State of the Art Review of Attributes and Mechanical Properties of Hempcrete
Abstract
:1. Introduction
2. Methodology
3. Definition of Hempcrete
3.1. Understanding Hempcrete
3.2. Hempcrete; an Alternative to Conventional Insulating Materials
4. Hemp’s Rise in Bio-Composite Materials and Sustainable Construction
5. Binders
- Cement: A mixture of Portland cement and hydrated lime can be used as a binder in hempcrete. This binder can improve the compressive strength of the material, but it can also increase the embodied energy of the material and its carbon footprint.
- Gypsum: Gypsum can be used as a binder in hempcrete, although it is not as commonly used as lime or cement. Gypsum is a relatively low-carbon binder, and it can improve the fire resistance of the material. However, it may not be suitable for all applications due to its lower compressive strength compared to cement or lime.
- Magnesium oxide (MgO): Magnesium oxide is a natural binder that is made from mined magnesium carbonate. It has a high compressive strength, and it is considered a more environmentally friendly alternative to cement.
- Pozzolanic materials: Pozzolanic materials, such as fly ash, can be used to improve the compressive strength of hempcrete. Pozzolanic materials are by-products of industrial processes, and they can help reduce the carbon footprint of the material.
- Natural hydraulic limes (NHLs): Natural hydraulic limes are lime-based binders that are made from naturally occurring materials, such as limestone. They have a higher compressive strength compared to traditional hydrated limes, and they can be used to improve the compressive strength of hempcrete.
6. Fundamental Properties of Hempcrete
6.1. Density
6.2. Compressive Strength
- Use high-quality hemp fibers: The quality of the hemp fibers used in the mixture can significantly affect the compressive strength of the material. High-quality fibers should be long, strong, and free of contaminants.
- Use a high-quality lime binder: A high-quality lime binder with a high proportion of calcium hydroxide will help increase the compressive strength of the material. Additionally, the binder should be well cured to ensure maximum strength.
- Optimize the mix ratio: The mix ratio of hemp fibers to binder is critical to the compressive strength of the material. A higher binder content will result in a stronger material, but it will also reduce the insulation properties of the material. A weight mixture ratio of around 1:1 is typically used, but it can be adjusted based on the desired properties of the material.
- Use a denser mixture design: A denser mixture of hempcrete will have a higher compressive strength compared to a more porous mix. To achieve a denser mix, the fibers should be well-distributed and compacted during mixing and casting.
- Avoid moisture damage: Moisture can severely damage hempcrete, leading to reduced compressive strength. To avoid moisture damage, it is important to properly design and detail the building envelope, including roofing, walls, and foundations. Additionally, a vapor-permeable render or paint should be used to protect the surface of the material.
- Cure the material properly: Proper curing of the material is essential to developing its full compressive strength. The material should be kept moist and covered during the curing process to prevent the evaporation of water, which would reduce the strength of the material.
Increasing Mechanical Strength
- It is lightweight yet boasts significant thermal mass [108].
- Streamlines the construction process by reducing layers and steps, especially in timber-frame structures [109].
- Capitalizes on agricultural renewable resources, specifically hemp.
- Can utilize locally sourced materials, including hemp and lime.
- Offers commendable acoustic insulation [50].
- Achieves excellent airtightness, especially when paired with a render system [108].
- Demonstrates strong fire resistance [113].
6.3. Thermal Properties
6.4. Fire Resilience of Hempcrete
6.5. Acoustic Properties
Discussion of Fire Safety and Acoustic Properties of Hempcrete
6.6. Environmental Sustainability
6.7. Durability
7. Discussion of Hempcrete Practical Opportunities and Challenges
7.1. Applications of Hempcrete
7.1.1. Hempcrete Walls
7.1.2. Wall Insulation
7.1.3. Other Applications
8. Advantages and Disadvantages of Hempcrete
9. Conclusions
- Investigate the physical treatment of hemp and lime–pozzolana combinations for improved mechanical strength;
- Examine the effect of physical treatment on the reactivity of hemp–lime–pozzolana mixtures;
- Expand research on increasing hempcrete’s mechanical performance;
- The current focus has been mainly on hempcrete’s mechanical characterization;
- A need for accurate equations to predict hempcrete’s structural capacities;
- Address the question of hempcrete’s microbiological durability;
- Explore hempcrete’s decomposition mechanisms;
- Study the relationship between durability and compaction;
- Investigate the effect of compaction on hydraulic properties of lime–pozzolana-based hempcrete;
- Research related to compaction or pre-compression of the mixture is limited;
- Delve deeper into the relationship between phase-changing properties and hempcrete’s mechanical properties;
- Explore hempcrete’s fire resistance in line with various countries’ standards;
- Validate hempcrete properties across different regions and climates given the local nature of building materials;
- Most current studies have been conducted in Europe; global validation is necessary;
- Investigate hempcrete’s ductility and energy absorption for potential use in earthquake-resistant structures;
- Identify other applications based on hempcrete’s unique properties.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- American Society of Civil Engineers. Policy Statement 418—The Role of the Civil Engineer in Sustainable Development; Amziane, S., Ed.; American Society of Civil Engineers: Reston, VA, USA, 2017. [Google Scholar]
- Hojae, Y.; Griffin, C.; Memari, A.M. Critical Review of the Characterization of Environmental and Mechanical Properties of Hemp Hurd and Hempcrete. In Proceedings of the 6th Residential Building Design and Construction Conference, University Park, PA, USA, 11–12 May 2022; pp. 208–216. [Google Scholar]
- Yi, H.; Griffin, C.; Memari, A.; Lanning, D.; Dooley, J.H. Hempcrete for as Residential Construction Material: State-of-the-art and Challenges. In Proceedings of the 5th Residential Building Design and Construction Conference, University Park, PA, USA, 4–6 March 2020. [Google Scholar]
- Zuabi, W.; Memari, A.M. Review of Hempcrete as a Sustainable Building Material. Int. J. Archit. Eng. Constr. 2021, 10, 1–17. [Google Scholar]
- Tatari, O.; Kucukvar, M. Sustainability assessment of US construction sectors: Ecosystems perspective. J. Constr. Eng. Manag. 2012, 138, 918–922. [Google Scholar] [CrossRef]
- Johnson, R. Hemp as an Agricultural Commodity; Library of Congress Washington DC Congressional Research Service: Washington, DC, USA, 2014. [Google Scholar]
- Hempitecture. Hempcrete Wall Detailing. 2020. Available online: https://www.hempitecture.com/post/hempcrete-wall-detailing (accessed on 17 December 2023).
- Essaghouri, L.; Mao, R.; Li, X. Environmental benefits of using hempcrete walls in residential construction: An LCA-based comparative case study in Morocco. Environ. Impact Assess. 2023, 100, 107085. [Google Scholar] [CrossRef]
- Alo, J. Hempcrete: A Revolution in Healthy Building. Available online: https://www.pipmagazine.com.au (accessed on 15 April 2023).
- Global, H.T. HEMP Construction. Available online: https://www.hemptechglobal.com (accessed on 15 June 2023).
- de Bruijn, P.B.; Jeppsson, K.-H.; Sandin, K.; Nilsson, C. Mechanical properties of lime–hemp concrete containing shives and fibres. Biosyst. Eng. 2009, 103, 474–479. [Google Scholar] [CrossRef]
- de Bruijn, P. Hemp Concretes. Mechanical Properties Using Both Shives and Fibres. Licentiate Thesis, Swedish University of Agricultural Sciences, Alnarp, Sweden, 2008. [Google Scholar]
- Jami, T.; Karade, S.; Singh, L. A review of the properties of hemp concrete for green building applications. J. Clean. Prod. 2019, 239, 117852. [Google Scholar] [CrossRef]
- Jami, T. A Study on Carbon Sequestration of Lime Hemp Concrete; Gujarat Forensic Sciences University: Gandhinagar, India, 2016. [Google Scholar]
- Kidalova, L.; Stevulova, N.; Terpakova, E.; Sicakova, A. Utilization of alternative materials in lightweight composites. J. Clean. Prod. 2012, 34, 116–119. [Google Scholar] [CrossRef]
- Pedroso, M.; De Brito, J.; Silvestre, J. Characterization of eco-efficient acoustic insulation materials (traditional and innovative). Constr. Build. Mater. 2017, 140, 221–228. [Google Scholar] [CrossRef]
- Sahmenko, G.; Sinka, M.; Namsone, E.; Korjakins, A.; Bajare, D. Sustainable Wall Solutions Using Foam Concrete and Hemp Composites. Sci. J. Riga Tech. Univ. Environ. Clim. Technol. 2021, 25, 917–930. [Google Scholar] [CrossRef]
- Ahmad, M.R.; Chen, B.; Shah, S.F.A. Mechanical and microstructural characterization of bio-concrete prepared with optimized alternative green binders. Constr. Build. Mater. 2021, 281, 122533. [Google Scholar] [CrossRef]
- Amin, M.N.; Ahmad, W.; Khan, K.; Ahmad, A. A comprehensive review of types, properties, treatment methods and application of plant fibers in construction and building materials. Materials 2022, 15, 4362. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Das, B.B. A comprehensive review on the use of hemp in concrete. Constr. Build. Mater. 2022, 341, 127857. [Google Scholar] [CrossRef]
- Magwood, C. Essential Hempcrete Construction: The Complete Step-By-Step Guide; New Society Publishers: Gabriola Island, BC, Canada, 2016. [Google Scholar]
- Alao, P.F.; Marrot, L.; Kallakas, H.; Just, A.; Poltimäe, T.; Kers, J. Effect of hemp fiber surface treatment on the moisture/water resistance and reaction to fire of reinforced pla composites. Materials 2021, 14, 4332. [Google Scholar] [CrossRef] [PubMed]
- Pejic, B.M.; Kostic, M.M.; Skundric, P.D.; Praskalo, J.Z. The effects of hemicelluloses and lignin removal on water uptake behavior of hemp fibers. Bioresour. Technol. 2008, 99, 7152–7159. [Google Scholar] [CrossRef] [PubMed]
- Sawpan, M.A.; Pickering, K.L.; Fernyhough, A. Flexural properties of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos. Part A Appl. Sci. Manuf. 2012, 43, 519–526. [Google Scholar] [CrossRef]
- Luyckx, M.; Blanquet, M.; Isenborghs, A.; Guerriero, G.; Bidar, G.; Waterlot, C.; Douay, F.; Lutts, S. Impact of Silicon and Heavy Metals on Hemp (Cannabis sativa L.) Bast Fibres Properties: An Industrial and Agricultural Perspective. Int. J. Environ. Res. 2022, 16, 82. [Google Scholar] [CrossRef]
- Luyckx, M.; Hausman, J.-F.; Sergeant, K.; Guerriero, G.; Lutts, S. Molecular and biochemical insights into early responses of hemp to Cd and Zn exposure and the potential effect of Si on stress response. Front. Plant Sci. 2021, 12, 711853. [Google Scholar] [CrossRef] [PubMed]
- Muangmeesri, S.; Li, N.; Georgouvelas, D.; Ouagne, P.; Placet, V.; Mathew, A.P.; Samec, J.S.M. Holistic valorization of hemp through reductive catalytic fractionation. ACS Sustain. Chem. Eng. 2021, 9, 17207–17213. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.; Versino, F.; López, O.V.; García, M.A. Biobased composites from agro-industrial wastes and by-products. Emergent Mater. 2022, 5, 873–921. [Google Scholar] [CrossRef]
- Raj, T.; Chandrasekhar, K.; Kumar, A.N.; Kim, S.-H.J.R. Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: A sustainable approach. Renew. Sustain. Energy Rev. 2022, 158, 112130. [Google Scholar] [CrossRef]
- TG, Y.G.; Ballupete Nagaraju, S.; Puttegowda, M.; Verma, A.; Rangappa, S.M.; Siengchin, S. Biopolymer-Based Composites: An Eco-Friendly Alternative from Agricultural Waste Biomass. J. Compos. Sci. 2023, 7, 242. [Google Scholar]
- Phiri, R.; Rangappa, S.M.; Siengchin, S.; Oladijo, O.P.; Dhakal, H.N. Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review. Adv. Ind. Eng. Polym. Res. 2023, 6, 436–450. [Google Scholar] [CrossRef]
- Maraveas, C.J.M. Production of sustainable construction materials using agro-wastes. Materials 2020, 13, 262. [Google Scholar] [CrossRef]
- Liu, M.; Baum, A.; Odermatt, J.; Berger, J.; Yu, L.; Zeuner, B.; Thygesen, A.; Holck, J.; Meyer, A.S. Oxidation of lignin in hemp fibres by laccase: Effects on mechanical properties of hemp fibres and unidirectional fibre/epoxy composites. Compos. Part A Appl. Sci. Manuf. 2017, 95, 377–387. [Google Scholar] [CrossRef]
- Kilani, A.; Fapohunda, C.; Adeleke, O.; Metiboba, C. Evaluating the effects of agricultural wastes on concrete and composite mechanical properties. Res. Eng. Struct. Mater. 2022, 8, 307–336. [Google Scholar] [CrossRef]
- Cintura, E.; Nunes, L.; Esteves, B.; Faria, P. Agro-industrial wastes as building insulation materials: A review and challenges for Euro-Mediterranean countries. Ind. Crop. Prod. 2021, 171, 113833. [Google Scholar] [CrossRef]
- Haik, R.; Bar-Nes, G.; Peled, A.; Meir, I. Alternative unfired binders as lime replacement in hemp concrete. Constr. Build. Mater. 2020, 241, 117981. [Google Scholar] [CrossRef]
- Abdellatef, Y.; Khan, M.A.; Khan, A.; Alam, M.I.; Kavgic, M. Mechanical, thermal, and moisture buffering properties of novel insulating hemp-lime composite building materials. Materials 2020, 13, 5000. [Google Scholar] [CrossRef]
- Pietruszka, B.; Gołębiewski, M.; Lisowski, P. Characterization of hemp-lime bio-composite. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; p. 012027. [Google Scholar]
- Ahmed, J.S.; Sudarsan, S.; Parthiban, E.; Trofimov, E.; Sridhar, B. Exploration of mechanical properties of hemp fiber/flax fiber reinforced composites based on biopolymer and epoxy resin. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Dahal, R.K.; Acharya, B.; Dutta, A. Mechanical, Thermal, and Acoustic Properties of Hemp and Biocomposite Materials: A Review. J. Compos. Sci. 2022, 6, 373. [Google Scholar] [CrossRef]
- Cigasova, J.; Stevulova, N.; Junak, J. Innovative use of biomass based on technical hemp in building industry. Chem. Eng. Trans. 2014, 37, 685–690. [Google Scholar]
- Cigasova, J.; Stevulova, N.; Schwarzova, I.; Sicakova, A.; Junak, J. Application of hemp hurds in the preparation of biocomposites. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2015; p. 012023. [Google Scholar]
- Association, US Hemp Building. 2022. Available online: https://ushba.org/certification/ (accessed on 1 September 2023).
- Magazine, H. Hempcrete Approved for US Residential Building Codes by Jean Lotus. Available online: https://www.hempbuildmag.com/home/hempcrete-approved-for-us-residential-building-code-update (accessed on 1 September 2023).
- Diquélou, Y.; Gourlay, E.; Arnaud, L.; Kurek, B. Impact of hemp shiv on cement setting and hardening: Influence of the extracted components from the aggregates and study of the interfaces with the inorganic matrix. Cem. Concr. Compos. 2015, 55, 112–121. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Z. Light-weight wood–magnesium oxychloride cement composite building products made by extrusion. Constr. Build. Mater. 2012, 27, 382–389. [Google Scholar] [CrossRef]
- Collet, F.; Bart, M.; Serres, L.; Miriel, J. Porous structure and water vapour sorption of hemp-based materials. Constr. Build. Mater. 2008, 22, 1271–1280. [Google Scholar] [CrossRef]
- Collet, F.; Chamoin, J.; Pretot, S.; Lanos, C. Comparison of the hygric behaviour of three hemp concretes. Energy Build. 2013, 62, 294–303. [Google Scholar] [CrossRef]
- Collet, F.; Pretot, S. Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Constr. Build. Mater. 2014, 65, 612–619. [Google Scholar] [CrossRef]
- Glé, P.; Gourdon, E.; Arnaud, L. Acoustical properties of materials made of vegetable particles with several scales of porosity. Appl. Acoust. 2011, 72, 249–259. [Google Scholar] [CrossRef]
- Kinnane, O.; Reilly, A.; Grimes, J.; Pavia, S.; Walker, R. Acoustic absorption of hemp-lime construction. Constr. Build. Mater. 2016, 122, 674–682. [Google Scholar] [CrossRef]
- Walker, R.; Pavía, S. Physical properties and reactivity of pozzolans, and their influence on the properties of lime–pozzolan pastes. Mater. Struct. 2011, 44, 1139–1150. [Google Scholar] [CrossRef]
- Walker, R. A Study of the Properties of Lime-Hemp Concrete with Pozzolans; Trinity College Dublin: Dublin, Ireland, 2013. [Google Scholar]
- Sassoni, E.; Manzi, S.; Motori, A.; Montecchi, M.; Canti, M. Novel sustainable hemp-based composites for application in the building industry: Physical, thermal and mechanical characterization. Energy Build. 2014, 77, 219–226. [Google Scholar] [CrossRef]
- Pantawee, S.; Sinsiri, T.; Jaturapitakkul, C.; Chindaprasirt, P. Utilization of hemp concrete using hemp shiv as coarse aggregate with aluminium sulfate [Al2(SO4)3] and hydrated lime [Ca(OH)2] treatment. Constr. Build. Mater. 2017, 156, 435–442. [Google Scholar] [CrossRef]
- Chen, B.; Oderji, S.Y.; Chandan, S.; Fan, S. Feasibility of Magnesium Phosphate Cement (MPC) as a repair material for ballastless track slab. Constr. Build. Mater. 2017, 154, 270–274. [Google Scholar] [CrossRef]
- Fang, Y.; Cui, P.; Ding, Z.; Zhu, J.-X. Properties of a magnesium phosphate cement-based fire-retardant coating containing glass fiber or glass fiber powder. Constr. Build. Mater. 2018, 162, 553–560. [Google Scholar] [CrossRef]
- Wang, L.; Iris, K.; Tsang, D.C.; Yu, K.; Li, S.; Poon, C.S.; Dai, J.-G. Upcycling wood waste into fibre-reinforced magnesium phosphate cement particleboards. Constr. Build. Mater. 2018, 159, 54–63. [Google Scholar] [CrossRef]
- Walker, R.; Pavia, S.; Mitchell, R. Mechanical properties and durability of hemp-lime concretes. Constr. Build. Mater. 2014, 61, 340–348. [Google Scholar] [CrossRef]
- Walker, R.; Pavia, S. Moisture transfer and thermal properties of hemp–lime concretes. Constr. Build. Mater. 2014, 64, 270–276. [Google Scholar] [CrossRef]
- Barbieri, V.; Gualtieri, M.L.; Manfredini, T.; Siligardi, C. Lightweight concretes based on wheat husk and hemp hurd as bio-aggregates and modified magnesium oxysulfate binder: Microstructure and technological performances. Constr. Build. Mater. 2021, 284, 122751. [Google Scholar] [CrossRef]
- Bedlivá, H.; Isaacs, N. Hempcrete–an environmentally friendly material? Adv. Mater. Res. 2014, 1041, 83–86. [Google Scholar]
- Bukhari, H.; Musarat, M.A.; Alaloul, W.S.; Riaz, M. Hempcrete as a Sustainable Building Material: A Review. In Proceedings of the 2021 International Conference on Decision Aid Sciences and Application (DASA), Virtual, 7–8 December 2021; pp. 633–635. [Google Scholar]
- Delannoy, G.; Marceau, S.; Glé, P.; Gourlay, E.; Guéguen-Minerbe, M.; Diafi, D.; Nour, I.; Amziane, S.; Farcas, F. Influence of binder on the multiscale properties of hemp concretes. Eur. J. Environ. Civ. Eng. 2019, 23, 609–625. [Google Scholar] [CrossRef]
- Kore, S.D.; Sudarsan, J.S. Hemp concrete: A sustainable green material for conventional concrete. J. Build. Mater. Sci. 2021, 3, 1–7. [Google Scholar] [CrossRef]
- Laborel-Préneron, A.; Magniont, C.; Aubert, J.-E. Characterization of barley straw, hemp shiv and corn cob as resources for bioaggregate based building materials. Waste Biomass Valorization 2018, 9, 1095–1112. [Google Scholar] [CrossRef]
- Liuzzi, S.; Sanarica, S.; Stefanizzi, P. Use of agro-wastes in building materials in the Mediterranean area: A review. Energy Procedia 2017, 126, 242–249. [Google Scholar] [CrossRef]
- Saba, N.; Jawaid, M.; Alothman, O.Y.; Paridah, M. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr. Build. Mater. 2016, 106, 149–159. [Google Scholar] [CrossRef]
- Ohmura, T.; Tsuboi, M.; Tomimura, T. Estimation of the mean thermal conductivity of anisotropic materials. Int. J. Thermophys. 2002, 23, 843–853. [Google Scholar] [CrossRef]
- Sinka, M.; Sahmenko, G.; Korjakins, A. Mechanical properties of pre-compressed hemp-lime concrete. J. Sustain. Archit. Civ. Eng. 2014, 8, 92–99. [Google Scholar] [CrossRef]
- Murphy, F.; Pavia, S.; Walker, R. An Assessment of the Physical Properties of Lime-Hemp Concrete. 2010. Available online: http://hdl.handle.net/2262/57402 (accessed on 1 February 2023).
- Tradical®, H.t.p. Available online: http://www.limetechnology.co.uk/ (accessed on 1 February 2023).
- Tradical®. Tradical®—Building Lime Innovation. Available online: http://www.tradical.com/hemp-lime.html (accessed on 1 October 2022).
- O’Dowd, J.; Quinn, D. An Investigation of Hemp and Lime as a Building Material; University College Dublin: Dublin, Ireland, 2005. [Google Scholar]
- Tronet, P.; Lecompte, T.; Picandet, V.; Baley, C. Study of lime hemp composite precasting by compaction of fresh mix—An instrumented die to measure friction and stress state. Powder Technol. 2014, 258, 285–296. [Google Scholar] [CrossRef]
- Nguyen, T.T. Contribution à L’étude de la Formulation et du Procédé de Fabrication D’éléments de Construction en Béton de Chanvre. Ph.D. Thesis, Université de Bretagne Sud, Lorient, France, 2010. [Google Scholar]
- Nguyen, T.T.; Picandet, V.; Carre, P.; Lecompte, T.; Amziane, S.; Baley, C. Effect of compaction on mechanical and thermal properties of hemp concrete. Eur. J. Environ. Civ. Eng. 2010, 14, 545–560. [Google Scholar] [CrossRef]
- Elfordy, S.; Lucas, F.; Tancret, F.; Scudeller, Y.; Goudet, L. Mechanical and thermal properties of lime and hemp concrete (“hempcrete”) manufactured by a projection process. Constr. Build. Mater. 2008, 22, 2116–2123. [Google Scholar] [CrossRef]
- Evrard, A.; De Herde, A.; Minet, J. Dynamical interactions between heat and mass flows in Lime-Hemp Concrete. In Research in Building Physics and Building Engineering; CRC Press: Boca Raton, FL, USA, 2020; pp. 69–76. [Google Scholar]
- Evrard, A. Hemp Concretes—A Synthesis of Physical Properties; Report; Construire en Chanvre: Saint Valerien, France, 2003. [Google Scholar]
- Arnaud, L.; Cerezo, V.; Samri, D. Global approach for the design of building material containing lime and vegetable particles. In Proceedings of the 6th International Symposium on Cement and Concrete, Xi’an, China, 19–22 September 2006; pp. 1261–1265. [Google Scholar]
- Haik, R.; Meir, A.; Peled, A. Low energy bio-aggregate-clay-lime concrete. In Proceedings of the International Conference on Advances in Construction Materials and Systems, RILEM/IIT-Madras, Chennai, India, 3–8 September 2017; pp. 657–664. [Google Scholar]
- Abdalla, J.A.; Hawileh, R.A.; Bahurudeen, A.; Jyothsna, G.; Sofi, A.; Shanmugam, V.; Thomas, B. A comprehensive review on the use of natural fibers in cement/geopolymer concrete: A step towards sustainability. Case Stud. Constr. Mater. 2023, 19, e02244. [Google Scholar] [CrossRef]
- Ngo, D.C.; Saliba, J.; Saiyouri, N.; Sbartai, Z.M. Design of a soil concrete as a new building material–Effect of clay and hemp proportions. J. Build. Eng. 2020, 32, 101553. [Google Scholar] [CrossRef]
- Awwad, E.; Mabsout, M.; Hamad, B.; Farran, M.T.; Khatib, H. Studies on fiber-reinforced concrete using industrial hemp fibers. Constr. Build. Mater. 2012, 35, 710–717. [Google Scholar] [CrossRef]
- Hannawi, K.; Bian, H.; Prince-Agbodjan, W.; Raghavan, B. Effect of different types of fibers on the microstructure and the mechanical behavior of ultra-high performance fiber-reinforced concretes. Compos. Part B Eng. 2016, 86, 214–220. [Google Scholar] [CrossRef]
- Chabannes, M.; Becquart, F.; Garcia-Diaz, E.; Abriak, N.-E.; Clerc, L. Experimental investigation of the shear behaviour of hemp and rice husk-based concretes using triaxial compression. Constr. Build. Mater. 2017, 143, 621–632. [Google Scholar] [CrossRef]
- Chabannes, M.; Bénézet, J.-C.; Clerc, L.; Garcia-Diaz, E. Use of raw rice husk as natural aggregate in a lightweight insulating concrete: An innovative application. Constr. Build. Mater. 2014, 70, 428–438. [Google Scholar] [CrossRef]
- Chabannes, M.; Garcia-Diaz, E.; Clerc, L.; Bénézet, J.-C. Studying the hardening and mechanical performances of rice husk and hemp-based building materials cured under natural and accelerated carbonation. Constr. Build. Mater. 2015, 94, 105–115. [Google Scholar] [CrossRef]
- Wadi, H.; Amziane, S.; Toussaint, E.; Taazount, M. Lateral load-carrying capacity of hemp concrete as a natural infill material in timber frame walls. Eng. Struct. 2019, 180, 264–273. [Google Scholar] [CrossRef]
- Kioy, S. Lime-hemp composites: Compressive strength and résistance to fungal attacks. MEng dissertation, recalled in Appendix 1: Resistance to compression and stress-strain properties. In Hemp Lime Construction, A Guide to Building with Hemp Lime Composites; IHS BRE Press: London, UK, 2013. [Google Scholar]
- Kioy, S. Lime-Hemp Composites: Compressive Strength and Resistance to Fungal Attacks. Master’s Thesis, University of Bath, Bath, UK, 2005. recalled in Appendix, 1.
- Cérézo, V. Propriétés Mécaniques, Thermiques et Acoustiques d’un Matériau à Base de Particules Végétales: Approche Expérimentale et Modélisation Théorique; Institut National des Sciences Appliquées: Lyon, France, 2005. [Google Scholar]
- Nguyen, T.-T.; Picandet, V.; Amziane, S.; Baley, C. Influence of compactness and hemp hurd characteristics on the mechanical properties of lime and hemp concrete. Eur. J. Environ. Civ. Eng. 2009, 13, 1039–1050. [Google Scholar] [CrossRef]
- Hirst, E.; Walker, P.; Paine, K.; Yates, T. Characterisation of low density hemp-lime composite building materials under compression loading. In Proceedings of the Second International Conference on Sustainable Construction Materials and Technologies, Ancona, Italy, 28–30 June 2010; pp. 28–30. [Google Scholar]
- Sutton, A.; Black, D.; Walker, P. Straw Bale: An Introduction to Low-Impact Building Materials; IHS BRE Press: London, UK, 2011. [Google Scholar]
- Arnaud, L.; Gourlay, E. Experimental study of parameters influencing mechanical properties of hemp concretes. Constr. Build. Mater. 2012, 28, 50–56. [Google Scholar] [CrossRef]
- Nozahic, V.; Amziane, S.; Torrent, G.; Saïdi, K.; De Baynast, H. Design of green concrete made of plant-derived aggregates and a pumice–lime binder. Cem. Concr. Compos. 2012, 34, 231–241. [Google Scholar] [CrossRef]
- Tronet, P.; Lecompte, T.; Picandet, V.; Baley, C. Study of lime hemp concrete (LHC)–Mix design, casting process and mechanical behaviour. Cem. Concr. Compos. 2016, 67, 60–72. [Google Scholar] [CrossRef]
- Sassu, M.; Giresini, L.; Bonannini, E.; Puppio, M.L. On the use of vibro-compressed units with bio-natural aggregate. Buildings 2016, 6, 40. [Google Scholar] [CrossRef]
- Stevulova, N.; Cigasova, J.; Schwarzova, I.; Sicakova, A.; Junak, J. Sustainable bio-aggregate-based composites containing hemp hurds and alternative binder. Buildings 2018, 8, 25. [Google Scholar] [CrossRef]
- Niyigena, C.; Amziane, S.; Chateauneuf, A. Multicriteria analysis demonstrating the impact of shiv on the properties of hemp concrete. Constr. Build. Mater. 2018, 160, 211–222. [Google Scholar] [CrossRef]
- Almgren, T.; Holmgren, l.; Martinsson, J. Betong-Och Armeringsteknik; Sveriges Byggindustrier: Malmö, Sweden, 2007. [Google Scholar]
- Asrar, N.; Malik, A.U.; Ahmad, S.; Mujahid, F.S. Corrosion protection performance of microsilica added concretes in NaCl and seawater environments. Constr. Build. Mater. 1999, 13, 213–219. [Google Scholar] [CrossRef]
- Karni, J.; Karni, E.Y. Gypsum in construction: Origin and properties. Mater. Struct. 1995, 28, 92–100. [Google Scholar] [CrossRef]
- Boccarusso, L.; Durante, M.; Iucolano, F.; Mocerino, D.; Langella, A. Production of hemp-gypsum composites with enhanced flexural and impact resistance. Constr. Build. Mater. 2020, 260, 120476. [Google Scholar] [CrossRef]
- Strandberg, P. Hemp Concretes: Mechanical Properties Using both Shives and Fibers. Bachelor’s Thesis, Lund University, Lund, Sweden, 2008. [Google Scholar]
- Bevan, R.; Woolley, T. Hemp Lime Construction—A Guide to Building with Hemp Lime Composites; IHS BRE: Bracknell, UK, 2008; ISBN 978-1-84806-033-3. [Google Scholar]
- Woolley, T. Natural Building—A Guide to Materials and Techniques; The Crowood Press: London, UK, 2006. [Google Scholar]
- Arnaud, L.; Cerezo, V. Mechanical, thermal, and acoustical properties of concrete containing vegetable particles. Spec. Publ. 2002, 209, 151–168. [Google Scholar]
- Boutin, M.; Flamin, C.; Quinton, S.; Gosse, G. Study of the Environmental Characteristics of Hemp for the Analysis of Its Life Cycle; Report; Ministry of Agriculture, Agrifood, and Forestry: Paris, France, 2005. [Google Scholar]
- Boutin, M.; Flamin, C.; Quinton, S.; Gosse, G. Analysis of life cycle of thermoplastic compounds loaded with hemp fibers, and hemp concrete wall on wood structure. Fr. Minist. Agric. INRA Rep. MAP 2005, 4, B1. [Google Scholar]
- Staff, B.; Yates, T. Final Report on the Construction of the Hemp Houses at Haverhill, Suffolk; Building Research Establishment (BRE): Garston, UK, 2002. [Google Scholar]
- Balčiūnas, G.; Žvironaitė, J.; Vėjelis, S.; Jagniatinskis, A.; Gaidučis, S. Ecological, thermal and acoustical insulating composite from hemp shives and sapropel binder. Ind. Crops Prod. 2016, 91, 286–294. [Google Scholar] [CrossRef]
- Brümmer, M.; Sáez-Pérez, M.; Suárez, J.D. Hemp Fiber Based Light Weight Concretes For Environmental Building–Parameters that influence the Mechanical Strength. In Proceedings of the 3rd International Conference on Natural Fibers ICNF, Braga, Portugal, 21–23 June 2017. [Google Scholar]
- Dartois, S.; Mom, S.; Dumontet, H.; Hamida, A.B. An iterative micromechanical modeling to estimate the thermal and mechanical properties of polydisperse composites with platy particles: Application to anisotropic hemp and lime concretes. Constr. Build. Mater. 2017, 152, 661–671. [Google Scholar] [CrossRef]
- Delannoy, G.; Marceau, S.; Gle, P.; Gourlay, E.; Guéguen-Minerbe, M.; Diafi, D.; Nour, I.; Amziane, S.; Farcas, F. Aging of hemp shiv used for concrete. Mater. Des. 2018, 160, 752–762. [Google Scholar] [CrossRef]
- Hussain, A.; Calabria-Holley, J.; Lawrence, M.; Jiang, Y. Hygrothermal and mechanical characterisation of novel hemp shiv based thermal insulation composites. Constr. Build. Mater. 2019, 212, 561–568. [Google Scholar] [CrossRef]
- Nguyen, S.; Tran-Le, A.; Vu, M.; To, Q.; Douzane, O.; Langlet, T. Modeling thermal conductivity of hemp insulation material: A multi-scale homogenization approach. J. Affect. Disord. 2016, 107, 127–134. [Google Scholar] [CrossRef]
- Shea, A.; Lawrence, M.; Walker, P. Hygrothermal performance of an experimental hemp–lime building. Constr. Build. Mater. 2012, 36, 270–275. [Google Scholar] [CrossRef]
- Williams, J.; Bentman, S. An investigation into the reliability and variability of wobble board performance in a healthy population using the SMARTwobble instrumented wobble board. Phys. Ther. Sport 2014, 15, 143–147, Erratum in Phys. Ther. Sport 2017, 25, 108. [Google Scholar] [CrossRef]
- Williams, J.S.; Dungait, J.A.; Bol, R.; Abbott, G.D. Comparison of extraction efficiencies for water-transportable phenols from different land uses. Org. Geochem. 2016, 102, 45–51. [Google Scholar] [CrossRef]
- Mazhoud, B.; Collet, F.; Pretot, S.; Chamoin, J. Hygric and thermal properties of hemp-lime plasters. J. Affect. Disord. 2016, 96, 206–216. [Google Scholar] [CrossRef]
- Mazhoud, B.; Collet, F.; Pretot, S.; Lanos, C. Mechanical properties of hemp-clay and hemp stabilized clay composites. Constr. Build. Mater. 2017, 155, 1126–1137. [Google Scholar] [CrossRef]
- Maalouf, C.; Ingrao, C.; Scrucca, F.; Moussa, T.; Bourdot, A.; Tricase, C.; Presciutti, A.; Asdrubali, F. An energy and carbon footprint assessment upon the usage of hemp-lime concrete and recycled-PET façades for office facilities in France and Italy. J. Clean. Prod. 2018, 170, 1640–1653. [Google Scholar] [CrossRef]
- Maalouf, C.; Le, A.T.; Umurigirwa, S.; Lachi, M.; Douzane, O. Study of hygrothermal behaviour of a hemp concrete building envelope under summer conditions in France. Energy Build. 2014, 77, 48–57. [Google Scholar] [CrossRef]
- Lelievre, D.; Colinart, T.; Glouannec, P. Hygrothermal behavior of bio-based building materials including hysteresis effects: Experimental and numerical analyses. Energy Build. 2014, 84, 617–627. [Google Scholar] [CrossRef]
- Seng, B.; Magniont, C.; Lorente, S. Characterization of a precast hemp concrete. Part I: Physical and thermal properties. J. Build. Eng. 2019, 24, 100540. [Google Scholar] [CrossRef]
- Gourlay, E.; Glé, P.; Marceau, S.; Foy, C.; Moscardelli, S. Effect of water content on the acoustical and thermal properties of hemp concretes. Constr. Build. Mater. 2017, 139, 513–523. [Google Scholar] [CrossRef]
- Pierre, T.; Colinart, T.; Glouannec, P. Measurement of thermal properties of biosourced building materials. Int. J. Thermophys. 2014, 35, 1832–1852. [Google Scholar] [CrossRef]
- Rahim, M.; Douzane, O.; Le, A.T.; Langlet, T. Effect of moisture and temperature on thermal properties of three bio-based materials. Constr. Build. Mater. 2016, 111, 119–127. [Google Scholar] [CrossRef]
- Kolak, M.N.; Oltulu, M. Effect of expanded perlite addition on the thermal conductivity and mechanical properties of bio-composites with hemp-filled. J. Build. Eng. 2023, 71, 106515. [Google Scholar] [CrossRef]
- Fernea, R.; Tămaș-Gavrea, D.R.; Manea, D.L.; Roșca, I.C.; Aciu, C.; Munteanu, C. Multicriterial analysis of several acoustic absorption building materials based on hemp. Procedia Eng. 2017, 181, 1005–1012. [Google Scholar] [CrossRef]
- HempTODAY®. Hempcrete Scores a Perfect “0” under ASTM Fire Testing in USA. Available online: https://hemptoday.net/astm-fire-tests/ (accessed on 1 November 2022).
- Allin, S. Building with Hemp Fire Test on Hempcrete. Available online: https://www.youtube.com/watch?v=FeW6kuZgPY4 (accessed on 1 January 2023).
- Degrave-Lemeurs, M.; Glé, P.; de Menibus, A.H. Acoustical properties of hemp concretes for buildings thermal insulation: Application to clay and lime binders. Constr. Build. Mater. 2018, 160, 462–474. [Google Scholar] [CrossRef]
- Kumar, V.; Ramadoss, R.; Rampradheep, G. A study report on carbon sequestration by using Hempcrete. Mater. Today Proc. 2021, 45, 6369–6371. [Google Scholar]
- Arehart, J.H.; Nelson, W.S.; Srubar, W.V., III. On the theoretical carbon storage and carbon sequestration potential of hempcrete. J. Clean. Prod. 2020, 266, 121846. [Google Scholar] [CrossRef]
- Ip, K.; Miller, A. Life cycle greenhouse gas emissions of hemp–lime wall constructions in the UK. Resour. Conserv. Recycl. 2012, 69, 1–9. [Google Scholar] [CrossRef]
- Ingrao, C.; Giudice, A.L.; Bacenetti, J.; Tricase, C.; Dotelli, G.; Fiala, M.; Siracusa, V.; Mbohwa, C. Energy and environmental assessment of industrial hemp for building applications: A review. Renew. Sustain. Energy Rev. 2015, 51, 29–42. [Google Scholar] [CrossRef]
- Florentin, Y.; Pearlmutter, D.; Givoni, B.; Gal, E. A life-cycle energy and carbon analysis of hemp-lime bio-composite building materials. Energy Build. 2017, 156, 293–305. [Google Scholar] [CrossRef]
- Pretot, S.; Collet, F.; Garnier, C. Life cycle assessment of a hemp concrete wall: Impact of thickness and coating. J. Affect. Disord. 2014, 72, 223–231. [Google Scholar] [CrossRef]
- Kiessé, T.S.; Ventura, A.; van der Werf, H.M.; Cazacliu, B.; Idir, R. Introducing economic actors and their possibilities for action in LCA using sensitivity analysis: Application to hemp-based insulation products for building applications. J. Clean. Prod. 2017, 142, 3905–3916. [Google Scholar] [CrossRef]
- Hustache, Y.; Arnaud, L. Synthèse des Connaissances sur les Bétons et Mortiers de Chanvre; Construire en Chanvre: Quebec City, QC, Canada, 2008. [Google Scholar]
- Amaducci, S.; Scordia, D.; Liu, F.; Zhang, Q.; Guo, H.; Testa, G.; Cosentino, S. Key cultivation techniques for hemp in Europe and China. Ind. Crops Prod. 2015, 68, 2–16. [Google Scholar] [CrossRef]
- Andres, D.M.; Manea, D.L.; Fechete, R.; Jumate, E. Green plastering mortars based on clay and wheat straw. Procedia Technol. 2016, 22, 327–334. [Google Scholar] [CrossRef]
- Marceau, S.; Delannoy, G. Durability of Bio-based concretes. In Bio-Aggregates Based Building Materials; Springer: Berlin/Heidelberg, Germany, 2017; pp. 167–187. [Google Scholar]
- Marceau, S.; Gle, P.; Guéguen-Minerbe, M.; Gourlay, E.; Moscardelli, S.; Nour, I.; Amziane, S. Influence of accelerated aging on the properties of hemp concretes. Constr. Build. Mater. 2017, 139, 524–530. [Google Scholar] [CrossRef]
- Pochwała, S.; Makiola, D.; Anweiler, S.; Böhm, M. The heat conductivity properties of hemp–lime composite material used in single-family buildings. Materials 2020, 13, 1011. [Google Scholar] [CrossRef]
- Asli, M.; Brachelet, F.; Sassine, E.; Antczak, E. Thermal and hygroscopic study of hemp concrete in real ambient conditions. J. Build. Eng. 2021, 44, 102612. [Google Scholar] [CrossRef]
- Chau, K.; Fleck, R.; Irga, P.; Torpy, F.; Wilkinson, S.; Castel, A. Hempcrete as a substrate for fungal growth under high humidity and variable temperature conditions. Constr. Build. Mater. 2023, 398, 132373. [Google Scholar] [CrossRef]
- Demir, İ.; Doğan, C. Physical and mechanical properties of hempcrete. Open Waste Manag. J. 2020, 13, 26–34. [Google Scholar] [CrossRef]
- Dachowski, R.; Komisarczyk, K. The properties of doped sand-lime products. In E3S Web of Conferences; EDP Sciences: Julies, France, 2016; p. 00037. [Google Scholar]
- Harry, H.H. Hempcrete the Mold Resistant Material. Available online: https://www.hemphomes.com/blog/hempcrete-the-mold-resistant-material (accessed on 1 September 2023).
- Stone, H. Catalyst for Change-Hempcrete Explained. Available online: https://hempstone.net/catalyst-for-change/faq-hempcrete-explained (accessed on 1 June 2023).
- Vontetsianou, A. The Effectiveness of Hempcrete in the Reduction of the Environmental and Financial Costs of Residences: A Case Study in the Netherlands. Master Thesis, Civil Engineering & Geosciences. Delft University of Technology, Delft, The Netherlands, 2023. Available online: http://resolver.tudelft.nl/uuid:c986421c-a381-4fbc-acca-462291de0380 (accessed on 1 June 2023).
- Stanwix, W.; Sparrow, A. De la Source The Hempcrete Book: Designing and Building with Hemp-Lime; Distributeur Green Books: Cambridge, UK, 2017. [Google Scholar]
- Canti, M. Binder for Manufacturing of Concrete or Laminated Products. Italy Patent No. WO2013061182A1, 2 May 2013. [Google Scholar]
- Vicat, B. Interlocking Hempcrete Blocks. Available online: https://www.vicat.com/Vicat-Group/News-from-the-Group/Byosis-Interlocking-hempcrete-blocks (accessed on 1 November 2022).
Authors | Year | Reported Compressive Strength | Reported Density |
---|---|---|---|
Kioy [91,92] | 2005 | 1.88~1.98 MPa | 610–830 kg/m3 |
Cerezo [93] | 2005 | 0.3~0.7 MPa | 356–504 kg/m3 |
Elfordy et al. [78] | 2008 | 0.06~1.2 MPa | 291–485 kg/m3 |
Nguyen et al. [77,94] | 2009 | 0.2~2.5 MPa | 670–850 kg/m3 |
Hirst et al. [95] | 2010 | 0.2~1.2 MPa | 220–342 kg/m3 |
Sutton et al. [96] | 2011 | 0.1~0.2 MPa | 270–330 kg/m3 |
Arnaud and Gourlay [97] | 2012 | 0.1~0.34 MPa | 460–500 kg/m3 |
Nozahic et al. [98] | 2012 | 7.11 MPa | 1100–1300 kg/m3 |
Chabannes et al. [88] | 2014 | 0.45~0.51 MPa | 400–650 kg/m3 |
Walker et al. [59] | 2014 | 0.29~0.39 MPa | 360–400 kg/m3 |
Sassoni et al. [54] | 2014 | 0.1~0.2 MPa | 330–640 kg/m3 |
Sinka et al. [70] | 2014 | 0.125~0.266 MPa | 330–540 kg/m3 |
Chabannes et al. [89] | 2015 | 0.47~0.68 MPa | 460–505 kg/m3 |
Tronet et al. [75,99] | 2016 | 1.36~4.74 MPa | 580–843 kg/m3 |
Sassu et al. [100] | 2016 | 0.146~0.622 MPa | 638–753 kg/m3 |
Nadezla Stevulova et al. [101] | 2018 | 0.9~5.75 MPa | 960–1160 kg/m3 |
Niyigena et al. [102] | 2018 | 0.2~1.1 MPa | 385–480 kg/m3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asghari, N.; Memari, A.M. State of the Art Review of Attributes and Mechanical Properties of Hempcrete. Biomass 2024, 4, 65-91. https://doi.org/10.3390/biomass4010004
Asghari N, Memari AM. State of the Art Review of Attributes and Mechanical Properties of Hempcrete. Biomass. 2024; 4(1):65-91. https://doi.org/10.3390/biomass4010004
Chicago/Turabian StyleAsghari, Nima, and Ali M. Memari. 2024. "State of the Art Review of Attributes and Mechanical Properties of Hempcrete" Biomass 4, no. 1: 65-91. https://doi.org/10.3390/biomass4010004
APA StyleAsghari, N., & Memari, A. M. (2024). State of the Art Review of Attributes and Mechanical Properties of Hempcrete. Biomass, 4(1), 65-91. https://doi.org/10.3390/biomass4010004