Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (953)

Search Parameters:
Keywords = hedgehogs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2852 KB  
Review
Targeting Pathways Implicated in Cholesterol Metabolism for Novel Cancer Therapy
by Yi Zhou, Vishakha Sharma, Xiaoyu Li, Rajeev K. Singla, Ankush Kumar, Ashishkumar Kyada, Suhas Ballal, Deepak Nathiya, Apurva Koul, Mohammad Khalid, Monica Gulati, Sandeep Arora, Tapan Behl, Joachim Kavalakatt, Bairong Shen and Anupam Bishayee
Cancers 2026, 18(3), 428; https://doi.org/10.3390/cancers18030428 - 28 Jan 2026
Abstract
Cholesterol acts as a metabolic cue that reshapes diverse signaling networks, including hedgehog and several sterol-regulated pathways orchestrated by key proteins, including sterol regulatory element-binding protein 2 (SREBP2), sterol O-acyltransferase 1 (SOAT1), Niemann–Pick type C1 (NPC1), and proprotein convertase subtilisin/kexin type 9 (PCSK9). [...] Read more.
Cholesterol acts as a metabolic cue that reshapes diverse signaling networks, including hedgehog and several sterol-regulated pathways orchestrated by key proteins, including sterol regulatory element-binding protein 2 (SREBP2), sterol O-acyltransferase 1 (SOAT1), Niemann–Pick type C1 (NPC1), and proprotein convertase subtilisin/kexin type 9 (PCSK9). Research over the past decade has highlighted cholesterol metabolism as a key modulator of cancer development and a promising therapeutic target. By integrating mechanistic and translational evidence, this review seeks to clarify how cholesterol metabolism interfaces with oncogenic signaling and set directions for future investigation. Accumulating preclinical and clinical data suggest that dysregulated cholesterol levels, often associated with high-fat diets, may contribute to tumorigenesis and malignant transformation. Implicated pathways, such as SREBP, NPC1, PCSK9, and SOAT1, orchestrate various processes of lipid metabolism, including cholesterol synthesis, esterification, receptor degradation, and transport, that harbor a tumorigenic environment and promote oncogenic processes. Additionally, these enzymes and corresponding pathways provide a promising direction for developing metabolism-oriented anticancer strategies. Cholesterol metabolism dysregulation serves as a major avenue for cancer signaling and growth, but studies also highlight key molecular mechanisms and targets for future treatments. Future studies should focus on expanding studies into further cancer types, investigating combination therapies, and developing novel inhibitors of key molecular targets. Full article
13 pages, 2759 KB  
Article
Ptch2 Deficiency Triggers Lipoma Formation and Adipogenic Transcriptome Reprogramming in Nile tilapia (Oreochromis niloticus)
by Changle Zhao, Xiang Liu, Xi Peng, Yongxun Chen, Shijian Peng, Lei Liu, Deshou Wang and Jing Wei
Animals 2026, 16(3), 405; https://doi.org/10.3390/ani16030405 - 28 Jan 2026
Abstract
The Hedgehog (Hh) signaling pathway is a key regulator of adipogenesis and lipid metabolism. However, the specific role of its receptor, Patched2 (Ptch2), in these processes remains unclear. Here, using a CRISPR/Cas9-mediated ptch2 homozygous mutation model in Nile tilapia (Oreochromis niloticus), [...] Read more.
The Hedgehog (Hh) signaling pathway is a key regulator of adipogenesis and lipid metabolism. However, the specific role of its receptor, Patched2 (Ptch2), in these processes remains unclear. Here, using a CRISPR/Cas9-mediated ptch2 homozygous mutation model in Nile tilapia (Oreochromis niloticus), we found that Ptch2 deficiency induced visceral and perirenal lipomatosis characterized by small, multinucleated adipocytes. Comparative adipose transcriptomics revealed pronounced adipogenic reprogramming, with marked upregulation of genes governing de novo lipogenesis (e.g., acaca, fasn), fatty acid desaturation (e.g., scd, fadsd6), and triglyceride synthesis (e.g., dgat2, lpl). Biochemically, mutants exhibited elevated blood glucose and liver transaminases (alanine aminotransferase, aspartate aminotransferase) activity, and reduced alkaline phosphatase activity, indicating systemic metabolic dysregulation and hepatic stress. Our findings demonstrate that loss of Ptch2 triggers lipoma formation and adipogenic transcriptome reprogramming, highlighting its essential role in maintaining adipose tissue homeostasis. Full article
Show Figures

Figure 1

16 pages, 4353 KB  
Article
Fine-Tuning Positive-Surface-Charge Carbon Dots for High-Efficiency and Low-Cytotoxicity Gene Delivery
by Shuo Zhang, Yangming Zhou, Qi Zhang, Juanjuan Xue, Ruijie Li, Tao Liu, Qianqian Duan and Shengbo Sang
Nanomaterials 2026, 16(3), 169; https://doi.org/10.3390/nano16030169 (registering DOI) - 26 Jan 2026
Abstract
Carbon dots (CDs) have emerged as a promising non-viral gene delivery vector due to their excellent biocompatibility and tunable surface properties. In this study, four CDs with gradient-positive zeta potentials (7.23 mV, 16.7 mV, 25.3 mV, 34.5 mV) were synthesized via a hydrothermal [...] Read more.
Carbon dots (CDs) have emerged as a promising non-viral gene delivery vector due to their excellent biocompatibility and tunable surface properties. In this study, four CDs with gradient-positive zeta potentials (7.23 mV, 16.7 mV, 25.3 mV, 34.5 mV) were synthesized via a hydrothermal method. Among these, CDs-3 with an optimal zeta potential of 25.3 mV stood out, exhibiting ultra-low cytotoxicity (cell viability > 80% even at 50 μg/mL) and a transfection efficiency of nearly 100% (for GFP plasmid delivery), significantly outperforming commercial vectors Lipo2000 and PEI. A stable CDs-3/siIhh delivery system was constructed at a mass ratio of 2:1. In vitro evaluations confirmed that CDs-3/siIhh could efficiently regulate the Indian Hedgehog (Ihh) signaling pathway and osteoarthritis (OA)-related markers in both normal and IL-1β-induced inflammatory ATDC5 chondrocytes. Its regulatory effect was significantly superior to that of the commercial Lipo2000/siIhh and PEI/siIhh systems. This consistent “transcription–translation” regulation, combined with the carrier’s safety and excellent cellular internalization capacity in chondrocytes, highlights its potential for OA gene therapy. Collectively, our work develops a novel, safe, and efficient positive-potential CD-based gene delivery vector, providing a promising gene regulatory capacity by leveraging optimized surface charge engineering. Full article
(This article belongs to the Special Issue Carbon Quantum Dots (CQDs) and Related Systems)
Show Figures

Graphical abstract

19 pages, 2612 KB  
Article
Enhanced Bone Formation in Segmental Defect Healing Using 3D Printed Scaffolds Containing Bone Marrow Stromal Cells and Small Molecules Targeting Chondrogenesis and Osteogenesis
by Charles H. Rundle, Sheila Pourteymoor, Enoch Lai, Chandrasekhar Kesavan and Subburaman Mohan
Biomedicines 2026, 14(1), 227; https://doi.org/10.3390/biomedicines14010227 - 20 Jan 2026
Viewed by 144
Abstract
Background/Objectives: Nonunion bone healing results from a critical size defect that fails to bridge a bone injury to produce bony union. Novel approaches are critical for refining therapy in clinically challenging bone injuries, but the complex and coordinated nature of fracture callus tissue [...] Read more.
Background/Objectives: Nonunion bone healing results from a critical size defect that fails to bridge a bone injury to produce bony union. Novel approaches are critical for refining therapy in clinically challenging bone injuries, but the complex and coordinated nature of fracture callus tissue development requires study outside of the simple closed murine fracture model. Methods: We have utilized a three-dimensional printing approach to develop a scaffold construct with layers designed to sequentially release small molecule therapy within the tissues of a murine endochondral segmental defect to augment different mechanisms of fracture repair during critical stages of nonunion bone healing. Initially, a sonic hedgehog (SHH) agonist is released from a fibrin layer to promote chondrogenesis. A prolyl-hydroxylase domain (PHD)2 inhibitor is subsequently released from a β-tricalcium phosphate (β-TCP) layer to promote hypoxia-inducible factor (HIF)-1α regulation of angiogenesis. This sequential approach to therapy delivery is assisted by the inclusion of bone marrow stromal cells (BMSCs) to increase the cell substrate available for the small molecule therapy. Results: Immunohistochemistry of fracture callus tissue revealed increased expression of PTCH1 and HIF1α, targets of hedgehog and hypoxia signaling pathways, respectively, in the SAG21k/IOX2-treated mice compared to vehicle control. MicroCT and histology analyses showed increased bone in the fracture callus of mice that received therapy compared to control vehicle scaffolds. Conclusions: While our findings establish feasibility for the use of BMSCs and small molecules in the fibrin gel/β-TCP scaffolds to promote new bone formation for segmental defect healing, further optimization of these approaches is required to develop a fracture callus capable of completing bony union in a large defect. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

48 pages, 2220 KB  
Review
Targeting Cancer Stem Cells with Phytochemicals: Molecular Mechanisms and Therapeutic Potential
by Ashok Kumar Sah, Joy Das, Abdulkhakov Ikhtiyor Umarovich, Shagun Agarwal, Pranav Kumar Prabhakar, Ankur Vashishtha, Rabab H. Elshaikh, Ranjay Kumar Choudhary and Ayman Hussein Alfeel
Biomedicines 2026, 14(1), 215; https://doi.org/10.3390/biomedicines14010215 - 19 Jan 2026
Viewed by 227
Abstract
Cancer stem cells (CSCs) represent a small but highly resilient tumor subpopulation responsible for sustained growth, metastasis, therapeutic resistance, and recurrence. Their survival is supported by aberrant activation of developmental and inflammatory pathways, including Wnt/β-catenin, Notch, Hedgehog, PI3K/Akt/mTOR, STAT3, and NF-κB, as well [...] Read more.
Cancer stem cells (CSCs) represent a small but highly resilient tumor subpopulation responsible for sustained growth, metastasis, therapeutic resistance, and recurrence. Their survival is supported by aberrant activation of developmental and inflammatory pathways, including Wnt/β-catenin, Notch, Hedgehog, PI3K/Akt/mTOR, STAT3, and NF-κB, as well as epithelial–mesenchymal transition (EMT) programs and niche-driven cues. Increasing evidence shows that phytochemicals, naturally occurring bioactive compounds from medicinal plants, can disrupt these networks through multi-targeted mechanisms. This review synthesizes current findings on prominent phytochemicals such as curcumin, sulforaphane, resveratrol, EGCG, genistein, quercetin, parthenolide, berberine, and withaferin A. Collectively, these compounds suppress CSC self-renewal, reduce sphere-forming capacity, diminish ALDH+ and CD44+/CD24 fractions, reverse EMT features, and interfere with key transcriptional regulators that maintain stemness. Many phytochemicals also sensitize CSCs to chemotherapeutic agents by downregulating drug-efflux transporters (e.g., ABCB1, ABCG2) and lowering survival thresholds, resulting in enhanced apoptosis and reduced tumor-initiating potential. This review further highlights the translational challenges associated with poor solubility, rapid metabolism, and limited bioavailability of free phytochemicals. Emerging nanotechnology-based delivery systems, including polymeric nanoparticles, lipid carriers, hybrid nanocapsules, and ligand-targeted formulations, show promise in improving stability, tumor accumulation, and CSC-specific targeting. These nanoformulations consistently enhance intracellular uptake and amplify anti-CSC effects in preclinical models. Overall, the consolidated evidence supports phytochemicals as potent modulators of CSC biology and underscores the need for optimized delivery strategies and evidence-based combination regimens to achieve meaningful clinical benefit. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Graphical abstract

28 pages, 10577 KB  
Article
Genome-Wide DNA Methylation Analysis of Performance Variation in the 5000-m Speed Race of Yili Horses
by Dehaxi Shan, Xinkui Yao, Wanlu Ren, Qiuping Huang, Yi Su, Zexu Li, Luling Li, Ran Wang, Shikun Ma and Jianwen Wang
Animals 2026, 16(2), 302; https://doi.org/10.3390/ani16020302 - 19 Jan 2026
Viewed by 126
Abstract
Whole-genome bisulfite sequencing (WGBS) was employed in this article to map blood DNA methylation profiles at single-base resolution in Yili horses before a 5000 m speed race, with comparative analysis of epigenetic differences between the ‘elite group’ and ‘ordinary group’ across six four-year-old [...] Read more.
Whole-genome bisulfite sequencing (WGBS) was employed in this article to map blood DNA methylation profiles at single-base resolution in Yili horses before a 5000 m speed race, with comparative analysis of epigenetic differences between the ‘elite group’ and ‘ordinary group’ across six four-year-old stallions. The overall methylation level in the elite group was generally higher than that in the ordinary groups, with a minority of regions showing hypomethylation. For instance, the promoter regions of key metabolic and neuro-related genes exhibited significant hypomethylation. The article identified over 10,000 CG differential methylation regions (DMRs), predominantly enriched in promoter and CpG island regions, anchoring 7221 differentially methylated genes (DMGs). These DMGs were significantly enriched in key biological processes including oxidative phosphorylation, protein binding, axon guidance, glutamatergic synapses, and the Hedgehog signalling pathway. Among these, six genes—ACTN3, MSTN, FOXO1, PPARGC1A, ND1, and ND2—were selected as core candidate genes closely associated with muscle strength, energy metabolism, and stress adaptation. The study confirms that the differences in athletic ability among Yili horses have a significant epigenetic basis, with DNA methylation participating in the epigenetic regulation of athletic traits by modulating the expression of genes related to energy metabolism and neuroplasticity. The constructed “promoter hypomethylated DMR panel” holds promise for translation into non-invasive blood-based epigenetic markers for early performance evaluation and targeted breeding in racehorses. This provides a theoretical basis and molecular targets for improving equine athletic phenotypes and optimising training strategies. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

19 pages, 1706 KB  
Review
The GLI3–Androgen Receptor Axis: A Feedback Circuit Sustaining Shh Signaling in Prostate Cancer
by Stephanie I. Nuñez-Olvera, Enoc Mariano Cortés-Malagón, Isela Montúfar-Robles, José Javier Flores-Estrada, María Elizbeth Alvarez-Sánchez and Jonathan Puente-Rivera
Receptors 2026, 5(1), 4; https://doi.org/10.3390/receptors5010004 - 19 Jan 2026
Viewed by 107
Abstract
The Hedgehog (Hh) signaling pathway regulates key cellular processes, such as proliferation, differentiation, and morphogenesis. Although its canonical activation involves ligand binding to PTCH1, which activates Smoothened (SMO), noncanonical features of the pathway significantly contribute to cancer progression, particularly in prostate cancer (PCa). [...] Read more.
The Hedgehog (Hh) signaling pathway regulates key cellular processes, such as proliferation, differentiation, and morphogenesis. Although its canonical activation involves ligand binding to PTCH1, which activates Smoothened (SMO), noncanonical features of the pathway significantly contribute to cancer progression, particularly in prostate cancer (PCa). GLI3, a central transcription factor in the Hh pathway, can act as a repressor or activator depending on posttranslational modifications. In androgen-deprived PCa, GLI3 plays a critical role in driving castration-resistant phenotypes by interacting with the androgen receptor (AR), particularly the AR-V7 variant. This interaction enhances tumor survival and growth even under androgen deprivation therapy (ADT). Aberrant GLI3 activity is further driven by mutations in upstream regulators such as SPOP and MED12, which contribute to the progression of both prostate and other malignancies. Preclinical studies have shown promise in reducing tumor cell proliferation and migration, and in inducing apoptosis, by pharmacologically inhibiting the GLI3 pathway with SMO antagonists or GSK3β inhibitors. Recent evidence also highlights reciprocal interactions between Sonic Hedgehog (Shh) signaling and the AR that sustain tumor growth under ADT. GLI3 engagement with AR reinforces AR-dependent transcription, supporting tumor progression through noncanonical pathways. These findings suggest that targeting GLI3, particularly in combination with AR inhibition, could effectively overcome castration resistance and improve outcomes in patients with castration-resistant prostate cancer (CRPC). This review explores the role of GLI3 in both canonical and noncanonical Hh signaling, its potential as a therapeutic target, and future directions for overcoming resistance in Hh-driven cancers. Full article
Show Figures

Figure 1

16 pages, 1874 KB  
Review
LEM-Domain-Containing Inner Nuclear Membrane Proteins: Emerging Regulators of Intranuclear Signaling
by Byongsun Lee, Hyunggeun Lee and Jaekyung Shim
Int. J. Mol. Sci. 2026, 27(2), 942; https://doi.org/10.3390/ijms27020942 - 17 Jan 2026
Viewed by 172
Abstract
The LAP2–emerin–MAN1-domain (LEM-D) proteins constitute a family of inner nuclear membrane proteins that play essential roles in the spatial regulation of intranuclear signaling. Defined by the conserved LEM domain, these proteins interact with chromatin, nuclear lamins, and barrier-to-autointegration factor (BAF), thereby linking nuclear [...] Read more.
The LAP2–emerin–MAN1-domain (LEM-D) proteins constitute a family of inner nuclear membrane proteins that play essential roles in the spatial regulation of intranuclear signaling. Defined by the conserved LEM domain, these proteins interact with chromatin, nuclear lamins, and barrier-to-autointegration factor (BAF), thereby linking nuclear architecture to signal-dependent transcriptional control. This review summarizes current knowledge on the structural features and molecular functions of representative LEM-D proteins, including LAP2, emerin, and MAN1, with a particular focus on their emerging roles as regulators of intranuclear signaling pathways. We discuss how these proteins modulate the activity of transcription factors involved in Hedgehog, Wnt/β-catenin, STAT3, Notch, and transforming growth factor-β (TGF-β) signaling by temporally retaining them at the inner nuclear membrane and controlling their access to chromatin. Furthermore, this review highlights the physiological and pathological relevance of LEM-D-mediated signaling regulation, especially in the context of muscle development, regeneration, and nuclear envelope-associated diseases such as muscular dystrophies. By integrating structural, signaling, and disease-related perspectives, this review proposes a conceptual framework in which LEM-D proteins function as critical intranuclear signaling hubs. Understanding these mechanisms provides new insights into nuclear signal transduction and suggests potential therapeutic targets for diseases associated with nuclear envelope dysfunction. Full article
(This article belongs to the Special Issue Protein Signal Transduction in the Nucleus)
Show Figures

Graphical abstract

19 pages, 1529 KB  
Review
Marrow Microenvironmental Pathobiology and Therapeutic Opportunities for TP53-Mutated Myelodysplastic Syndrome/Acute Myeloid Leukemia
by Cameron J. Hunter, Annie P. Im and Rory M. Shallis
Cancers 2026, 18(2), 275; https://doi.org/10.3390/cancers18020275 - 16 Jan 2026
Viewed by 948
Abstract
Mutations in TP53 inhibit p53 protective behaviors including cell cycle arrest, DNA damage repair protein recruitment, and apoptosis. The ubiquity of p53 in genome-stabilizing functions leads to an aberrant tumor microenvironment in TP53-mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Profound [...] Read more.
Mutations in TP53 inhibit p53 protective behaviors including cell cycle arrest, DNA damage repair protein recruitment, and apoptosis. The ubiquity of p53 in genome-stabilizing functions leads to an aberrant tumor microenvironment in TP53-mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Profound immunosuppression mediated by myeloid-derived suppressor cells, the upregulation of cytokines and cell-surface receptors on leukemic cells, the suppression of native immune regulator cells, and metabolic aberrations in the bone marrow are features of the TP53-mutated AML/MDS marrow microenvironment. These localized changes in the bone marrow microenvironment (BMME) explain why traditional therapies for MDS/AML, including chemotherapeutics and hypomethylating agents, are not as effective in TP53-mutated myeloid neoplasms and demonstrate the dire need for new treatments in this patient population. The unique pathophysiology of TP53-mutated disease also provides new therapeutic approaches which are being studied, including intracellular targets (MDM2, p53), cell-surface protein biologics (immune checkpoint inhibitors, BiTE therapy, and antibody–drug conjugates), cell therapies (CAR-T, NK-cell), signal transduction pathways (Hedgehog, Wnt, NF-κB, CCRL2, and HIF-1α), and co-opted biologic pathways (cholesterol synthesis and glycolysis). In this review, we will discuss the pathophysiologic anomalies of the tumor microenvironment in TP53-mutant MDS/AML, the hypothesized mechanisms of chemoresistance it imparts, and how novel therapies are leveraging diverse therapeutic targets to address this critical area of need. Full article
Show Figures

Figure 1

29 pages, 2399 KB  
Systematic Review
Genomic Insights into Abdominal and Intramuscular Fat Deposition in Chickens and Their Implications for Productivity Traits: A Systematic Review
by Olga Kochetova, Gulnaz Korytina, Yanina Timasheva, Irina Gilyazova, Askar Akhmetshin, Gulshat Abdeeva, Alexandra Karunas, Elza Khusnutdinova and Oleg Gusev
Animals 2026, 16(2), 260; https://doi.org/10.3390/ani16020260 - 15 Jan 2026
Viewed by 297
Abstract
Abdominal fat deposition in chickens significantly impacts production efficiency and is influenced by complex genetic and molecular mechanisms. This review summarizes current genomic and transcriptomic research on the regulation of adipogenesis and fat accumulation in chickens, highlighting key genes and loci identified through [...] Read more.
Abdominal fat deposition in chickens significantly impacts production efficiency and is influenced by complex genetic and molecular mechanisms. This review summarizes current genomic and transcriptomic research on the regulation of adipogenesis and fat accumulation in chickens, highlighting key genes and loci identified through genome-wide association studies as well as other candidates involved in lipogenesis, lipolysis, and transcriptional regulation. Major metabolic pathways, including MAPK, AMPK, PI3K/AKT/mTOR, TGFβ1/Smad3, FoxO, JAK–STAT, Wnt/β-catenin, and Sonic Hedgehog signaling, are examined for their roles in fat deposition. The regulatory functions of non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, are discussed, focusing on their interactions with target mRNAs and signaling networks that control lipid metabolism, adipocyte differentiation, and energy balance. Integrating insights from both avian and human studies, this review emphasizes the molecular mechanisms underlying adipogenesis and highlights potential strategies for genetic selection aimed at reducing excessive abdominal fat and improving poultry productivity. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

32 pages, 1333 KB  
Review
Safety Assessment of Extracellular Vesicle-Based Therapy in Regenerative Dentistry
by Bing-Huan Chuah, Jia-Xian Law, Xin-Fang Leong, Kok-Lun Pang, Yan-Rou Farm, Masfueh Razali and Sook-Luan Ng
Int. J. Mol. Sci. 2026, 27(2), 798; https://doi.org/10.3390/ijms27020798 - 13 Jan 2026
Viewed by 157
Abstract
Extracellular vesicle (EV)-based therapies have emerged as promising, cell-free approaches for dental tissue regeneration. This narrative review integrates mechanistic insights, therapeutic efficacy data, and safety and delivery considerations from in vitro and in vivo studies to elucidate the molecular mechanisms by which EVs, [...] Read more.
Extracellular vesicle (EV)-based therapies have emerged as promising, cell-free approaches for dental tissue regeneration. This narrative review integrates mechanistic insights, therapeutic efficacy data, and safety and delivery considerations from in vitro and in vivo studies to elucidate the molecular mechanisms by which EVs, particularly those from dental pulp stem cells (DPSCs) and mesenchymal stem cells (MSCs), drive regenerative processes via key signalling axes (PI3K/Akt, MAPK, BMP/Smad, and Hedgehog). Preclinical studies demonstrate that unmodified and engineered EVs enhance odontogenic differentiation, angiogenesis, bone repair, and immunomodulation in models of pulp regeneration, alveolar bone defects, osteonecrosis, and periodontitis. Isolation and purification methodologies were also evaluated, comparing ultracentrifugation, size-exclusion chromatography, and density-cushion approaches, and discussing how protocol variations affect EV purity, dosing metrics, and functional reproducibility. Early-phase clinical evaluations report only low-grade transient adverse events, underscoring a generally favourable safety profile. Despite these encouraging results, significant challenges remain: heterogeneity in EV cargo composition, lack of standardised potency assays, and incomplete long-term safety data. The review highlights the urgent need for rigorous, harmonised regulatory frameworks and robust quality control measures to ensure that EV-based modalities can be translated into safe, effective, and reproducible therapies in regenerative dentistry. Full article
Show Figures

Figure 1

24 pages, 2357 KB  
Article
Aberrant Activation of the Hedgehog Pathway in Cutaneous Melanoma: Therapeutic Potential of Pharmacological Inhibitors
by Federica Papaccio, Daniela Kovacs, Ramona Marrapodi, Silvia Caputo, Emilia Migliano, Elisa Melucci, Stefano Scalera, Carlo Cota, Marcello Maugeri-Saccà and Barbara Bellei
Int. J. Mol. Sci. 2026, 27(2), 762; https://doi.org/10.3390/ijms27020762 - 12 Jan 2026
Viewed by 196
Abstract
Cutaneous melanoma is a highly aggressive skin cancer prone to relapse and metastasis. Surgery is often curative when combined with early screening and prevention. However, in recurrent or advanced disease, the development of new targeted and immune therapies has demonstrated promising clinical outcomes, [...] Read more.
Cutaneous melanoma is a highly aggressive skin cancer prone to relapse and metastasis. Surgery is often curative when combined with early screening and prevention. However, in recurrent or advanced disease, the development of new targeted and immune therapies has demonstrated promising clinical outcomes, although the acquisition of resistance limits their effectiveness. Thus, new therapeutic approaches are needed. Emerging data indicate that the Hedgehog (Hh) pathway, which is essential for embryonic development, is aberrantly reactivated in melanoma and may represent a promising therapeutic target. Here, we demonstrate its chronic up-modulation in a panel of patient-derived cell lines and, by investigating the underlying molecular mechanisms, we excluded mutations in the principal components of the pathway. We observed reduced PTCH1 and SUFU repressors expression and GLI2 upregulation as common melanoma features. At the same time, copious SHH release, the principal PTCH1 ligand, evidenced autocrine Hh signaling activation. Consistently, a tendency of greater level of this factor resulted higher in the blood of patients compared to controls, confirming the relevance of ligand-dependent trigger in melanoma. The therapeutic potential of inhibiting the Hh pathway is highlighted by the reduced proliferation and migration observed in the presence of clinically approved pharmacological Hh antagonists. Profiling inflammatory mediators revealed significant modulation upon treatment with SMO inhibitors, possibly affecting chemotactic and immune functions. Collectively, these findings provide deeper insight into the role of the Hh pathway in melanoma and support the potential repurposing of Hh inhibitors as therapeutic agents for melanoma. Full article
(This article belongs to the Special Issue Skin Cancer: From Molecular Pathophysiology to Novel Treatment)
Show Figures

Figure 1

20 pages, 6259 KB  
Article
Plant-Derived miR-55 Alleviates Liver Fibrosis by Disrupting the CK2α/SMO Complex and Promoting SMO Ubiquitination
by Lei Wu, Jing Yang, Anqi Li, Yuqiang Zhao, Qing Liu, Zhenbo Li, Yihan Liu, Peng Tang and Rui Wang
Int. J. Mol. Sci. 2026, 27(2), 748; https://doi.org/10.3390/ijms27020748 - 12 Jan 2026
Viewed by 156
Abstract
The development of RNA-based drugs for MAFLD-related fibrosis is severely hampered by the poor oral bioavailability of nucleic acids. This study employed a novel, patent-protected LNP formulation to orally deliver plant-derived miR-55 and investigate its therapeutic potential, focusing on its novel mechanism of [...] Read more.
The development of RNA-based drugs for MAFLD-related fibrosis is severely hampered by the poor oral bioavailability of nucleic acids. This study employed a novel, patent-protected LNP formulation to orally deliver plant-derived miR-55 and investigate its therapeutic potential, focusing on its novel mechanism of action via the CK2α/SMO interaction. In a rat model established with a methionine-choline-deficient diet, orally administered miR-55 markedly improved liver injury, lipid dysregulation, oxidative stress, and pathological collagen deposition. The anti-fibrotic efficacy was quantitatively confirmed by a significant reduction in hepatic hydroxyproline content and downregulation of key fibrogenic genes (Col1a1, Col3a1, TIMP-1, TGF-β1, CTGF) and pro-inflammatory cytokines (TNF-α, IL-6), achieving effects comparable to the full Ge Xia Zhu Yu Decoction. Mechanistically, both bioinformatic prediction and in vivo validation indicated that miR-55 is predicted to target CK2α. This targeting suppressed CK2α expression and disrupted the endogenous CK2α-SMO complex, thereby promoting the ubiquitin-mediated degradation of SMO—a previously unreported mechanism. This cascade inhibited the downstream Gli1 pathway and downregulated pro-fibrotic and pro-angiogenic factors (VEGF, PDGF), thereby providing a comprehensive mechanistic basis for the therapeutic effects. This study is the first to provide evidence that orally delivered, plant-derived miR-55 may act as a natural modulator that potentially through disrupting the CK2α/SMO interaction via a unique complex disruption-promoted degradation mechanism, attenuating Hedgehog signaling and alleviating liver fibrosis. These findings offer important insights into cross-kingdom regulation and highlight miR-55 as a potential targeted therapeutic candidate. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

25 pages, 7655 KB  
Article
Pancreatic Cancer Stem Cells Co-Expressing SOX2, OCT4, and TERThigh Represent an Aggressive Subpopulation
by Erika Curiel-Gomez, Damaris P. Romero-Rodriguez, Mauricio Rodriguez-Dorantes, Vilma Maldonado and Jorge Melendez-Zajgla
Cells 2026, 15(2), 129; https://doi.org/10.3390/cells15020129 - 11 Jan 2026
Viewed by 380
Abstract
The aggressiveness of pancreatic ductal adenocarcinoma (PDAC) has been linked to cancer stem cells (CSCs) and telomerase activity; however, the mechanism underlying this association remains unclear. In this study, we engineered dual transcriptional reporters (SORE6-GFP and TERT-BFP) to isolate SOX2+OCT4+ [...] Read more.
The aggressiveness of pancreatic ductal adenocarcinoma (PDAC) has been linked to cancer stem cells (CSCs) and telomerase activity; however, the mechanism underlying this association remains unclear. In this study, we engineered dual transcriptional reporters (SORE6-GFP and TERT-BFP) to isolate SOX2+OCT4+TERThigh subpopulations from AsPC-1 and BxPC-3 cells. We combined Fluorescence-Activated Cell Sorting with functional assays, RNA-seq, and network analysis. Clinically, tumors co-expressing high SOX2/OCT4/TERT levels were associated with reduced overall survival, whereas single-gene elevations were not prognostic. We identified a minority SOX2+OCT4+TERThigh fraction (~9%) enriched for pluripotency transcripts (SOX2, OCT4, NANOG, and ALDH1A1), which exhibited the highest proliferative, migratory, and invasive capacities. Transcriptomic profiling of SOX2+OCT4+TERThigh cells showed enrichment of KRAS, telomere maintenance, epithelial–mesenchymal transition, and developmental pathways (WNT and Hedgehog). Connectivity profiling highlighted actionable vulnerabilities, including NF-κB, WNT, and telomerase inhibition pathways. Together, these data define an aggressive telomerase-engaged, pluripotency-driven CSC-like state in PDAC and suggest testable therapeutic strategies that target TERThigh dependencies. Full article
(This article belongs to the Special Issue Signal Transduction and Targeted Therapy for Tumors)
Show Figures

Figure 1

19 pages, 1559 KB  
Review
Dysbiosis-Mediated Regulation of Stem Cells the First Hit for Cancer Generation
by Ciro Gargiulo-Isacco, Van Hung Pham, Kieu C. D. Nguyen, Toai C. Tran, Sergey K. Aityan, Raffaele Del Prete, Emilio Jirillo and Luigi Santacroce
Int. J. Mol. Sci. 2026, 27(2), 628; https://doi.org/10.3390/ijms27020628 - 8 Jan 2026
Viewed by 191
Abstract
Human microbiota, a complex consortium of microorganisms co-evolved with the host, profoundly influences tissue development, immune regulation, and disease progression. Growing evidence shows that microbial metabolites and signaling molecules modulate key stem cell pathways—such as Hedgehog, Wnt/β-catenin, and Notch—thereby reprogramming [...] Read more.
Human microbiota, a complex consortium of microorganisms co-evolved with the host, profoundly influences tissue development, immune regulation, and disease progression. Growing evidence shows that microbial metabolites and signaling molecules modulate key stem cell pathways—such as Hedgehog, Wnt/β-catenin, and Notch—thereby reprogramming stem cell fate toward tumor-suppressive or tumor-promoting outcomes. Specific taxa within oral, intestinal, and urogenital niches have been linked to cancer initiation, therapy resistance, and recurrence. In parallel, clinical studies reveal that microbiota composition affects infection dynamics: bacterial isolates from symptomatic urinary tract infections inhibit commensal growth more strongly than the reverse, with Gram-positive and Gram-negative strains displaying distinct interaction profiles. Collectively, these findings highlight microbiota’s dual role in regulating cellular plasticity and pathogenicity. Elucidating host–microbe and microbe–microbe mechanisms may guide microbiota-targeted interventions to improve cancer and infectious disease management. Full article
Show Figures

Figure 1

Back to TopTop