Embedded Memories for Cryogenic Applications
Abstract
:1. Introduction
2. Background
- 6T-SRAM: It is based on a pair of cross-coupled inverters for storing the volatile data. The cell is accessed for write and read operation by asserting the wordline (WL), and driving bitline (BL) and to opposite logic values for write, or pre-charging them for read. Although this is the most mature embedded memory technology available in the market, it has barely been studied at cryogenic temperatures. Recently, 6T-SRAM was evaluated in [15], showing the different trade-offs in terms of static noise margins.
- GC-eDRAM: This circuit is most often constructed from two to four transistors, and the dynamic (volatile) data is stored by means of the charge upon a parasitic capacitance, which is commonly referred to as storage node (SN). The 2T mixed nMOS–pMOS GC-eDRAM cell is chosen among different topologies in light of its better performance at 77 K [5]. The write operation is done by asserting the write wordline (WWL) of the nMOS write port (NW) and driving the write bitline (WBL) to VDD (‘1’) or ground (‘0’), so that the charge is transferred to or from the SN. As for the read operation, first the read bitline (RBL) is precharged, and then the pMOS read port (PR) is enabled by asserting the read word line (RWL). If the SN is holding a ‘1’, the RBL is discharged to ground, and if it is a ‘0’, the RBL is maintained at VDD. A recent study experimentally demonstrates the GC-eDRAM capabilities when cooled down from room temperature to the helium nitrogen boiling point [12].
- STT-MRAM: This bitcell consists of a MOS access transistor and an MTJ that stores the non-volatile information. The MTJ stack is build with a reference layer (RL) and a free layer (FL), sandwiching a thin oxide barrier (tOX). This structure is known as an SMTJ, and presents relatively high switching currents, which impact the bit cell write operation [21]. To deal with this, a possible solution is to use a DMTJ with two reference layers (reference layer top (RLT) and bottom (RLB)) that enhance the total torque acting on the FL, leading to lower switching currents, albeit with increased resistance and reduced tunnel magnetoresistance (TMR) [22,23]. According to the relative orientation of the FL with respect to that of the RL (or RLT in the case of the DMTJ), two states are possible: parallel (P) or antiparallel (AP). For more detailed information on the SMTJ and DMTJ structures, the reader is referred to our previous works [21,24].STT-MRAM cells can be built from different topologies, which have been previously evaluated in the works reported in [21]. Among the different bitcell topologies, the most area-efficient are the 1TRC and 1TSC configurations (1TRC and 1TSC are referred to as one-transistor/one-MTJ in reverse connection (RC) and standard connection (SC), respectively) for SMTJ and DMTJ, respectively, as shown in Figure 2c.
3. Simulation Analysis at Cryogenic Temperatures
3.1. Static Random-Access Memory (SRAM)
3.2. Gain-Cell Embedded DRAM (GC-eDRAM)
3.3. Spin-Transfer Torque Magnetic RAM (STT-MRAM)
4. Comparison Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
6T-SRAM | Six-transistor Static Random Access Memory |
DRAM | Dynamic Random-Access Memory |
GC-eDRAM | Gain-Cell embedded DRAM |
STT-MRAM | Spin-Transfer Torque MRAM |
MTJ | Magnetic Tunnel Kunction |
SMTJ | Single-barrier MTJ |
DMTJ | Double-barrier MTJ |
TSMC | Taiwan Semiconductor Manufacturing Company |
PDK | Process Design Kit |
SN | Storage Node |
NW | nMOS write port |
PR | pMOS read port |
RL | Reference Layer |
FL | Free Layer |
TMR | tunnel magnetoresistance |
P | parallel |
AP | antiparallel |
RC | Reverse Connection |
SC | Standard Connection |
SNM | Static Noise Margin |
WSNM | Write SNM |
RSNM | Read SNM |
HSNM | Hold SNM |
VTC | voltage transfer characteristics |
DRT | Data Retention time |
WER | Write Error Rate |
RDR | Read Disturbance Rate |
CVS | Conventional Voltage Sensing |
2T NW-PR | 2T Mixed GC nMOS-pMOS |
References
- IRDS-IEEE. International Roadmap for Devices and Systems—Cryogenic Electronics and Quantum Information Processing. 2021. Available online: https://irds.ieee.org/editions/2021/cryogenic-electronics-and-quantum-information-processing (accessed on 30 November 2021).
- Sanuki, T.; Aiba, Y.; Tanaka, H.; Maeda, T.; Sawa, K.; Kikushima, F.; Miura, M. Cryogenic Operation of 3D Flash Memory for Storage Performance Improvement and Bit Cost Scaling. IEEE J. Explor.-Solid-State Comput. Devices Circuits 2021, 7, 159–167. [Google Scholar] [CrossRef]
- Resch, S.; Cilasun, H.; Karpuzcu, U.R. Cryogenic PIM: Challenges amp; Opportunities. IEEE Comput. Archit. Lett. 2021, 20, 74–77. [Google Scholar] [CrossRef]
- Balestra, F.; Audaire, L.; Lucas, C. Influence of substrate freeze-out on the characteristics of MOS transistors at very low temperatures. Solid-State Electron. 1987, 30, 321–327. [Google Scholar] [CrossRef]
- Garzón, E.; Greenblatt, Y.; Harel, O.; Lanuzza, M.; Teman, A. Gain-Cell Embedded DRAM Under Cryogenic Operation—A First Study. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2021, 29, 1319–1324. [Google Scholar] [CrossRef]
- Byun, I.; Min, D.; Lee, G.; Na, S.; Kim, J. A Next-Generation Cryogenic Processor Architecture. IEEE Micro 2021, 41, 80–86. [Google Scholar] [CrossRef]
- Ware, F.; Gopalakrishnan, L.; Linstadt, E.; McKee, S.A.; Vogelsang, T.; Wright, K.L.; Hampel, C.; Bronner, G. Do Superconducting Processors Really Need Cryogenic Memories? The Case for Cold DRAM. In Proceedings of the International Symposium on Memory Systems, Alexandria, Virginia, 2–5 October 2017. [Google Scholar] [CrossRef] [Green Version]
- Patra, B.; Incandela, R.M.; Van Dijk, J.P.; Homulle, H.A.; Song, L.; Shahmohammadi, M.; Staszewski, R.B.; Vladimirescu, A.; Babaie, M.; Sebastiano, F.; et al. Cryo-CMOS circuits and systems for quantum computing applications. IEEE J. Solid-State Circuits 2017, 53, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Sebastiano, F.; Homulle, H.A.; van Dijk, J.P.; Incandela, R.M.; Patra, B.; Mehrpoo, M.; Babaie, M.; Vladimirescu, A.; Charbon, E. Cryogenic CMOS interfaces for quantum devices. In Proceedings of the 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), Vieste, Italy, 15–16 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 59–62. [Google Scholar] [CrossRef]
- Deane, S.; Avdelidis, N.P.; Ibarra-Castanedo, C.; Zhang, H.; Yazdani Nezhad, H.; Williamson, A.A.; Mackley, T.; Maldague, X.; Tsourdos, A.; Nooralishahi, P. Comparison of cooled and uncooled IR sensors by means of signal-to-noise ratio for NDT diagnostics of aerospace grade composites. Sensors 2020, 20, 3381. [Google Scholar] [CrossRef] [PubMed]
- Barlow, M.; Fu, G.; Hollosi, B.; Lee, C.; Di, J.; Mantooth, H.A.; Schupbach, M.; Berger, R. A PFET-access radiation-hardened SRAM for extreme environments. In Proceedings of the 2008 51st Midwest Symposium on Circuits and Systems, Knoxville, TN, USA, 10–13 August 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 418–421. [Google Scholar] [CrossRef]
- Saligram, R.; Datta, S.; Raychowdhury, A. CryoMem: A 4K-300K 1.3 GHz eDRAM Macro with Hybrid 2T-Gain-Cell in a 28nm Logic Process for Cryogenic Applications. In Proceedings of the 2021 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 25–30 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Min, D.; Byun, I.; Lee, G.H.; Na, S.; Kim, J. Cryocache: A fast, large, and cost-effective cache architecture for cryogenic computing. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, Lausanne, Switzerland, 16–20 March 2020; pp. 449–464. [Google Scholar] [CrossRef] [Green Version]
- Chiang, H.; Wang, J.; Chen, T.; Chiang, T.; Bair, C.; Tan, C.; Huang, L.; Yang, H.; Chuang, J.; Lee, H.; et al. Cold MRAM as a Density Booster for Embedded NVM in Advanced Technology. In Proceedings of the 2021 Symposium on VLSI Technology, Kyoto, Japan, 13–19 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–2. [Google Scholar]
- Hu, V.P.H.; Liu, C.J. Static Noise Margin Analysis for Cryo-CMOS SRAM Cell. In Proceedings of the 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hualien, Taiwan, 25–27 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Garzón, E.; De Rose, R.; Crupi, F.; Teman, A.; Lanuzza, M. Exploiting STT-MRAMs for cryogenic non-volatile cache applications. IEEE Trans. Nanotechnol. 2021, 20, 123–128. [Google Scholar] [CrossRef]
- Garzón, E.; De Rose, R.; Crupi, F.; Carpentieri, M.; Teman, A.; Lanuzza, M. Simulation Analysis of DMTJ-Based STT-MRAM Operating at Cryogenic Temperatures. IEEE Trans. Magn. 2021, 57, 1–6. [Google Scholar] [CrossRef]
- Garzón, E.; De Rose, R.; Crupi, F.; Trojman, L.; Teman, A.; Lanuzza, M. Relaxing non-volatility for energy-efficient DMTJ based cryogenic STT-MRAM. Solid-State Electron. 2021, 184, 108090. [Google Scholar] [CrossRef]
- De Rose, R.; Lanuzza, M.; d’Aquino, M.; Carangelo, G.; Finocchio, G.; Crupi, F.; Carpentieri, M. A compact model with spin-polarization asymmetry for nanoscaled perpendicular MTJs. IEEE Trans. Electron Devices 2017, 64, 4346–4353. [Google Scholar] [CrossRef]
- De Rose, R.; d’Aquino, M.; Finocchio, G.; Crupi, F.; Carpentieri, M.; Lanuzza, M. Compact modeling of perpendicular STT-MTJs with double reference layers. IEEE Trans. Nanotechnol. 2019, 18, 1063–1070. [Google Scholar] [CrossRef]
- Garzón, E.; De Rose, R.; Crupi, F.; Trojman, L.; Finocchio, G.; Carpentieri, M.; Lanuzza, M. Assessment of STT-MRAMs based on double-barrier MTJs for cache applications by means of a device-to-system level simulation framework. Integration 2020, 71, 56–69. [Google Scholar] [CrossRef]
- Hu, G.; Lee, J.H.; Nowak, J.J.; Sun, J.Z.; Harms, J.; Annunziata, A.; Brown, S.; Chen, W.; Kim, Y.H.; Lauer, G.; et al. STT-MRAM with double magnetic tunnel junctions. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; pp. 26.3.1–26.3.4. [Google Scholar] [CrossRef]
- Garzón, E.; Lanuzza, M.; Taco, R.; Strangio, S. Ultralow voltage finFET-versus TFET-based STT-MRAM cells for IoT applications. Electronics 2021, 10, 1756. [Google Scholar] [CrossRef]
- Garzón, E.; De Rose, R.; Crupi, F.; Trojman, L.; Lanuzza, M. Assessment of STT-MRAM performance at nanoscaled technology nodes using a device-to-memory simulation framework. Microelectron. Eng. 2019, 215, 111009. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W.; Lakys, Y.; Klein, J.; Kim, J.; Ravelosona, D.; Chappert, C. Compact Modeling of Perpendicular-Anisotropy CoFeB/MgO Magnetic Tunnel Junctions. IEEE Trans. Electron Devices 2012, 59, 819–826. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Y.; Wang, J.; Zhang, Z.; Zhang, K.; Zheng, Z.; Klein, J.; Ravelosona, D.; Zhang, Y.; Zhao, W. Compact Modeling of Perpendicular-Magnetic-Anisotropy Double-Barrier Magnetic Tunnel Junction With Enhanced Thermal Stability Recording Structure. IEEE Trans. Electron Devices 2019, 66, 2431–2436. [Google Scholar] [CrossRef]
- Hill, C. Noise margin and noise immunity in logic circuits. Microelectronics 1968, 1, 16–21. [Google Scholar]
- Seevinck, E.; List, F.J.; Lohstroh, J. Static-noise margin analysis of MOS SRAM cells. IEEE J. Solid-State Circuits 1987, 22, 748–754. [Google Scholar] [CrossRef] [Green Version]
- Teman, A.; Mordakhay, A.; Mezhibovsky, J.; Fish, A. A 40-nm sub-threshold 5T SRAM bit cell with improved read and write stability. IEEE Trans. Circuits Syst. II: Express Briefs 2012, 59, 873–877. [Google Scholar] [CrossRef]
- Meinerzhagen, P.; Teman, A.; Giterman, R.; Burg, A.; Fish, A. Exploration of Sub-VT and Near-VT 2T Gain-Cell Memories for Ultra-Low Power Applications under Technology Scaling. J. Low Power Electron. Appl. 2013, 3, 54–72. [Google Scholar] [CrossRef] [Green Version]
- De Rose, R.; Lanuzza, M.; Crupi, F.; Siracusano, G.; Tomasello, R.; Finocchio, G.; Carpentieri, M.; Alioto, M. A Variation-Aware Timing Modeling Approach for Write Operation in Hybrid CMOS/STT-MTJ Circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 1086–1095. [Google Scholar] [CrossRef]
- Rehm, L.; Wolf, G.; Kardasz, B.; Pinarbasi, M.; Kent, A.D. Sub-nanosecond spin-torque switching of perpendicular magnetic tunnel junction nanopillars at cryogenic temperatures. Appl. Phys. Lett. 2019, 115, 182404. [Google Scholar] [CrossRef]
- Quang, K.T.; Ruocco, S.; Alioto, M. Boosted sensing for enhanced read stability in STT-MRAMs. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1238–1241. [Google Scholar] [CrossRef]
- Trinh, Q.K.; Ruocco, S.; Alioto, M. Novel Boosted-Voltage Sensing Scheme for Variation-Resilient STT-MRAM Read. IEEE Trans. Circuits Syst. I Regul. Pap. 2016, 63, 1652–1660. [Google Scholar] [CrossRef]
- Trinh, Q.; Ruocco, S.; Alioto, M. Dynamic Reference Voltage Sensing Scheme for Read Margin Improvement in STT-MRAMs. IEEE TCAS-I 2018, 65, 1269–1278. [Google Scholar] [CrossRef]
Impact of Cryogenic Operation | Memory Technologies | ||
---|---|---|---|
SRAM | GC-eDRAM | STT-MRAM | |
Pros | Less leakage power | Less refresh power | Better endurance |
Faster memory access (e.g., read/write) | Faster memory access (e.g., read/write) | Better logic robustness (e.g., higher TMR) | |
Less bitline resistance | Less bitline resistance | Less bitline resistance | |
Faster peripheral circuitry | Faster peripheral circuitry | Faster peripheral circuitry | |
Cons | Lower write SNM | Refresh controller integration * | Higher write energy |
Description | Value |
---|---|
MTJ diameter—d | 30 nm |
Free layer thickness—tFL | 1.2 nm |
SMTJ barrier thickness—tOX | 0.85 nm |
DMTJ top barrier thickness—tOX,T | 0.85 nm |
DMTJ bottom barrier thickness—tOX,B | 0.4 nm |
Resistance-area product—RA | 11 |
Spin polarization factor—P | 0.66 |
Saturation magnetization—MS | 1.58 T |
Gilbert damping factor— | 0.03 |
Interfacial perpendicular Anisotropy constant—Ki | 1.3 × /m2 |
Parameter | 6T-SRAM | 2T Mixed GC nMOS-pMOS (2T NW-PR) | SMTJ-Based STT-MRAM | DMTJ-Based STT-MRAM |
---|---|---|---|---|
Normalized Area | 1X | 0.27X | 0.12X | 0.12X |
Noise or Sensing Margin * (mV) | (464/187/562) | 591 | 244 | 108 |
DRT (ms) | Static | 23.3 | Non-Volatile | Non-Volatile |
Read time (ns) | 0.252 | 0.26 | 1 | 1 |
Write time (ns) | 0.133 | 0.144 | 19.4 | 3.28 |
Read Energy/bit (fJ) | 2.279 | 0.739 | 16.4 | 4.63 |
Write Energy/bit (fJ) | 2.430 | 0.852 | 969 | 165 |
Refresh Energy/bit (fJ) | — | 1.591 | — | — |
Leakage Power/bit † (fW) | 376.2 | 6.768 ‡ | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garzón, E.; Teman, A.; Lanuzza, M. Embedded Memories for Cryogenic Applications. Electronics 2022, 11, 61. https://doi.org/10.3390/electronics11010061
Garzón E, Teman A, Lanuzza M. Embedded Memories for Cryogenic Applications. Electronics. 2022; 11(1):61. https://doi.org/10.3390/electronics11010061
Chicago/Turabian StyleGarzón, Esteban, Adam Teman, and Marco Lanuzza. 2022. "Embedded Memories for Cryogenic Applications" Electronics 11, no. 1: 61. https://doi.org/10.3390/electronics11010061