Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = helical milling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1863 KiB  
Article
Advancements in Hole Quality for AISI 1045 Steel Using Helical Milling
by Pedro Mendes Silva, António José da Fonseca Festas, Robson Bruno Dutra Pereira and João Paulo Davim
J. Manuf. Mater. Process. 2025, 9(8), 256; https://doi.org/10.3390/jmmp9080256 - 31 Jul 2025
Viewed by 148
Abstract
Helical milling presents a promising alternative to conventional drilling for hole production, offering superior surface quality and improved production efficiency. While this technique has been extensively applied in the aerospace industry, its potential for machining common engineering materials, such as AISI 1045 steel, [...] Read more.
Helical milling presents a promising alternative to conventional drilling for hole production, offering superior surface quality and improved production efficiency. While this technique has been extensively applied in the aerospace industry, its potential for machining common engineering materials, such as AISI 1045 steel, remains underexplored in the literature. This study addresses this gap by systematically evaluating the influence of key process parameters—cutting speed (Vc), axial depth of cut (ap), and tool diameter (Dt)—on hole quality attributes, including surface roughness, burr formation, and nominal diameter accuracy. A full factorial experimental design (23) was employed, coupled with analysis of variance (ANOVA), to quantify the effects and interactions of these parameters. The results reveal that, with a higher Vc, it is possible to reduce surface roughness (Ra) by 30% to 40%, while an increased ap leads to a 50% increase in Ra. Additionally, Dt emerged as the most critical factor for nominal diameter accuracy, reducing geometrical errors by 1% with a larger Dt. Burr formation was predominantly observed at the lower end of the hole, highlighting challenges specific to this technique. These findings provide valuable insights into optimizing helical milling for low-carbon steels, offering a foundation for broader industrial adoption and further research. Full article
Show Figures

Figure 1

24 pages, 5439 KiB  
Article
Surface Quality of CNC Face-Milled Maple (Acer pseudoplatanus) and Oak (Quercus robur) Using Two End-Mill Tool Types and Varying Processing Parameters
by Ana-Maria Angelescu, Lidia Gurau and Mihai Ispas
Appl. Sci. 2025, 15(13), 6975; https://doi.org/10.3390/app15136975 - 20 Jun 2025
Viewed by 203
Abstract
Face milling with end-mill tools represents a solution for woodworking applications on small-scale or complex surfaces, but information regarding the surface quality per specific tool type, wood material, and processing parameters is still limited. Therefore, this study examined the surface quality of tangential [...] Read more.
Face milling with end-mill tools represents a solution for woodworking applications on small-scale or complex surfaces, but information regarding the surface quality per specific tool type, wood material, and processing parameters is still limited. Therefore, this study examined the surface quality of tangential oak and maple CNC face-milled with two end-mill tools—straight-edged and helical—for three values of stepover (5, 7, 9 mm) and two cutting depths (1 and 3 mm). The surface quality was analyzed with roughness parameters, roughness profiles, and stereomicroscopic images and was referenced to that of very smooth surfaces obtained by super finishing. The helical end mill caused significant fiber tearing in maple and disrupted vessel outlines, while prominent tool marks such as regular ridges across the grain were noticed in oak. The best surface roughness was obtained in the case of the straight-edged tool and minimum stepover and depth of cut, which came closest to the quality of the shaved surfaces. An increase in the cutting depth generally increased the core surface roughness and fuzziness, for both tools, and this trend increased with an increase in the stepover value. The species-dependent machining quality implies that the selection of tool geometry and process parameters must be tailored per species. Full article
Show Figures

Figure 1

20 pages, 11285 KiB  
Article
Improved Use of the Full Length of Milling-Tool Flutes in Processes of Air-Contour Milling
by César García-Hernández, Juan-Jesús Valdivia-Sánchez, Pedro Ubieto-Artur, Mariano García-Arbués, Anastasios Tzotzis, Juan-José Garde-Barace, Francisco Valdivia-Calvo and José-Luis Huertas-Talón
J. Manuf. Mater. Process. 2025, 9(5), 150; https://doi.org/10.3390/jmmp9050150 - 2 May 2025
Cited by 1 | Viewed by 967
Abstract
The cutting length of milling tools must be longer than the axial distance of the material to be processed. In fact, in most cases, the cutting length far exceeds the thickness of the material to be removed. Therefore, along the entire length of [...] Read more.
The cutting length of milling tools must be longer than the axial distance of the material to be processed. In fact, in most cases, the cutting length far exceeds the thickness of the material to be removed. Therefore, along the entire length of the milling-tool flutes, only the area farthest from the shank wears out, leaving the rest of the tool practically without any wear, especially in the area closest to the shank. This research analyses a toolpath model to use the complete length of the milling tool flutes, in those machining operations in which it is possible, with the objective of reducing the costs associated with tool wearing and resharpening. This improves the tool performance, which clearly increases the sustainability of the milling process. For this purpose, it is necessary to transform the numerical control programme that performs a flat (2D) toolpath into a helical (3D) one by decomposing the arcs and rectilinear segments into a succession of points within a precision range. A negative aspect of this method is that it can only be applied to bottomless contours in processes of air-contour milling. Full article
Show Figures

Graphical abstract

20 pages, 5970 KiB  
Article
Design and Realization of a Cutting Force Measuring System to Analyze the Chip Removal Process in Rotational Turning
by István Sztankovics
Metrology 2025, 5(1), 5; https://doi.org/10.3390/metrology5010005 - 12 Jan 2025
Viewed by 1367
Abstract
This study focuses on a detailed analysis of the cutting forces in rotational turning, a novel machining process designed to achieve high surface quality and productivity. Unlike traditional longitudinal turning, rotational turning employs a helical cutting-edged tool that performs a circular feeding movement, [...] Read more.
This study focuses on a detailed analysis of the cutting forces in rotational turning, a novel machining process designed to achieve high surface quality and productivity. Unlike traditional longitudinal turning, rotational turning employs a helical cutting-edged tool that performs a circular feeding movement, introducing complex kinematics that complicates the accurate measurement of the cutting forces. To address this, the theoretical background was described for modeling the cutting force removal. The process was experimentally simulated on a CNC milling machine using a custom-designed measurement system. The major cutting force, passive force, and feed force were successfully measured and analyzed under varying feed conditions for both rotational and longitudinal turning. The results demonstrate a significant reduction in the passive force during rotational turning compared to longitudinal turning, which directly contributes to lower elastic deformation in the radial direction of the workpiece. This reduction improves the dimensional accuracy and stability during machining. Additionally, the feed force was observed to be slightly higher in rotational turning, reflecting the influence of the rotational movement of the tool. These findings highlight the advantages of rotational turning for applications requiring precision and surface quality, particularly where radial deformation is a critical concern. This study establishes a reliable methodology for force measurement in rotational turning and provides valuable comparative insights into its performance relative to conventional turning processes. Full article
Show Figures

Figure 1

22 pages, 15722 KiB  
Article
Mathematical Modeling and Generating Method of Hourglass Worm Gear Hob’s Rake Face Based on a Rotating Paraboloid Surface
by Yupeng Li, Jie Yang, Run Gu, Zhijiang Chen and Chunming Xia
Machines 2024, 12(11), 770; https://doi.org/10.3390/machines12110770 - 1 Nov 2024
Cited by 1 | Viewed by 1353
Abstract
The rake angles on both sides of the cutting edges of the hourglass worm gear hob significantly influence its cutting performance, which, in turn, plays a decisive role in the surface quality of the machined worm wheel. To balance the rake angles along [...] Read more.
The rake angles on both sides of the cutting edges of the hourglass worm gear hob significantly influence its cutting performance, which, in turn, plays a decisive role in the surface quality of the machined worm wheel. To balance the rake angles along the tooth height direction of each hob tooth and enhance the overall cutting performance of the hob, this paper proposes a method that utilizes a rotating paraboloid surface to generate the helical rake face of the hourglass worm gear hob. First, the conjugate condition equations for the rake face generated by the rotating paraboloid surface are derived. A mathematical model for the helical rake face of planar double-enveloping hourglass worm gear hob is established. This study explores the influence of two machining parameters on the rake angle, specifically the milling drive ratio coefficient k and the geometric parameter of a parabolic milling cutter p. Through a systematic analysis of the variations in rake angle at the dividing toroidal surface and along the tooth height direction, the optimal parameter values were identified as k = 0.9115 and p = 0.6834. The results show that, after optimization, the hob rake angle range is around ±4.7°, with a maximum rake angle difference of 6.3072° along the tooth height direction, and the rake angles on both sides of the teeth are more balanced. The structure of the rake face is more reasonable, reflecting the feasibility of rotating paraboloid tools for forming tools in the machining of complex surfaces. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

18 pages, 26645 KiB  
Article
A Study on the Influence of Central Edge Absence in Helical Grinding for Micro-Hole Fabrication
by Bochuan Chen, Xiaojin Shi, Chong Zhang, Muhammad Amin and Songmei Yuan
Materials 2024, 17(21), 5260; https://doi.org/10.3390/ma17215260 - 29 Oct 2024
Viewed by 984
Abstract
The fabrication of micro-holes in hard-to-machine materials presents considerable challenges in precision machining. This study proposes a novel approach that employs high-strength micro-grinding tools with a central abrasive grain absence to create micro-holes through helical grinding. Due to the random distribution of abrasive [...] Read more.
The fabrication of micro-holes in hard-to-machine materials presents considerable challenges in precision machining. This study proposes a novel approach that employs high-strength micro-grinding tools with a central abrasive grain absence to create micro-holes through helical grinding. Due to the random distribution of abrasive grains, the absence of grains at the tool’s center becomes an inevitable technical challenge. This research examines the correlation between the diameter of the absence zone and the bottom morphology of the machined hole, highlighting the potential formation of disc-shaped or cylindrical residues. A model for predicting the height of the disc-shaped residues is developed, and the mechanisms governing their removal during grinding are further explored. The findings indicate that when a central grain absence exists, the first abrasive grain surrounding the absence zone, referred to as the inner-edge grain, is responsible for removing the disc-shaped residues. Based on these results, a novel 0.8 mm diameter micro-PCD milling–grinding tool with a central edge absence is designed, and experimental validation is performed using 65% SiCp/Al composite materials. The experimental results confirm that the central grain absence leads to the formation of disc-shaped residues at the bottom of the machined hole during helical grinding, and the morphology of the experimentally obtained residues aligns with the theoretical predictions and simulations. This study significantly advances micro-grinding wheel technology and provides a solid foundation for the precision machining of micro-holes in hard-to-machine materials. Full article
Show Figures

Figure 1

14 pages, 7897 KiB  
Article
Cutting Force Model of Ultrasonic Elliptical Vibration-Assisted Helical Milling of SiCp/Al Composites
by Ji Liu, Yunguang Zhou, Shiqi Jia, Yize Lu, Hui Zheng and Ming Li
Crystals 2024, 14(9), 774; https://doi.org/10.3390/cryst14090774 - 30 Aug 2024
Cited by 1 | Viewed by 1336
Abstract
SiC particle-reinforced Al metal matrix (SiCp/Al) composites are more and more widely used in the aerospace field due to their excellent properties, and the realization of high-quality drilling of SiCp/Al composites has an important impact on improving the performance of parts. In this [...] Read more.
SiC particle-reinforced Al metal matrix (SiCp/Al) composites are more and more widely used in the aerospace field due to their excellent properties, and the realization of high-quality drilling of SiCp/Al composites has an important impact on improving the performance of parts. In this paper, ultrasonic elliptical vibration-assisted helical milling (UEVHM) is applied to the machining of SiCp/Al composites. Firstly, the kinematic analysis of UEVHM is carried out, and then the cutting force model is established, which takes into account the interaction between particles and the cutting edge, and calculates the crushing force, pressing force, and debonding force of the particles. Finally, the UEVHM tests are conducted to verify the accuracy of the model and to analyze the influence of process parameters on the cutting force. It was found that the radial and axial forces decreased by 34% and 39%, respectively, when the spindle speed was increased from 2000 r/min to 10,000 r/min; the radial and axial forces increased by 200% and 172%, respectively, when the pitch increased from 0.1 mm to 0.4 mm; and the radial and axial forces increased by 29% and 69%, respectively, when the rotational speed increased from 30 r/min to 70 r/min. The maximum error between the cutting force model and the experimental values is 19.06%, which has a good accuracy. The research content of this paper can provide some guidance for the high-quality hole-making of SiCp/Al composites. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

12 pages, 3274 KiB  
Article
Effects of Milling Methods on Cutting Performance of Wood–Plastic Composites Based on Principal Component Analysis
by Yunqi Zhu, Dietrich Buck, Jun Guan, Meiqi Song, Qi Tang, Xiaolei Guo and Zhaolong Zhu
Forests 2024, 15(9), 1516; https://doi.org/10.3390/f15091516 - 29 Aug 2024
Cited by 2 | Viewed by 1207
Abstract
In the industrial machining of wood–plastic composites, optimization of cutting parameters is key to improving workpiece machinability. To explore the influence of different milling methods of straight-tooth milling, helical milling, and tapered milling on the machinability of wood–plastic composite, a milling experiment was [...] Read more.
In the industrial machining of wood–plastic composites, optimization of cutting parameters is key to improving workpiece machinability. To explore the influence of different milling methods of straight-tooth milling, helical milling, and tapered milling on the machinability of wood–plastic composite, a milling experiment was performed. Cutting force, cutting temperature, and surface roughness were selected as evaluative factors. Based on experimental results, principal component analysis was used to analyze the significance of each factor’s contribution and to assess different milling methods of wood–plastic composite for different needs. By calculating the total score from principal component analysis, the optimized cutting mode was determined to be straight-tooth milling, with feed per tooth of 0.2 mm and cutting depth of 0.5 mm. Milling methods in order of decreasing cutting force were helical milling > straight-tooth milling > tapered milling. Milling methods in order of decreasing cutting temperature were helical milling > tapered milling > straight-tooth milling. In terms of the tradeoff between surface quality and processing efficiency, tapered milling is suitable for finishing, considering the machining quality, while helical milling is suitable for roughing, considering the machining efficiency. One of the contributions of this study is to link three separate milling study systems (straight-tooth milling, helical milling, and tapered milling) into one system. Full article
(This article belongs to the Special Issue Advances in Technology and Solutions for Wood Processing)
Show Figures

Figure 1

19 pages, 33144 KiB  
Article
Performance Analysis of Helical Milling and Drilling Operations While Machining Carbon Fiber-Reinforced Aluminum Laminates
by Gururaj Bolar, Anoop Aroor Dinesh, Ashwin Polishetty, Raviraj Shetty, Anupama Hiremath and V. L. Neelakantha
J. Manuf. Mater. Process. 2024, 8(3), 113; https://doi.org/10.3390/jmmp8030113 - 29 May 2024
Cited by 2 | Viewed by 1697
Abstract
Being a difficult-to-cut material, Fiber Metal Laminates (FML) often pose challenges during conventional drilling and require judicious selection of machining parameters to ensure defect-free laminates that can serve reliably during their service lifetime. Helical milling is a promising technique for producing good-quality holes [...] Read more.
Being a difficult-to-cut material, Fiber Metal Laminates (FML) often pose challenges during conventional drilling and require judicious selection of machining parameters to ensure defect-free laminates that can serve reliably during their service lifetime. Helical milling is a promising technique for producing good-quality holes and is preferred over conventional drilling. The paper compares conventional drilling with the helical milling technique for producing holes in carbon fiber-reinforced aluminum laminates. The effect of machining parameters, such as cutting speed and axial feed, on the magnitude of cutting force and the machining temperature during conventional drilling as well as helical milling is studied. It was observed that the thrust force produced during machining reduces considerably during helical milling in comparison to conventional drilling at a constant axial feed rate. The highest machining temperature recorded for helical milling was much lower in comparison to the highest machining temperature measured during conventional drilling. The machining temperatures recorded during helical milling were well below the glass transition temperature of the epoxy used in carbon fiber prepreg, hence protecting the prepreg from thermal degradation during the hole-making process. The surface roughness of the holes produced by both techniques is measured, and the surface morphology of the drilled holes is analyzed using a scanning electron microscope. The surface roughness of the helical-milled holes was lower than that for holes produced by conventional drilling. Scanning electron microscope images provided insights into the interaction of the hole surface with the chips during the chip evacuation stage under different speeds and feed rates. The microhardness of the aluminum layers increased after processing holes using drilling and helical milling operations. The axial feed/axial pitch had minimal influence on the microhardness increase in comparison to the cutting speed. Full article
(This article belongs to the Topic Advanced Composites Manufacturing and Plastics Processing)
Show Figures

Figure 1

20 pages, 11713 KiB  
Article
Effects of Grinding Methods of Tartary Buckwheat Leaf Powder on the Characteristics and Micromorphology of Wheat Dough
by Yuxia Feng, Jiaying Zhu, Yunlong Li and Zhe Cheng
Foods 2024, 13(8), 1233; https://doi.org/10.3390/foods13081233 - 17 Apr 2024
Cited by 1 | Viewed by 1284
Abstract
The functional components in tartary buckwheat leaf powder can give flour products higher nutritional value. To comprehensively realize the high-value utilization of tartary buckwheat and its by-products, electric stone mill powder (EMP), ultra-fine mill powder (UMP), steel mill powder (SMP), and grain mill [...] Read more.
The functional components in tartary buckwheat leaf powder can give flour products higher nutritional value. To comprehensively realize the high-value utilization of tartary buckwheat and its by-products, electric stone mill powder (EMP), ultra-fine mill powder (UMP), steel mill powder (SMP), and grain mill powder (GMP) from tartary buckwheat leaves were used in the preparation of wheat dough, and this was used to explore their effects on dough properties and protein microstructure. With an increase in tartary buckwheat leaf powder, the hydration characteristics, protein weakening rate, and starch gelatinization characteristics of the dough changed, and the water holding capacity and swelling capacity decreased. The retrogradation value increased, which could prolong the shelf life of related products. The water solubility of the dough showed an upward trend and was the lowest at 10% UMP. The addition of UMP produced a more uniform dough stability time and the lowest degree of protein weakening, which made the dough more resistant to kneading. An increasing amount of tartary buckwheat leaf powder augmented the free sulfhydryl content of the dough and decreased the disulfide bond content. The disulfide bond content of the dough containing UMP was higher than that of the other doughs, and the stability of the dough was better. The peaks of the infrared spectrum of the dough changed after adding 10% UMP and 20% EMP. The content of α-helical structures was the highest at 10% UMP, and the content of ordered structures was enhanced. The polymerization of low molecular weight proteins to form macromolecular polymers led to a reduction in surface hydrophobic regions and the aggregation of hydrophobic groups. The SEM results also demonstrated that at 10% tartary buckwheat leaf powder, the addition of UMP was significantly different from that of the other three leaf powders, and at 20%, the addition of EMP substantially altered the structure of the dough proteins. Considering the effects of different milling methods and different added amounts of tartary buckwheat leaf powder on various characteristics of dough, 10% UMP is the most suitable amount to add to the dough. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

19 pages, 11432 KiB  
Article
Adaptive Machining Method for Helical Milling of Carbon Fiber-Reinforced Plastic/Titanium Alloy Stacks Based on Interface Identification
by Chao Yan, Renke Kang, Fantong Meng, Zhigang Dong, Yan Bao and Guolin Yang
Materials 2024, 17(2), 297; https://doi.org/10.3390/ma17020297 - 7 Jan 2024
Cited by 2 | Viewed by 1470
Abstract
CFRP/Ti stacks composed of carbon fiber-reinforced plastic composites (CFRP) and titanium alloys (Ti) are widely used in aerospace fields. However, in the integrated hole-making process of CFRP/Ti stacks, the machining characteristics of various materials are significantly different, and constant machining parameters cannot simultaneously [...] Read more.
CFRP/Ti stacks composed of carbon fiber-reinforced plastic composites (CFRP) and titanium alloys (Ti) are widely used in aerospace fields. However, in the integrated hole-making process of CFRP/Ti stacks, the machining characteristics of various materials are significantly different, and constant machining parameters cannot simultaneously meet the high-quality machining requirements of two materials. In addition, errors exist between the actual thickness of each material layer and the theoretical value, which causes an impediment to the monitoring of the machining interface and the corresponding adjustment of parameters. An adaptive machining method for the helical milling of CFRP/Ti stacks based on interface identification is proposed in this paper. The machining characteristics of the pneumatic spindle and the interface state in the helical milling of CFRP/Ti stacks are analyzed using self-developed portable helical milling equipment, and a new algorithm for the real-time monitoring of the machining interface position and adaptive adjustment of the machining parameters according to the interface identification result is proposed. Helical milling experiments were carried out, the results show that the proposed method can effectively identify the position of the machining interface with good identification accuracy. Moreover, the proposed parameter-adaptive optimized machining method for CFRP/Ti stacks can significantly improve hole diameter accuracy and machining quality. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

9 pages, 9743 KiB  
Proceeding Paper
Helical Milling and Drilling for Hole-Making in CARALL: Experimental Evaluation
by Madhusudhan Balkundhi, Satish Shenoy Baloor and Gururaj Bolar
Eng. Proc. 2023, 59(1), 67; https://doi.org/10.3390/engproc2023059067 - 19 Dec 2023
Viewed by 1097
Abstract
Carbon fiber-reinforced aluminum laminates, known as CARALL, have wide applications in aircraft structures. However, numerous holes must be processed to assemble these structures, which is conventionally practiced through drilling. However, the drilling process exhibits certain limitations when utilized for hole-making in heterogeneous materials. [...] Read more.
Carbon fiber-reinforced aluminum laminates, known as CARALL, have wide applications in aircraft structures. However, numerous holes must be processed to assemble these structures, which is conventionally practiced through drilling. However, the drilling process exhibits certain limitations when utilized for hole-making in heterogeneous materials. In the recent past, helical milling has positioned itself as an alternative to the drilling process. However, helical milling performance examination during hole-making in CARALL is scant and needs further evaluation. The present study compares the milling process to the drilling process considering important performance indices, including cutting forces, surface roughness, chip morphology, machining temperature, and burr size. Additionally, microscopic characterization of the boreholes is performed to verify the presence of surface damage and delamination defects. Helical milling successfully lowered the thrust and radial forces and restrained the machining temperature below the levels attained via drilling. The diametrical deviation is higher at entry and lower at exit for both processes; however, helical milling produced holes with much higher accuracy. Helical milling developed smaller sized holes in comparison to drilling. Moreover, rougher surfaces due to the abrasion of continuous chips were observed in drilling, while a smoother finish was noted in helically milled holes. Based on the comprehensive comparative analysis, helical milling positions itself as an acceptable alternative to conventional drilling for machining fiber metal laminates. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

15 pages, 11012 KiB  
Article
Machining Temperature, Surface Integrity and Burr Size Investigation during Coolant-Free Hole Milling in Ti6Al4V Titanium Alloy
by Ragavanantham Shanmugam, Satish Shenoy Baloor, Ugur Koklu, Ashwin Polishetty and Gururaj Bolar
Lubricants 2023, 11(8), 349; https://doi.org/10.3390/lubricants11080349 - 15 Aug 2023
Cited by 14 | Viewed by 2094
Abstract
Modern Aircraft structures use titanium alloys where the processing of holes becomes essential to assemble aerospace parts. Considering the limitations of drilling, the study evaluates the helical milling for hole processing in Ti6Al4V. The experimental evaluation was conducted by considering burr size, surface [...] Read more.
Modern Aircraft structures use titanium alloys where the processing of holes becomes essential to assemble aerospace parts. Considering the limitations of drilling, the study evaluates the helical milling for hole processing in Ti6Al4V. The experimental evaluation was conducted by considering burr size, surface roughness, machining temperature, and microhardness under coolant-free conditions. The axial feed and cutting speed were varied at three levels, and nine experiments were conducted. The results exhibit a lower machining temperature during helical milling than during drilling. In addition, the helical milling helped to lower the surface roughness and size of the exit burrs. However, helical-milled holes showed higher subsurface microhardness than conventionally drilled holes. The process variables were influential on machining temperature magnitude. The highest recorded temperature of 234.7 °C was observed at 60 m/min of cutting speed and 0.6 mm/rev feed. However, the temperature rise did not affect the microhardness. Strain hardening associated with mechanical deformation was the primary mechanism driving the increase in microhardness. Helical-milled holes exhibited an excellent surface finish at lower axial feeds, while chatter due to tool deformation at higher feeds (0.6 mm/rev) diminished the surface finish. The surface roughness increased by 98% when the cutting speed increased to 60 m/min from 20 m/min, while a moderate increment of 28% was observed when the axial feed increased to 0.6 mm/rev from 0.2 mm/rev. Furthermore, the formation of relatively smaller burrs was noted due to significantly lower thrust load and temperature produced during helical milling. Full article
(This article belongs to the Special Issue Advances in Sustainable Machining)
Show Figures

Figure 1

21 pages, 4056 KiB  
Article
Development of Pitch Cycle-Based Iterative Learning Contour Control for Thread Milling Operations in CNC Machine Tools
by Syh-Shiuh Yeh and Wei-Jia Jiang
Appl. Sci. 2023, 13(11), 6447; https://doi.org/10.3390/app13116447 - 25 May 2023
Cited by 4 | Viewed by 1957
Abstract
The helical contour motion accuracy of feed drive axes is important for thread milling operations in computer numerical control (CNC) machine tools. However, the motion dynamics and external disturbances significantly affect the contour motion results, while the feed drive axes perform helical motions [...] Read more.
The helical contour motion accuracy of feed drive axes is important for thread milling operations in computer numerical control (CNC) machine tools. However, the motion dynamics and external disturbances significantly affect the contour motion results, while the feed drive axes perform helical motions in thread milling operations. Although existing iterative learning contour control (ILCC) methods can improve contour motion accuracy, the problems of data recording and processing on memory usage and computational burden in control systems, wasted materials, and increased costs in thread manufacturing still limit the practical applications of ILCC. Therefore, considering the similar motion dynamics and external disturbances of the feed drive axes during the pitch cycle motions of a helical path, this study developed a pitch cycle-based iterative learning contour control (PCB-ILCC) method to address the control system and thread manufacturing problems caused by the use of ILCC. For PCB-ILCC, this study adopted contour error vector estimation by referring to the interpolated positions on the pitch cycle of the helical path to simplify the computational complexity and designed the ILCC using the cycle learning method to easily implement the ILCC structure. Thus, this study developed a permanent magnet synchronous motor (PMSM) driving control utilizing the robust control method to mitigate the problems of motion dynamics and external disturbances on the feed drive axes. Thread milling experiments performed on a five-axis CNC machining center demonstrated the feasibility of the PCB-ILCC and validated that it can significantly improve the helical contour motion accuracy of the feed drive axes and achieve an 80% contour error reduction rate in comparison with the proportional–proportional–integral control, which is extensively used in commercialized PMSM drivers and CNC controllers. Full article
(This article belongs to the Special Issue Advances in Intelligent Robots and Precision Machining)
Show Figures

Figure 1

27 pages, 13182 KiB  
Article
Using Nano-Fluids Minimum Quantity Lubrication (NF-MQL) to Improve Tool Wear Characteristics for Efficient Machining of CFRP/Ti6Al4V Aeronautical Structural Composite
by Kiran Mughal, Mohammad Pervez Mughal, Muhammad Umar Farooq, Saqib Anwar and Muhammad Imam Ammarullah
Processes 2023, 11(5), 1540; https://doi.org/10.3390/pr11051540 - 17 May 2023
Cited by 39 | Viewed by 3138
Abstract
The aeronautical industry constantly strives for efficient technologies to facilitate hole-making in CFRP/Ti6Al4V structural components. The prime challenge in this direction is excessive tool wear because of the different engineering properties of both materials. Nanofluid minimum quantity lubrication (NF-MQL) is the latest technology [...] Read more.
The aeronautical industry constantly strives for efficient technologies to facilitate hole-making in CFRP/Ti6Al4V structural components. The prime challenge in this direction is excessive tool wear because of the different engineering properties of both materials. Nanofluid minimum quantity lubrication (NF-MQL) is the latest technology to provide synergistic improvement in tool tribological properties and lubrication function during machining. In the current study, an MoS2-based NF-MQL system was applied during helical milling using a FIREX-coated tool. In-depth analysis of wear, a scanning electron microscope (SEM), and electron deposition spectroscopy (EDS) were used to evaluate workpiece elemental transfer and tool wear mechanisms. Experimental findings showed that 1% nanoparticles concentration in lubricant resulted in low tool wear of 13 µm after 10 holes. The SEM and EDS analyses depicted formation of tribo-film on the surface, resulting less severe wear and a reduced degree of adhesion. However, a low nanoparticle concentration of 0.5% resulted in 106 µm tool wear after 10 holes with slight evidence of tribo-film. Parametric analysis based on eccentricity, spindle speeds (individual for CFRP and Ti6Al4V), axial pitch, and tangential feed showed correlations with mechanical damage. An extended study of up to 200 holes showed diffusion of C element at a high rate as compared to metal elements such as W and Co. The lowest tool wear was observed using eccentricity level 1, spindle speed Ti6Al4V 1000 rpm, spindle speed CFRP 7500 rpm, tangential feed 0.01 mm/tooth, axial pitch 1.5 mm, and 1% of MoS2 nanoparticles. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Back to TopTop