Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = helium sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 27231 KiB  
Article
Bentayga-I: Development of a Low-Cost and Open-Source Multispectral CubeSat for Marine Environment Monitoring and Prevention
by Adrián Rodríguez-Molina, Alejandro Santana, Felipe Machado, Yubal Barrios, Emma Hernández-Suárez, Ámbar Pérez-García, María Díaz, Raúl Santana, Antonio J. Sánchez and José F. López
Sensors 2024, 24(23), 7648; https://doi.org/10.3390/s24237648 - 29 Nov 2024
Viewed by 1915
Abstract
CubeSats have emerged as a promising alternative to satellite missions for studying remote areas where satellite data are scarce and insufficient, such as coastal and marine environments. However, their standard size and weight limitations make integrating remote sensing optical instruments challenging. This work [...] Read more.
CubeSats have emerged as a promising alternative to satellite missions for studying remote areas where satellite data are scarce and insufficient, such as coastal and marine environments. However, their standard size and weight limitations make integrating remote sensing optical instruments challenging. This work presents the development of Bentayga-I, a CubeSat designed to validate PANDORA, a self-made, lightweight, cost-effective multispectral camera with interchangeable spectral optical filters, in near-space conditions. Its four selected spectral bands are relevant for ocean studies. Alongside the camera, Bentayga-I integrates a power system for short-time operation capacity; a thermal subsystem to maintain battery function; environmental sensors to monitor the CubeSat’s internal and external conditions; and a communication subsystem to transmit acquired data to a ground station. The first helium balloon launch with B2Space proved that Bentayga-I electronics worked correctly in near-space environments. During this launch, the spectral capabilities of PANDORA alongside the spectrum were validated using a hyperspectral camera. Its scientific applicability was also tested by capturing images of coastal areas. A second launch is planned to further validate the multispectral camera in a real-world scenario. The integration of Bentayga-I and PANDORA presents promising results for future low-cost CubeSats missions. Full article
Show Figures

Figure 1

13 pages, 1453 KiB  
Article
The Two-Spin Enigma: From the Helium Atom to Quantum Ontology
by Philippe Grangier, Alexia Auffèves, Nayla Farouki, Mathias Van Den Bossche and Olivier Ezratty
Entropy 2024, 26(12), 1004; https://doi.org/10.3390/e26121004 - 22 Nov 2024
Cited by 3 | Viewed by 1664
Abstract
The purpose of this article is to provide a novel approach and justification of the idea that classical physics and quantum physics can neither function nor even be conceived without the other—in line with ideas attributed to, e.g., Niels Bohr or Lev Landau. [...] Read more.
The purpose of this article is to provide a novel approach and justification of the idea that classical physics and quantum physics can neither function nor even be conceived without the other—in line with ideas attributed to, e.g., Niels Bohr or Lev Landau. Though this point of view may contradict current common wisdom, we will show that it perfectly fits with empirical evidence, and can be maintained without giving up physical realism. In order to place our arguments in a convenient historical perspective, we will proceed as if we were following the path of a scientific investigation about the demise, or vanishing, of some valuable properties of the two electrons in the helium atom. We will start from experimentally based evidence in order to analyze and explain the physical facts, moving cautiously from a classical to a quantum description, without mixing them up. The overall picture will be that the physical properties of microscopic systems are quantized, as initially shown by Planck and Einstein, and that they are also contextual, i.e., they can be given a physical sense only by embedding a microscopic system within a macroscopic measurement context. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

12 pages, 2952 KiB  
Article
Modeling and Design Parameter Optimization to Improve the Sensitivity of a Bimorph Polysilicon-Based MEMS Sensor for Helium Detection
by Sulaiman Mohaidat and Fadi Alsaleem
Sensors 2024, 24(11), 3626; https://doi.org/10.3390/s24113626 - 4 Jun 2024
Viewed by 3768
Abstract
Helium is integral in several industries, including nuclear waste management and semiconductors. Thus, developing a sensing method for detecting helium is essential to ensure the proper operation of such facilities. Several approaches can be used for helium detection, including based on the high [...] Read more.
Helium is integral in several industries, including nuclear waste management and semiconductors. Thus, developing a sensing method for detecting helium is essential to ensure the proper operation of such facilities. Several approaches can be used for helium detection, including based on the high thermal conductivity of helium, which is several times higher than air. This work utilizes the high thermal conductivity of helium to design and analyze a bimorph MEMS sensor for helium sensing applications. COMSOL Multiphysics software (version 6.2) is used to carry out this investigation. The sensor is constructed from poly-silicon and SiO2 materials with a trenched cantilever beam configuration. The sensor is electrically heated, and its morphed displacement depends on the surrounding gas’s composition, which decreases in the presence of helium. Several factors were investigated to probe their effect on the sensor’s sensitivity to helium, including the thickness of the poly-silicon layer, the configuration of the trench, and the thickness and location of SiO2 layer. The simulations showed that the best performance, up to 2 ppm helium detection level, can be achieved with thinner beams and medium trench lengths. Full article
(This article belongs to the Special Issue Recent Trends in Advanced Materials for Sensing)
Show Figures

Figure 1

14 pages, 2136 KiB  
Article
Simulation of a Pulsed Metastable Helium Lidar
by Jiaxin Lan, Yuli Han, Ruocan Zhao, Tingdi Chen, Xianghui Xue, Dongsong Sun, Hang Zhou, Zhenwei Liu and Yingyu Liu
Photonics 2024, 11(5), 465; https://doi.org/10.3390/photonics11050465 - 15 May 2024
Cited by 1 | Viewed by 1817
Abstract
Measurements of atmosphere density in the upper thermosphere and exosphere are of great significance for studying space–atmosphere interactions. However, the region from 200 km to 1000 km has been a blind area for traditional ground-based active remote sensing techniques due to the limitation [...] Read more.
Measurements of atmosphere density in the upper thermosphere and exosphere are of great significance for studying space–atmosphere interactions. However, the region from 200 km to 1000 km has been a blind area for traditional ground-based active remote sensing techniques due to the limitation of facilities and the paucity of neutral atmosphere. To fulfill this gap, the University of Science and Technology of China is developing a powerful metastable helium resonance fluorescent lidar incorporating a 2 m aperture telescope, a high-energy 1083 nm pulsed laser, as well as a superconducting nanowire single-photon detector (SNSPD) with high quantum efficiency and low dark noise. The system is described in detail in this work. To evaluate the performance of the lidar system, numerical simulation is implemented. The results show that metastable helium density measurements can be achieved with a relative error of less than 20% above 370 km in winter and less than 200% in 270–460 km in summer, demonstrating the feasibility of metastable helium lidar. Full article
Show Figures

Figure 1

19 pages, 4049 KiB  
Article
Effect of Carrier Gas on the Gas Sensing Performance of Co1−2xNixMnxFe2−yCeyO4 Double-Substitution Spinel in Flammable Gases and Volatile Organic Compounds
by Sunday A. Ogundipe, Ceboliyazakha L. Ndlangamandla, Mmantsae M. Diale, Mudalo Jozela, Hendrik C. Swart, David E. Motaung and Steven S. Nkosi
Coatings 2023, 13(10), 1771; https://doi.org/10.3390/coatings13101771 - 14 Oct 2023
Cited by 5 | Viewed by 1767
Abstract
The presence of high concentrations of flammable gases and volatile organic compounds in the atmosphere has been widely reported to be detrimental to human survival. A lot of research effort has been put toward finding an efficient means of quick detection of these [...] Read more.
The presence of high concentrations of flammable gases and volatile organic compounds in the atmosphere has been widely reported to be detrimental to human survival. A lot of research effort has been put toward finding an efficient means of quick detection of these gases below their ‘immediately dangerous to life or health’ concentrations. Detecting these gases in an oxygen-deficient environment is a crucial task to consider and has been overlooked. In this research, double-substitution spinel with the chemical formula Co1−2xNixMnxFe2−yCeyO4, where 0 ≤ x = y ≤ 0.3, was prepared via the glycol-thermal technique. The final products, following appropriate substitution, were CoFe2O4 (dried naturally), CoFe2O4 (dried with infrared lamp), Co0.8Ni0.1Mn0.1Fe1.9Ce0.1O4, Co0.6Ni0.2Mn0.2Fe1.8Ce0.2O4 and Co0.4Ni0.3Mn0.3Fe1.7Ce0.3O4 spinel ferrites. The X-ray diffractometry (XRD), high-resolution transmission electron micrographs (HRTEM) and X-ray photoelectron spectroscopy (XPS) of the samples confirmed the formation of the spinel. The gas sensing performance of these samples was tested at the operating temperature of 225 °C toward liquefied petroleum gas (LPG), ammonia, ethanol and propanol. The Co0.8Ni0.1Mn0.1Fe1.9Ce0.1O4-based sensor was selective to LPG, with a high response of 116.43 toward 6000 ppm of LPG when helium was used as the carrier gas, 3.35 when dry air was the carrier gas, 4.4 when nitrogen was the carrier gas, but it was not sensitive when argon was used as the carrier gas. Full article
(This article belongs to the Special Issue Current Trends in Coatings for Gas Sensors)
Show Figures

Figure 1

16 pages, 455 KiB  
Review
Is Core Angular Momentum Key to the Giant Dynamo?
by Klaus-Peter Schröder and Renada Konstantinova-Antova
Universe 2022, 8(8), 411; https://doi.org/10.3390/universe8080411 - 5 Aug 2022
Cited by 1 | Viewed by 1430
Abstract
The pros and cons of core angular momentum dissipation into the convective envelopes of giants as a driver of giant activity is discussed in face of the observational evidence, which points to two ”magnetic strips“, in the HRD, where in the first, at [...] Read more.
The pros and cons of core angular momentum dissipation into the convective envelopes of giants as a driver of giant activity is discussed in face of the observational evidence, which points to two ”magnetic strips“, in the HRD, where in the first, at the base of the RGB, activity of moderate mass stars is freshly started and rejuvenated in the second strip, ascending along the mid-AGB. It remains unclear, though, which depths the giant dynamo is operating. Both concentrations of active giants in the HRD are related to stellar evolution phases with core contraction and spin-up, and presumably the dissipation of angular momentum into the convective envelope above. At the same time, the latter has a small Rossby number by virtue of its increasing convective turn-over time—i.e., favourable conditions to run an alpha-omega dynamo. Since coronal X-ray emission appears to give an incomplete picture of stellar activity across the HR diagramme, we here focus on the observed chromospheric emissions across the giant branches and find good agreement with the magnetic field Zeeman-detections there. Stable evolution phases—solar-type main sequence stars with central hydrogen burning and moderate mass, central Helium burning K giants—by contrast demonstrate a decline in activity, apparently imposed by magnetic braking, as such stars are also slower rotators. In that sense, the observed picture of two magnetic activity strips across the HR diagramme could empirically be explained as an interplay of magnetic braking during the stable phase of core helium burning and supply by internal angular momentum during episodes of fast core contraction with core spin-up and angular momentum dredge-up, while meeting dynamo-friendly envelope conditions. At the same time, the sporadic external supply of angular momentum by the engulfment events of a planet, in the course of the evolutionary envelope expansion, may explain some cases of exceptional activity outside the here-described general picture. Full article
(This article belongs to the Special Issue Magnetic Fields and Activity through Stellar Evolution)
Show Figures

Figure 1

23 pages, 20671 KiB  
Article
Fluid Migration through Permafrost and the Pool of Greenhouse Gases in Frozen Soils of an Oil and Gas Field
by Gleb Kraev, Andrei Belonosov, Alexandra Veremeeva, Vasilii Grabovskii, Sergei Sheshukov, Ivan Shelokhov and Alexander Smirnov
Remote Sens. 2022, 14(15), 3662; https://doi.org/10.3390/rs14153662 - 30 Jul 2022
Cited by 5 | Viewed by 2490
Abstract
Most methane (CH4) and carbon dioxide (CO2) emissions originate from the biodegradation of organic matter of soils and of degrading permafrost in the Arctic. However, there is limited evidence of the activity of geological sources, and little understanding of [...] Read more.
Most methane (CH4) and carbon dioxide (CO2) emissions originate from the biodegradation of organic matter of soils and of degrading permafrost in the Arctic. However, there is limited evidence of the activity of geological sources, and little understanding of the pathways of migration of gaseous fluids through the porous mineral matrix filled with ice. We estimated the effect of geological factors on the winter storage of the greenhouse gases in frozen soils by statistical analysis of the geodatabase, which combined a field gas survey of frozen soils, subsurface sounding, and remote sensing data. Frozen soils stored on average 0.016 g CH4 m−3 and 11.5 g CO2 m−3. Microseeps, recognized by isolated anomalies of helium, had 30% higher CH4 concentrations. Lineaments marking margins of tectonic blocks were estimated to have 300% higher CH4 concentrations. High concentrations of propane and ethane indicated the contribution of diffuse fluid flow from hydrocarbon-bearing beds on 95% of the 130 km2 study area. In addition to the fluid contribution, we estimated an overwintering pool of greenhouse gases in frozen soil for the first time. Being at least 0.01–0.1% of the soil organic matter mass, these gaseous forms of carbon can be critical for the early-summer Arctic ecosystem functioning. Full article
(This article belongs to the Section Biogeosciences Remote Sensing)
Show Figures

Figure 1

13 pages, 1443 KiB  
Article
Impact of Helium Ion Implantation Dose and Annealing on Dense Near-Surface Layers of NV Centers
by Andris Berzins, Hugo Grube, Einars Sprugis, Guntars Vaivars and Ilja Fescenko
Nanomaterials 2022, 12(13), 2234; https://doi.org/10.3390/nano12132234 - 29 Jun 2022
Cited by 7 | Viewed by 3051
Abstract
The implantation of diamonds with helium ions has become a common method to create hundreds-nanometers-thick near-surface layers of NV centers for high-sensitivity sensing and imaging applications; however, optimal implantation dose and annealing temperature are still a matter of discussion. In this study, we [...] Read more.
The implantation of diamonds with helium ions has become a common method to create hundreds-nanometers-thick near-surface layers of NV centers for high-sensitivity sensing and imaging applications; however, optimal implantation dose and annealing temperature are still a matter of discussion. In this study, we irradiated HPHT diamonds with an initial nitrogen concentration of 100 ppm using different implantation doses of helium ions to create 200-nm thick NV layers. We compare a previously considered optimal implantation dose of ∼1012 He+/cm2 to double and triple doses by measuring fluorescence intensity, contrast, and linewidth of magnetic resonances, as well as longitudinal and transversal relaxation times T1 and T2. From these direct measurements, we also estimate concentrations of P1 and NV centers. In addition, we compare the three diamond samples that underwent three consequent annealing steps to quantify the impact of processing at 1100 °C, which follows initial annealing at 800 °C. By tripling the implantation dose, we have increased the magnetic sensitivity of our sensors by 28±5%. By projecting our results to higher implantation doses, we demonstrate that it is possible to achieve a further improvement of up to 70%. At the same time, additional annealing steps at 1100 °C improve the sensitivity only by 6.6 ± 2.7%. Full article
(This article belongs to the Topic Advanced Nanomaterials for Sensing Applications)
Show Figures

Figure 1

12 pages, 8428 KiB  
Article
Improving on Atmospheric Turbulence Profiles Derived from Dual Beacon Hartmann Turbulence Sensor Measurements
by Alexander Boeckenstedt, Jack McCrae, Santasri Bose-Pillai, Benjamin Wilson and Steven Fiorino
Appl. Sci. 2022, 12(12), 5822; https://doi.org/10.3390/app12125822 - 8 Jun 2022
Cited by 4 | Viewed by 1911
Abstract
Atmospheric turbulence is an inevitable source of wavefront distortion in all fields of long range laser propagation and sensing. However, the distorting effects of turbulence can be corrected using wavefront sensors contained in adaptive optics systems. Such systems also provide deeper insight into [...] Read more.
Atmospheric turbulence is an inevitable source of wavefront distortion in all fields of long range laser propagation and sensing. However, the distorting effects of turbulence can be corrected using wavefront sensors contained in adaptive optics systems. Such systems also provide deeper insight into surface layer turbulence, which is not well understood. A unique method of profile generation by a dual source Hartmann Turbulence Sensor (HTS) technique is introduced here. Measurements of optical turbulence along a horizontal path were taken to create Cn2 profiles. Two helium-neon laser beams were directed over an inhomogeneous horizontal path and captured by the HTS. The measured differential tilt variances imposed on the laser wavefronts were used in conjunction with a set of computed weighting functions to profile the turbulence over the sensing path. The weighting function matrix is inherently ill-conditioned, therefore, Tikhonov regularization was applied to produce accurate Cn2 profiles. A distribution of sonic anemometers and a co-located boundary layer scintillometer (BLS) collected independent Cn2 measurements to add confidence to the HTS profiles. The Cn2 profiles generated by this approach agree very well with the auxiliary anemometer and scintillometer measurements. This method of producing turbulence profiles may be useful in future multi-conjugate adaptive optics applications. Full article
(This article belongs to the Special Issue Atmospheric Optics Sensing, Mitigation and Exploitation)
Show Figures

Graphical abstract

14 pages, 1856 KiB  
Article
Embedded Memories for Cryogenic Applications
by Esteban Garzón, Adam Teman and Marco Lanuzza
Electronics 2022, 11(1), 61; https://doi.org/10.3390/electronics11010061 - 25 Dec 2021
Cited by 21 | Viewed by 5602
Abstract
The ever-growing interest in cryogenic applications has prompted the investigation for energy-efficient and high-density memory technologies that are able to operate efficiently at extremely low temperatures. This work analyzes three appealing embedded memory technologies under cooling—from room temperature (300 K) down to cryogenic [...] Read more.
The ever-growing interest in cryogenic applications has prompted the investigation for energy-efficient and high-density memory technologies that are able to operate efficiently at extremely low temperatures. This work analyzes three appealing embedded memory technologies under cooling—from room temperature (300 K) down to cryogenic levels (77 K). As the temperature goes down to 77 K, six-transistor static random-access memory (6T-SRAM) presents slight improvements for static noise margin (SNM) during hold and read operations, while suffering from lower (−16%) write SNM. Gain-cell embedded DRAM (GC-eDRAM) shows significant benefits under these conditions, with read voltage margins and data retention time improved by about 2× and 900×, respectively. Non-volatile spin-transfer torque magnetic random access memory (STT-MRAM) based on single- or double-barrier magnetic tunnel junctions (MTJs) exhibit higher read voltage sensing margins (36% and 48%, respectively), at the cost of longer write access time (1.45× and 2.1×, respectively). The above characteristics make the considered memory technologies to be attractive candidates not only for high-performance computing, but also enable the possibility to bridge the gap from room-temperature to the realm of cryogenic applications that operate down to liquid helium temperatures and below. Full article
(This article belongs to the Special Issue Design of Ultra-Low Voltage/Power Circuits and Systems)
Show Figures

Figure 1

12 pages, 3459 KiB  
Article
Direct Observation of Terahertz Frequency Comb Generation in Difference-Frequency Quantum Cascade Lasers
by Luigi Consolino, Malik Nafa, Michele De Regis, Francesco Cappelli, Saverio Bartalini, Akio Ito, Masahiro Hitaka, Tatsuo Dougakiuchi, Tadataka Edamura, Paolo De Natale and Kazuue Fujita
Appl. Sci. 2021, 11(4), 1416; https://doi.org/10.3390/app11041416 - 4 Feb 2021
Cited by 18 | Viewed by 3455
Abstract
Terahertz quantum cascade laser sources based on intra-cavity difference frequency generation from mid-IR devices are an important asset for applications in rotational molecular spectroscopy and sensing, being the only electrically pumped device able to operate in the 0.6–6 THz range without the need [...] Read more.
Terahertz quantum cascade laser sources based on intra-cavity difference frequency generation from mid-IR devices are an important asset for applications in rotational molecular spectroscopy and sensing, being the only electrically pumped device able to operate in the 0.6–6 THz range without the need of bulky and expensive liquid helium cooling. Here we present comb operation obtained by intra-cavity mixing of a distributed feedback laser at λ = 6.5 μm and a Fabry–Pérot device at around λ = 6.9 μm. The resulting ultra-broadband THz emission extends from 1.8 to 3.3 THz, with a total output power of 8 μW at 78 K. The THz emission has been characterized by multi-heterodyne detection with a primary frequency standard referenced THz comb, obtained by optical rectification of near infrared pulses. The down-converted beatnotes, simultaneously acquired, confirm an equally spaced THz emission down to 1 MHz accuracy. In the future, this setup can be used for Fourier transform based evaluation of the phase relation among the emitted THz modes, paving the way to room-temperature, compact, and field-deployable metrological grade THz frequency combs. Full article
(This article belongs to the Special Issue Mid-Infrared and THz Spectroscopy: Innovative Tools and Applications)
Show Figures

Figure 1

14 pages, 4793 KiB  
Letter
Low-Temperature Properties of the Magnetic Sensor with Amorphous Wire
by Dongfeng He, Kensei Umemori, Ryuichi Ueki, Takeshi Dohmae, Takafumi Okada, Minoru Tachiki, Shuuichi Ooi and Makoto Watanabe
Sensors 2020, 20(23), 6986; https://doi.org/10.3390/s20236986 - 7 Dec 2020
Cited by 2 | Viewed by 3309
Abstract
We found that a magnetic sensor made of a coil wound around a 5 f0.1 mm (Fe0.06Co0.94)72.5Si2.5B15 (FeCoSiB) amorphous wire could operate in a wide temperature range from room temperature to liquid helium temperature [...] Read more.
We found that a magnetic sensor made of a coil wound around a 5 f0.1 mm (Fe0.06Co0.94)72.5Si2.5B15 (FeCoSiB) amorphous wire could operate in a wide temperature range from room temperature to liquid helium temperature (4.2 K). The low-temperature sensing element of the sensor was connected to the room-temperature driving circuit by only one coaxial cable with a diameter of 1 mm. The one-cable design of the magnetic sensor reduced the heat transferring through the cable to the liquid helium. To develop a magnetic sensing system capable of operating at liquid helium temperature, we evaluated the low-temperature properties of the FeCoSiB magnetic sensor. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

24 pages, 6664 KiB  
Article
Investigating the Retention of Solar Wind Implanted Helium-3 on the Moon from the Analysis of Multi-Wavelength Remote Sensing Data
by Shashwat Shukla, Valentyn Tolpekin, Shashi Kumar and Alfred Stein
Remote Sens. 2020, 12(20), 3350; https://doi.org/10.3390/rs12203350 - 14 Oct 2020
Cited by 18 | Viewed by 5760
Abstract
The Moon has a large potential for space exploration and mining valuable resources. In particular, 3He provides rich sources of non-radioactive fusion fuel to fulfill cislunar and Earth’s energy demands, if found economically feasible. The present study focuses on developing advanced techniques [...] Read more.
The Moon has a large potential for space exploration and mining valuable resources. In particular, 3He provides rich sources of non-radioactive fusion fuel to fulfill cislunar and Earth’s energy demands, if found economically feasible. The present study focuses on developing advanced techniques to prospect 3He resources on the Moon from multi-sensor remote sensing perspectives. It characterizes optical changes in regolith materials due to space weathering as a new retention parameter and introduces a novel machine learning inversion model for retrieving the physical properties of the regolith. Our analysis suggests that the reddening of the soil predominantly governs the retention, along with attenuated mafic band depths. Moreover, semi-variograms show that the spatial variability of 3He is aligned with the episodic weathering events at different timescales. We also observed that pyroclastic regoliths with high dielectric constant and increased surface scattering mechanisms exhibited a 3He abundant region. For ejecta cover, the retention was weakly associated with the dielectric contrast and a circular polarization ratio (CPR), mainly because of the 3He-deficient nature of the regolith. Furthermore, cross-variograms revealed inherent cyclicity attributed to the sequential process of weathering effects. Our study provides new insights into the physical nature and near-surface alterations of lunar regoliths that influence the spatial distribution and retention of solar wind implanted 3He. Full article
(This article belongs to the Special Issue Lunar Remote Sensing and Applications)
Show Figures

Graphical abstract

10 pages, 2172 KiB  
Article
Characterization and Sensing of Inert Gases with a High-Resolution SPR Sensor
by Zhenchao Liu, Jinlong He and Sailing He
Sensors 2020, 20(11), 3295; https://doi.org/10.3390/s20113295 - 10 Jun 2020
Cited by 18 | Viewed by 4265
Abstract
It is generally difficult to characterize inert gases through chemical reactions due to their inert chemical properties. The phase interference-sensing system based on high-resolution surface plasmon resonance (SPR) has an excellent refractive index detection limit. Based on this, this paper presents a simple [...] Read more.
It is generally difficult to characterize inert gases through chemical reactions due to their inert chemical properties. The phase interference-sensing system based on high-resolution surface plasmon resonance (SPR) has an excellent refractive index detection limit. Based on this, this paper presents a simple and workable method for the characterization and detection of inert gases. The phase of light for the present SPR sensor is more sensitive to the change in the external dielectric environment than an amplitude SPR sensor. The limit of detection (LOD) is usually in the order of 10−6 to 10−7 RIU, which is superior to LSPR (Localized Surface Plasmon Resonance) sensors and traditional SPR sensors. The sensor parameters are simulated and optimized. Our simulation shows that a 36 nm-thick gold film is more suitable for the SPR sensing of inert gases. By periodically switching between the two inert gases, helium and argon, the resolution of the system is tested. The SPR sensing system can achieve distinguishable difference signals, enabling a clear distinction and characterization of helium and argon. The doping of argon in helium has a detection limit of 1098 ppm. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

13 pages, 6290 KiB  
Article
Direct Write of 3D Nanoscale Mesh Objects with Platinum Precursor via Focused Helium Ion Beam Induced Deposition
by Alex Belianinov, Matthew J. Burch, Anton Ievlev, Songkil Kim, Michael G. Stanford, Kyle Mahady, Brett B. Lewis, Jason D. Fowlkes, Philip D. Rack and Olga S. Ovchinnikova
Micromachines 2020, 11(5), 527; https://doi.org/10.3390/mi11050527 - 22 May 2020
Cited by 21 | Viewed by 4318
Abstract
The next generation optical, electronic, biological, and sensing devices as well as platforms will inevitably extend their architecture into the 3rd dimension to enhance functionality. In focused ion beam induced deposition (FIBID), a helium gas field ion source can be used with an [...] Read more.
The next generation optical, electronic, biological, and sensing devices as well as platforms will inevitably extend their architecture into the 3rd dimension to enhance functionality. In focused ion beam induced deposition (FIBID), a helium gas field ion source can be used with an organometallic precursor gas to fabricate nanoscale structures in 3D with high-precision and smaller critical dimensions than focused electron beam induced deposition (FEBID), traditional liquid metal source FIBID, or other additive manufacturing technology. In this work, we report the effect of beam current, dwell time, and pixel pitch on the resultant segment and angle growth for nanoscale 3D mesh objects. We note subtle beam heating effects, which impact the segment angle and the feature size. Additionally, we investigate the competition of material deposition and sputtering during the 3D FIBID process, with helium ion microscopy experiments and Monte Carlo simulations. Our results show complex 3D mesh structures measuring ~300 nm in the largest dimension, with individual features as small as 16 nm at full width half maximum (FWHM). These assemblies can be completed in minutes, with the underlying fabrication technology compatible with existing lithographic techniques, suggesting a higher-throughput pathway to integrating FIBID with established nanofabrication techniques. Full article
(This article belongs to the Special Issue Nanofabrication with Focused Electron/Ion Beam Induced Processing)
Show Figures

Graphical abstract

Back to TopTop