economy principles in building design. Full article
Show Figures

Figure 1

15 pages, 3207 KiB  
Article
Carbon Footprint Assessment: Case Studies for Hemp-Based Eco-Concrete Masonry Blocks
by Dorina Nicolina Isopescu, Laurentiu Adam, Andreea Nistorac and Alexandra Bodoga
Buildings 2024, 14(10), 3150; https://doi.org/10.3390/buildings14103150 - 2 Oct 2024
Cited by 2 | Viewed by 3618
Abstract
In recent times, climate change has become more evident than ever, and measures to slow down its negative effects are imperative for the future of the world. The scientific and economic communities of countries around the world, under the force of international climate [...] Read more.
In recent times, climate change has become more evident than ever, and measures to slow down its negative effects are imperative for the future of the world. The scientific and economic communities of countries around the world, under the force of international climate agreements, are identifying solutions to reduce greenhouse gas (GHG) emissions by establishing appropriate measures and developing new strategies. In the context of these objectives, the effort to identify eco-sustainable practices for the construction industry is growing significantly. Recently, much research has focused on solutions for producing green building materials, as well as applying circular economy principles to achieve a balance between anthropogenic emissions and absorptions by greenhouse gas absorbers. The relevant indicators of the level of achievement of these major objectives can be identified, already from the construction design phase, with the help of Life Cycle Assessment (LCA) analysis. This paper presents a series of environmental impact analyses for an eco-friendly solution of precast concrete masonry blocks. Ecological concrete is manufactured with aggregates from biological waste resulting from hemp crops. Impact assessments were performed with the SimaPro 9.5 software application. Research has shown that in the production chain, which includes the materials resulting from the recycling and reuse of hemp concrete blocks, the contribution to the effort to achieve neutrality in terms of global warming is significant. The Cradle-to-Cradle scenario revealed that the recycling of hemp concrete masonry blocks at the end of their use, for a functional unit of 0.5 m3, has a GHG emission of 33.5228 [kg CO2-eq] and CO2 uptakes can reach the negative value of −53.8397 [kg CO2-eq]. Thus, the balance of GHG emissions is negative, with values of approximately −20.3169 [kg CO2-eq]. The LCA analyses also reflect a decreased damage to human health, natural resources, and biodiversity when hemp concrete is used for masonry blocks. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 5552 KiB  
Article
Processing Hemp Shiv Particles for Building Applications: Alkaline Extraction for Concrete and Hot Water Treatment for Binderless Particle Board
by Maya-Sétan Diakité, Vincent Lequart, Alexandre Hérisson, Élise Chenot, Sébastien Potel, Nathalie Leblanc, Patrick Martin and Hélène Lenormand
Appl. Sci. 2024, 14(19), 8815; https://doi.org/10.3390/app14198815 - 30 Sep 2024
Viewed by 1898
Abstract
The building and construction sector is the largest emitter of greenhouse gases, accounting for 37% of global emissions. The production and use of materials such as cement, steel, and aluminum contribute significantly to this carbon footprint. Utilizing valorized agricultural by-products, such as hemp [...] Read more.
The building and construction sector is the largest emitter of greenhouse gases, accounting for 37% of global emissions. The production and use of materials such as cement, steel, and aluminum contribute significantly to this carbon footprint. Utilizing valorized agricultural by-products, such as hemp shiv and sunflower pith, in construction can enhance the insulating properties of materials and reduce their environmental impact by capturing CO2. Additionally, during the formulation process, molecules such as polyphenols and sugars are released, depending on process parameters like pH and temperature. In some cases, these releases can cause issues, such as delaying the hardening of agro-based concrete or serving as binding agents in binderless particle boards. This study focuses on the molecules released during the processing of these materials, with particular attention to the effects of pH and temperature, and the modifications to the plant particles resulting from these conditions. Physical, chemical, and morphological analyses were conducted on the treated hemp shiv particles (HS1 and HS2). No physical or morphological differences were observed between the samples. However, chemical differences, particularly in the lignin and soluble compound content, were noted and were linked to the release of plant substances during the process. Full article
Show Figures

Graphical abstract

18 pages, 9821 KiB  
Article
Eco-Friendly 3D-Printed Concrete Made with Waste and Organic Artificial Aggregates
by Karolina Butkutė, Vitoldas Vaitkevičius and Fausta Adomaitytė
Materials 2024, 17(13), 3290; https://doi.org/10.3390/ma17133290 - 3 Jul 2024
Cited by 2 | Viewed by 2489
Abstract
In this research, the results of an experimental study on the use of three alternative components for creating artificial aggregates (AAs) (granules) and their usage in 3D-printed concrete (3DPC) are examined. This study combines AAs made from organic components like hemp shives (HSs), [...] Read more.
In this research, the results of an experimental study on the use of three alternative components for creating artificial aggregates (AAs) (granules) and their usage in 3D-printed concrete (3DPC) are examined. This study combines AAs made from organic components like hemp shives (HSs), pyrolyzed coal (charcoal), waste/municipal solid waste incinerator bottom slag (BS), and a mix of a reference 3DPC with the aforementioned AAs. Particularly, to enhance these properties to make low-carbon 3DPC, in this research, the potential of using AAs as lightweight aggregates was increased to 14% in terms of the mass of the concrete. Each mix was tested in terms of its printability via a preliminary test in a 3D printing laboratory. For an additional comparison with the aforementioned cases, 3DPC was mixed with unprocessed hemp shives, charcoal, and BS. Furthermore, their strength was measured at 28 days, and lastly, their durability parameters and shrinkage were experimentally investigated. Cross-sections of the fragments were studied under a scanning electron microscope. In this study, we achieved improvements in the mechanical properties of AAs for their development and implementation as an innovative way to reduce carbon in 3DPC. Full article
(This article belongs to the Special Issue Environmentally Friendly Composites Incorporating Waste Materials)
Show Figures

Figure 1

26 pages, 7932 KiB  
Article
Hemp Fiber-Reinforced Polymers Composite Jacketing Technique for Sustainable and Environment-Friendly Concrete
by Panumas Saingam, Qudeer Hussain, Gritsada Sua-iam, Adnan Nawaz and Ali Ejaz
Polymers 2024, 16(13), 1774; https://doi.org/10.3390/polym16131774 - 23 Jun 2024
Cited by 6 | Viewed by 1918
Abstract
This research suggested natural hemp fiber-reinforced ropes (FRR) polymer usage to reinforce recycled aggregate square concrete columns that contain fired-clay solid brick aggregates in order to reduce the high costs associated with synthetic fiber-reinforced polymers (FRPs). A total of 24 square columns of [...] Read more.
This research suggested natural hemp fiber-reinforced ropes (FRR) polymer usage to reinforce recycled aggregate square concrete columns that contain fired-clay solid brick aggregates in order to reduce the high costs associated with synthetic fiber-reinforced polymers (FRPs). A total of 24 square columns of concrete were fabricated to conduct this study. The samples were tested under a monotonic axial compression load. The variables of interest were the strength of unconfined concrete and the number of FRR layers. According to the results, the strengthened specimens demonstrated an increased compressive strength and ductility. Notably, the specimens with the smallest unconfined strength demonstrated the largest improvement in compressive strength and ductility. Particularly, the compressive strength and strain were enhanced by up to 181% and 564%, respectively. In order to predict the ultimate confined compressive stress and strain, this study investigated a number of analytical stress–strain models. A comparison of experimental and theoretical findings deduced that only a limited number of strength models resulted in close predictions, whereas an even larger scatter was observed for strain prediction. Machine learning was employed by using neural networks to predict the compressive strength. A dataset comprising 142 specimens strengthened with hemp FRP was extracted from the literature. The neural network was trained on the extracted dataset, and its performance was evaluated for the experimental results of this study, which demonstrated a close agreement. Full article
(This article belongs to the Special Issue Advances in Polymer Composites with Upcycling Waste)
Show Figures

Figure 1

21 pages, 9949 KiB  
Article
Hygrothermal Performance of the Hemp Concrete Building Envelope
by Aguerata Kaboré, Wahid Maref and Claudiane M. Ouellet-Plamondon
Energies 2024, 17(7), 1740; https://doi.org/10.3390/en17071740 - 4 Apr 2024
Cited by 8 | Viewed by 3213
Abstract
The search for environmentally friendly and low-carbon-footprint construction materials continues progressively. Researchers are now interested in innovative materials that connect with the principles of sustainable construction, and materials such as hemp concrete prove to be promising. This article presents the results of a [...] Read more.
The search for environmentally friendly and low-carbon-footprint construction materials continues progressively. Researchers are now interested in innovative materials that connect with the principles of sustainable construction, and materials such as hemp concrete prove to be promising. This article presents the results of a study that aimed to evaluate the hygrothermal performance of hemp concrete integrated into the building envelope using the hygrothermal tool WUFI Pro 6.2. The simulation model was compared and verified with existing models before its utilization for this study. The results of this verification were in good agreement, which gave us more confidence in its application for further parametric studies of building envelopes in hot climate zones. Three wall systems were simulated: (i) a wall system with hemp concrete, (ii) a compressed earth block wall, and (iii) a cement block wall. The most important variables used in the simulations were the hygrothermal properties of the materials or wall components and the incident solar radiation. The simulation results showed that hemp concrete has good thermal performance and temperature and humidity regulation capabilities of the building envelope. The interior surface temperatures of the hemp concrete walls were between 22.1 °C and 24.6 °C compared to the compressed earth block and cement block walls, where the surface temperatures were between 22.0 °C and 27 °C and between 21.2 °C and 28.7 °C, respectively, and between 23 °C and 45 °C for the exterior temperatures. These values remain the same with the increase in exterior temperatures for hemp concrete walls. In conclusion, hemp concrete could be a great alternative material for use in construction for hot climate zones. Full article
(This article belongs to the Special Issue Adaptive Thermal Comfort and Energy Use in Buildings)
Show Figures

Figure 1

15 pages, 6484 KiB  
Article
A New Experimental Setup to Characterize Binder–Vegetal Particle Compatibility in Plant-Based Concrete
by Elodie Prud’Homme, Fabien Delhomme, Clara Julliot, Loïc Corvalan, Sofiane Amziane, Evelyne Toussaint and Sandrine Marceau
Buildings 2024, 14(4), 1000; https://doi.org/10.3390/buildings14041000 - 4 Apr 2024
Cited by 2 | Viewed by 1670
Abstract
The good insulation properties and the low carbon footprint of vegetal concretes make them promising materials whose use tends to grow continuously. To produce optimized building materials, a better understanding of the interfacial transition zone (ITZ) between vegetal particles and cement paste in [...] Read more.
The good insulation properties and the low carbon footprint of vegetal concretes make them promising materials whose use tends to grow continuously. To produce optimized building materials, a better understanding of the interfacial transition zone (ITZ) between vegetal particles and cement paste in terms of the reactions involved and the size of the impacted surface was investigated. This research led to the setting of a reliable visual test to observe ITZ, which enables the monitoring of its appearance and development. Different combinations of vegetal particles and cement pastes were tested to compare the formed ITZ: hemp, rapeseed, and bamboo into Portland and Prompt cement. Finally, a clear link was drawn between the sugar concentration and the size of ITZ. Thanks to image analysis, it was shown that ITZ is due to physico-chemical reactions, with the extraction of free saccharide molecules from the vegetal and water suction followed by their release into the cement paste. Full article
(This article belongs to the Collection Advanced Concrete Materials in Construction)
Show Figures

Figure 1

21 pages, 16650 KiB  
Article
Thermal Conductivity in Concrete Samples with Natural and Synthetic Fibers
by Lucas Daza-Badilla, René Gómez, Ramón Díaz-Noriega, Siva Avudaiappan, Krzysztof Skrzypkowski, Erick I. Saavedra-Flores and Waldemar Korzeniowski
Materials 2024, 17(4), 817; https://doi.org/10.3390/ma17040817 - 8 Feb 2024
Cited by 9 | Viewed by 5603
Abstract
One crucial property of concrete, particularly in construction, is its thermal conductivity, which impacts heat transfer through conduction. For example, reducing the thermal conductivity of concrete can lead to energy savings in buildings. Various techniques exist for measuring the thermal conductivity of materials, [...] Read more.
One crucial property of concrete, particularly in construction, is its thermal conductivity, which impacts heat transfer through conduction. For example, reducing the thermal conductivity of concrete can lead to energy savings in buildings. Various techniques exist for measuring the thermal conductivity of materials, but there is limited discussion in the literature about suitable methods for concrete. In this study, the transient line source method is employed to evaluate the thermal conductivity of concrete samples with natural and synthetic fibers after 7 and 28 days of curing. The results indicate that concrete with hemp fiber generally exhibits higher thermal conductivity values, increasing by 48% after 28 days of curing, while synthetic fibers have a minimal effect. In conclusion, this research opens the door to using natural alternatives like hemp fiber to improve concrete’s thermal properties, providing alternatives for thermo-active foundations and geothermal energy piles which require high thermal conductivities. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

27 pages, 1231 KiB  
Review
State of the Art Review of Attributes and Mechanical Properties of Hempcrete
by Nima Asghari and Ali M. Memari
Biomass 2024, 4(1), 65-91; https://doi.org/10.3390/biomass4010004 - 2 Feb 2024
Cited by 14 | Viewed by 10874
Abstract
The global surge in environmental pollution, largely attributed to industrialization, has fueled a pressing need for sustainable solutions. In response, the construction sector is increasingly focusing on bio-based materials such as hemp, recognized for its low environmental footprint and prominent carbon-negative quality. As [...] Read more.
The global surge in environmental pollution, largely attributed to industrialization, has fueled a pressing need for sustainable solutions. In response, the construction sector is increasingly focusing on bio-based materials such as hemp, recognized for its low environmental footprint and prominent carbon-negative quality. As designers, housebuilders, and an environmentally conscious society pivot towards ecological alternatives to standard building materials, hempcrete emerges as a promising candidate. As a composite material mainly made from hemp hurd/shiv, water, and lime, hempcrete offers the ability to sequester carbon long after its incorporation into structures. As a result, the hemp cultivation process—which can be completed within less than four months—ensures that more carbon is absorbed during production and deployment than emitted, e.g., per one study, sequestration on the order of 300 kg of CO2 per m3 of hempcrete. In comparison to concrete, hempcrete offers a more sustainable footprint, given its recyclability post life cycle. This state-of-the-art review paper delves deep into different aspects of hempcrete, summarizing its multifaceted attributes, particularly its compressive strength. Based on the study conducted, the paper also suggests strategies to augment this strength, thereby transitioning hempcrete from a non-load-bearing material to one capable of shouldering significant weight. As architects and designers consistently strive to align their projects with high ecological standards, focusing not just on aesthetic appeal but also environmental compatibility, hempcrete becomes an increasingly fitting solution for the future of construction. Full article
(This article belongs to the Special Issue Innovative Systems for Biomass Crop Production and Use)
Show Figures

Figure 1

Back to TopTop