Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (121)

Search Parameters:
Keywords = heavy sea conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3114 KiB  
Article
Heavy Rainfall Induced by Typhoon Yagi-2024 at Hainan and Vietnam, and Dynamical Process
by Venkata Subrahmanyam Mantravadi, Chen Wang, Bryce Chen and Guiting Song
Atmosphere 2025, 16(8), 930; https://doi.org/10.3390/atmos16080930 (registering DOI) - 1 Aug 2025
Viewed by 256
Abstract
Typhoon Yagi (2024) was a rapidly moving storm that lasted for eight days and made landfall in three locations, producing heavy rainfall over Hainan and Vietnam. This study aims to investigate the dynamical processes contributing to the heavy rainfall, concentrating on enthalpy flux [...] Read more.
Typhoon Yagi (2024) was a rapidly moving storm that lasted for eight days and made landfall in three locations, producing heavy rainfall over Hainan and Vietnam. This study aims to investigate the dynamical processes contributing to the heavy rainfall, concentrating on enthalpy flux (EF) and moisture flux (MF). The results indicate that both EF and MF increased significantly during the typhoon’s intensification stage and were high at the time of landfall. Before landfalling at Hainan, latent heat flux (LHF) reached 600 W/m2, while sensible heat flux (SHF) was recorded as 80 W/m2. Landfall at Hainan resulted in a decrease in LHF and SHF. LHF and SHF subsequently increased to 700 W/m2 and 100 W/m2, respectively, as noted prior to the landfall in Vietnam. The increased LHF led to higher evaporation, which subsequently elevated moisture flux (MF) following the landfall in Vietnam, while the region’s topography further intensified the rainfall. The mean daily rainfall observed over Philippines is 75 mm on 2 September (landfall and passing through), 100 mm over Hainan (landfall and passing through) on 6 September, and 95 mm at over Vietnam on 7 September (landfall and after), respectively. Heavy rainfall was observed over the land while the typhoon was passing and during the landfall. This research reveals that Typhoon Yagi’s intensity was maintained by a well-organized and extensive circulation system, supported by favorable weather conditions, including high sea surface temperatures (SST) exceeding 30.5 °C, substantial low-level moisture convergence, and elevated EF during the landfall in Vietnam. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

32 pages, 3950 KiB  
Article
Macrozoobenthos Response to Sediment Contamination near the S/s Stuttgart Wreck: A Biological and Chemical Assessment in the Gulf of Gdańsk, Southern Baltic Sea
by Anna Tarała, Diana Dziaduch, Katarzyna Galer-Tatarowicz, Aleksandra Bojke, Maria Kubacka and Marcin Kalarus
Water 2025, 17(15), 2199; https://doi.org/10.3390/w17152199 - 23 Jul 2025
Viewed by 329
Abstract
This study provides an up-to-date assessment of the environmental status in the area of the S/s Stuttgart wreck in the southern Baltic Sea, focusing on macrozoobenthos, sediment chemistry, and contamination in Mytilus trossulus soft tissues. Comparative analyses from 2016 and 2023 revealed increased [...] Read more.
This study provides an up-to-date assessment of the environmental status in the area of the S/s Stuttgart wreck in the southern Baltic Sea, focusing on macrozoobenthos, sediment chemistry, and contamination in Mytilus trossulus soft tissues. Comparative analyses from 2016 and 2023 revealed increased species richness and distinct benthic assemblages, shaped primarily by depth and distance from the wreck. Among macrozoobenthos, there dominated opportunistic species, characterized by a high degree of resistance to the unfavorable state of the environment, suggesting adaptation to local conditions. Elevated concentrations of heavy metals were detected in sediments, with maximum values of Cd—0.85 mg·kg−1, Cu—34 mg·kg−1, Zn—119 mg·kg−1, and Ni—32.3 mg·kg−1. However, no significant correlations between sediment contamination and macrozoobenthos composition were found. In Mytilus trossulus, contaminant levels were mostly within regulatory limits; however, mercury concentrations reached 0.069 mg·kg−1 wet weight near the wreck and 0.493 mg·kg−1 at the reference station, both exceeding the threshold defined in national legislation (0.02 mg·kg−1) (Journal of Laws of 2021, item 568). Condition indices for Macoma balthica were lower in the wreck area, suggesting sublethal stress. Ecotoxicological tests showed no acute toxicity in most sediment samples, emphasizing the complexity of pollutant effects. The data presented here not only enrich the existing literature on marine pollution but also contribute to the development of more effective environmental protection strategies for marine ecosystems under international protection. Full article
Show Figures

Figure 1

14 pages, 2164 KiB  
Article
Research on Operational Risk for Northwest Passage Cruise Ships Using POLARIS
by Long Ma, Jiemin Fan, Xiaoguang Mou, Sihan Qian, Jin Xu, Liang Cao, Bo Xu, Boxi Yao, Xiaowen Li and Yabin Li
J. Mar. Sci. Eng. 2025, 13(7), 1335; https://doi.org/10.3390/jmse13071335 - 12 Jul 2025
Viewed by 240
Abstract
In the context of global warming, polar tourism is developing rapidly, and the demand for polar cruise travel in the Northwest Passage continues to increase, while sea ice has long been a key factor limiting the development of polar cruise tourism. This study [...] Read more.
In the context of global warming, polar tourism is developing rapidly, and the demand for polar cruise travel in the Northwest Passage continues to increase, while sea ice has long been a key factor limiting the development of polar cruise tourism. This study focuses on the operational risk of sea ice on cruise ships in the Northwest Passage (NWP), aiming to provide a scientific basis for ensuring the safety of cruise ship navigation and promoting the sustainable development of polar tourism. Based on ice data from 2015 to 2024, this study used the Polar Operational Limit Assessment Risk Indexing System (POLARIS) methodology recommended by the International Maritime Organization (IMO) to establish three scenarios for the route of ice class IC cruise ships: light ice, normal ice, and heavy ice. The navigable windows were systematically analyzed and critical waters along the route were identified. The results indicate that the navigable windows for IC ice-class cruise ships under light ice conditions are from mid-July to early December, while the navigable period under normal ice conditions is only from mid- to late September, and navigation is not possible under heavy ice conditions. The study identified Larsen Sound, Barrow Strait, Bellot Strait and Eastern Beaufort Sea as critical waters on the NWP cruise route. Among them, Larsen Sound and Eastern Beaufort Sea have a more prominent impact on voyage scheduling because their navigation weeks overlap less with other waters. This study provides a new idea for the risk assessment of polar cruise ships in ice regions. The research results can provide an important reference for the safe operation of polar cruise ships in the NWP and the decision-making of relevant parties. Full article
Show Figures

Figure 1

23 pages, 7442 KiB  
Article
Improved Online Kalman Smoothing Method for Ship Maneuvering Motion Data Using Expectation-Maximization Algorithm
by Wancheng Yue and Junsheng Ren
J. Mar. Sci. Eng. 2025, 13(6), 1018; https://doi.org/10.3390/jmse13061018 - 23 May 2025
Viewed by 349
Abstract
Despite the pivotal role of filtering and smoothing techniques in the preprocessing of ship maneuvering data for robust identification, persistent challenges in reconciling noise suppression with dynamic fidelity preservation have limited algorithmic advancements in recent decades. We propose an online smoothing method enhanced [...] Read more.
Despite the pivotal role of filtering and smoothing techniques in the preprocessing of ship maneuvering data for robust identification, persistent challenges in reconciling noise suppression with dynamic fidelity preservation have limited algorithmic advancements in recent decades. We propose an online smoothing method enhanced by the Expectation-Maximization (EM) algorithm framework that effectively extracts high-fidelity dynamic features from raw maneuvering data, thereby enhancing the fidelity of subsequent ship identification systems. Our method effectively addresses the challenges posed by heavy-tailed Student-t distributed noise and parameter uncertainty inherent in ship motion data, demonstrating robust parameter learning capabilities, even when initial ship motion system parameters deviate from real conditions. Through iterative data assimilation, the algorithm adaptively calibrates noise distribution parameters while preserving motion smoothness, achieving superior accuracy in velocity and heading estimation compared to conventional Rauch–Tung–Striebel (RTS) smoothers. By integrating parameter adaptation within the smoothing framework, the proposed method reduces motion prediction errors by 23.6% in irregular sea states, as validated using real ship motion data from autonomous navigation tests. Full article
(This article belongs to the Special Issue The Control and Navigation of Autonomous Surface Vehicles)
Show Figures

Figure 1

29 pages, 18050 KiB  
Article
Simulating Oil Spill Evolution and Environmental Impact with Specialized Software: A Case Study for the Black Sea
by Dinu Atodiresei, Catalin Popa and Vasile Dobref
Sustainability 2025, 17(9), 3770; https://doi.org/10.3390/su17093770 - 22 Apr 2025
Viewed by 1212
Abstract
Oil spills represent a significant environmental hazard, particularly in marine ecosystems, where their impacts extend to coastal infrastructure, biodiversity, and economic activities. This study utilizes GNOME v.47.2 (General NOAA Operational Modeling Environment) and ADIOS2 v.2.10.2 (Automated Data Inquiry for Oil Spills) to simulate [...] Read more.
Oil spills represent a significant environmental hazard, particularly in marine ecosystems, where their impacts extend to coastal infrastructure, biodiversity, and economic activities. This study utilizes GNOME v.47.2 (General NOAA Operational Modeling Environment) and ADIOS2 v.2.10.2 (Automated Data Inquiry for Oil Spills) to simulate and analyze oil spill dynamics in the Romanian sector of the Black Sea, focusing on trajectory prediction, hydrocarbon weathering, and shoreline contamination risk assessment. The research explores multiple spill scenarios involving different hydrocarbon types (light vs. heavy oils), vessel dynamics, and real-time environmental variables (wind, currents, temperature). The findings reveal that lighter hydrocarbons (e.g., gasoline, aviation fuel) tend to evaporate quickly, while heavier fractions (e.g., crude oil, fuel oil #6) persist in the marine environment and pose a higher risk of coastal pollution. In the first case study, a spill of 10,000 metric tons of medium oil (Arabian Medium EXXON) was simulated using GNOME v.47.2, showing that after 22 h, the slick reached the shoreline. Under forecasted hydro-meteorological conditions, 27% evaporated, 1% dispersed, and 72% remained for mechanical or chemical intervention. In the second simulation, 10,000 metric tons of gasoline were released, and within 6 h, 98% evaporated, with only minor residues reaching the shore. A real-world validation case was also conducted using the December 2024 Kerch Strait oil spill incident, where the model accurately predicted the early arrival of light fractions and delayed coastal contamination by fuel oil carried by subsurface currents. These results emphasize the need for future research focused on the vertical dispersion dynamics of heavier hydrocarbon fractions. Full article
Show Figures

Figure 1

18 pages, 607 KiB  
Review
Fungi in Mangrove: Ecological Importance, Climate Change Impacts, and the Role in Environmental Remediation
by Juliana Britto Martins de Oliveira, Dario Corrêa Junior, Cláudio Ernesto Taveira Parente and Susana Frases
Microorganisms 2025, 13(4), 878; https://doi.org/10.3390/microorganisms13040878 - 11 Apr 2025
Viewed by 1316
Abstract
Mangroves are coastal ecosystems of great ecological importance, located in transition areas between marine and terrestrial environments, predominantly found in tropical and subtropical regions. In Brazil, these biomes are present along the entire coastline, playing essential environmental roles such as sediment stabilization, coastal [...] Read more.
Mangroves are coastal ecosystems of great ecological importance, located in transition areas between marine and terrestrial environments, predominantly found in tropical and subtropical regions. In Brazil, these biomes are present along the entire coastline, playing essential environmental roles such as sediment stabilization, coastal erosion control, and the filtration of nutrients and pollutants. The unique structure of the roots of some mangrove tree species facilitates sediment deposition and organic matter retention, creating favorable conditions for the development of rich and specialized biodiversity, including fungi, bacteria, and other life forms. Furthermore, mangroves serve as important nurseries for many species of fish, crustaceans, and birds, being fundamental to maintaining trophic networks and the local economy, which relies on fishing resources. However, these ecosystems have been significantly impacted by anthropogenic pressures and global climate change. In recent years, the increase in average global temperatures, rising sea levels, changes in precipitation patterns, and ocean acidification have contributed to the degradation of mangroves. Additionally, human activities such as domestic sewage discharge, pollution from organic and inorganic compounds, and alterations in hydrological regimes have accelerated this degradation process. These factors directly affect the biodiversity present in mangrove sediments, including the fungal community, which plays a crucial role in the decomposition of organic matter and nutrient cycling. Fungi, which include various taxonomic groups such as Ascomycota, Basidiomycota, and Zygomycota, are sensitive to changes in environmental conditions, making the study of their diversity and distribution relevant for understanding the impacts of climate change and pollution. In particular, fungal bioremediation has gained significant attention as an effective strategy for mitigating pollution in these sensitive ecosystems. Fungi possess unique abilities to degrade or detoxify environmental pollutants, including heavy metals and organic contaminants, through processes such as biosorption, bioaccumulation, and enzymatic degradation. This bioremediation potential can help restore the ecological balance of mangrove ecosystems and protect their biodiversity from the adverse effects of pollution. Recent studies suggest that changes in temperature, salinity, and the chemical composition of sediments can drastically modify microbial and fungal communities in these environments, influencing the resilience of the ecosystem. The objective of this narrative synthesis is to point out the diversity of fungi present in mangrove sediments, emphasizing how the impacts of climate change and anthropogenic pollution influence the composition and functionality of these communities. By exploring these interactions, including the role of fungal bioremediation in ecosystem restoration, it is expected that this study would provide a solid scientific basis for the conservation of mangroves and the development of strategies to mitigate the environmental impacts on these valuable ecosystems. Full article
Show Figures

Figure 1

24 pages, 3007 KiB  
Article
Factors Influencing Climate-Induced Evacuation in Coastal Cities: The Case of Shanghai
by Zikai Zhao, Bing Liang, Guoqing Shi, Wenqi Shan, Yingqi Li and Zhonggen Sun
Sustainability 2025, 17(7), 2883; https://doi.org/10.3390/su17072883 - 24 Mar 2025
Viewed by 670
Abstract
Against the backdrop of global climate change, extreme weather events, such as heavy rainfall, typhoons, tsunamis, and rising sea levels, have become frequent, posing unprecedented challenges to human society. As an important strategy for coastal cities to respond to climate change, climate-induced evacuation [...] Read more.
Against the backdrop of global climate change, extreme weather events, such as heavy rainfall, typhoons, tsunamis, and rising sea levels, have become frequent, posing unprecedented challenges to human society. As an important strategy for coastal cities to respond to climate change, climate-induced evacuation is influenced by complex and diverse factors. This study delves into the driving mechanisms of population migration willingness, revealing the dynamic balance of push, pull, and resistance factors and their interaction with individual value orientations affecting migration decisions. By constructing a Logistic Regression Model, this research quantitatively analyzes the significant impacts of personal circumstances, family characteristics, living conditions, risk perception, compensation relocation, and supportive policies on climate-induced migration willingness, using Shanghai as a case study. The findings indicate that age, education level, household size, housing type, risk perception, and compensation policies are key factors. Building upon the multidimensional capital interaction mechanisms and dynamic threshold response patterns identified in the research, this study proposes a three-phase progressive policy framework: initially, establishing an integrated human–material–social capital framework to implement tiered relocation incentive programs, which address decision window constraints through cognitive empowerment and asset replacement strategies; subsequently, creating a dynamic compensation adjustment mechanism by developing policy toolkits aligned with inverted U-shaped utility curves while enhancing synergistic effects between cultural cognition transformation and vocational training; and ultimately, innovating an institutional–cultural co-governance paradigm that rebalances public service dependency and place attachment through spatial equity redistribution. Specific recommendations encompass designing modular risk education curricula, establishing social network transplantation mechanisms, piloting climate citizenship regimes, and constructing cross-border governance knowledge platforms. These multidimensional interventions encompassing capital restructuring, threshold responsiveness, and cultural adaptation offer valuable policy insights for resolving the “development resilience–migration inertia” paradox in coastal cities. Full article
Show Figures

Figure 1

26 pages, 14669 KiB  
Article
Full-Scale Numerical Simulation of a Free-Running Cruise Ship in Heavy Head Sea Conditions
by Shenwei Ge, Ji Zeng, Kewei Song and Junrui Jia
J. Mar. Sci. Eng. 2025, 13(4), 626; https://doi.org/10.3390/jmse13040626 - 21 Mar 2025
Viewed by 488
Abstract
For a cruise ship in heavy sea conditions, self-propulsion performance prediction is important for ensuring its safety. In this study, a numerical simulation approach that models the free running of a ship is presented, and a full-scale small cruise ship is verified using [...] Read more.
For a cruise ship in heavy sea conditions, self-propulsion performance prediction is important for ensuring its safety. In this study, a numerical simulation approach that models the free running of a ship is presented, and a full-scale small cruise ship is verified using a ship model experiment. Based on this method, a free-running cruise ship encountering six kinds of wave conditions was simulated, and the characteristics of the ship’s motion, added resistance, and propeller loading were analyzed. The results demonstrated that the free-running approach can simulate the self-propelled motion of a full-scale ship, and that it converges more quickly than the traditional self-propulsion simulation method. The ship’s speed, heave, pitch, and thrust fluctuated when it moved through the waves, and λ/Lwl had a greater influence on the amplitude of these fluctuations than did H/Lwl. Furthermore, the propeller loading exhibited a sharp increase, and the maximum loading coefficient exceeded 500%, which may pose a safety risk. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 11811 KiB  
Article
Analysis of the Effect of Sea Surface Temperature on Sea Ice Concentration in the Laptev Sea for the Years 2004–2023
by Chenyao Zhang, Ziyu Zhang, Peng Qi, Yiding Zhang and Changlei Dai
Water 2025, 17(5), 769; https://doi.org/10.3390/w17050769 - 6 Mar 2025
Viewed by 914
Abstract
The Laptev Sea, as a marginal sea and a key source of sea ice for the Arctic Ocean, has a profound influence on the dynamic processes of sea ice evolution. Under a 2 °C global warming scenario, the accelerated ablation of Arctic sea [...] Read more.
The Laptev Sea, as a marginal sea and a key source of sea ice for the Arctic Ocean, has a profound influence on the dynamic processes of sea ice evolution. Under a 2 °C global warming scenario, the accelerated ablation of Arctic sea ice is projected to greatly impact Arctic warming. The ocean regulates global climate through its interactions with the atmosphere, where sea surface temperature (SST) serves as a crucial parameter in exchanging energy, momentum, and gases. SST is also a key driver of sea ice concentration (SIC). In this paper, we analyze the spatiotemporal variability of SST and SIC, along with their interrelationships in the Laptev Sea, using daily optimum interpolation SST datasets from NCEI and daily SIC datasets from the University of Bremen for the period 2004–2023. The results show that: (1) Seasonal variations are observed in the influence of SST on SIC. SIC exhibited a decreasing trend in both summer and fall with pronounced interannual variability as ice conditions shifted from heavy to light. (2) The highest monthly averages of SST and SIC were in July and September, respectively, while the lowest values occurred in August and November. (3) The most pronounced trends for SST and SIC appeared both in summer, with rates of +0.154 °C/year and −0.095%/year, respectively. Additionally, a pronounced inverse relationship was observed between SST and SIC across the majority of the Laptev Sea with correlation coefficients ranging from −1 to 0.83. Full article
Show Figures

Figure 1

21 pages, 6305 KiB  
Article
Navigability of Liquefied Natural Gas Carriers Along the Northern Sea Route
by Long Ma, Sihan Qian, Haihui Dong, Jiemin Fan, Jin Xu, Liang Cao, Shuai Xu, Xiaowen Li, Chengcheng Cai, Yuanyuan Huang and Min Cheng
J. Mar. Sci. Eng. 2024, 12(12), 2166; https://doi.org/10.3390/jmse12122166 - 27 Nov 2024
Cited by 3 | Viewed by 1410
Abstract
As Arctic sea ice continues to melt and global demand for clean energy rises, Russia’s Liquefied Natural Gas (LNG) exports via the Northern Sea Route (NSR) are rapidly increasing. To ensure the operational safety of LNG carriers and safeguard the economic interests of [...] Read more.
As Arctic sea ice continues to melt and global demand for clean energy rises, Russia’s Liquefied Natural Gas (LNG) exports via the Northern Sea Route (NSR) are rapidly increasing. To ensure the operational safety of LNG carriers and safeguard the economic interests of stakeholders, including shipowners, a thorough assessment of the navigability of various ice-class LNG carriers along this route is essential. This study collected Arctic ice condition data from 2014 to 2023 and applied the Polar Operational Limit Assessment Risk Indexing System (POLARIS) methodology to calculate the Risk Index Outcome (RIO) for LNG carriers with No Ice Class, Arc4, and Arc7 ice classifications in Arctic waters. A navigability threshold of 95% RIO ≥ 0 was established to define navigable windows, and critical waters were identified where sections of the route remain in hazardous or risky conditions year-round. The results indicate that for No Ice Class vessels, Arc4 vessels, and Arc7 vessels, the navigable windows for westbound Route 1 and Route 2 under light, normal, and heavy ice conditions range from 70 to 133 days, 70 to 365 days, and 70 to 365 days, respectively, while for eastbound Route 3, the navigable windows range from 0 to 84 days, 0 to 238 days, and 7 to 365 days, respectively. The critical waters affecting the navigability of No Ice Class vessels, Arc4 vessels, and Arc7 vessels are primarily located in the Kara Sea, Laptev Sea and East Siberian Sea. This study, using the POLARIS methodology, provides valuable insights into the navigability of LNG carriers with different ice classes along the NSR, supporting the development and utilization of Arctic energy and shipping routes while offering decision-making support for stakeholders involved in Arctic maritime operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 5951 KiB  
Article
The Core Story: Intertwined Maternal and Progeny Signatures Enclosed in the Otolith
by Clara Anne Lord, Sophie Berland, Vincent Haÿ and Philippe Keith
Minerals 2024, 14(11), 1176; https://doi.org/10.3390/min14111176 - 20 Nov 2024
Cited by 1 | Viewed by 913
Abstract
Analytical imaging via synchrotron analysis was used to study sagittal otoliths of four freshwater pipefish species exhibiting amphidromous or freshwater resident lifestyles. We undertook a hyperfine elemental scanning of a 25 μm diameter length area centred on the core, namely the pre-hatch zone, [...] Read more.
Analytical imaging via synchrotron analysis was used to study sagittal otoliths of four freshwater pipefish species exhibiting amphidromous or freshwater resident lifestyles. We undertook a hyperfine elemental scanning of a 25 μm diameter length area centred on the core, namely the pre-hatch zone, corresponding to the sagitta formed during embryogenesis. We analysed calcium (Ca), strontium (Sr), manganese (Mn), chromium (Cr), cobalt (Co), nickel (Ni) and sulphur (S), with the latter serving to count growth increments. Whatever the species, a Ca pit consistently marked the core; the amphidromous species exhibited Mn enrichment at the core and the sagitta formed a week before hatching. These results illustrate common otolith formation mechanistic processes. Sr and heavy metals’ signals in the pre-hatch zone were compared to their signal in the edge of the otolith, an area encompassing the adult freshwater (adFW) environmental signature. We found that Co and Ni otolith signals had no relation to environmental conditions, but it is worth looking into Cr as a marker of early-life environment. While we caution against the use of a Sr:Ca ratio for life history interpretations at the core because of the Ca pit, the Sr signal analysis uncovered possible variations in the parental behaviour that potentially trigger newly-hatched juvenile migration to sea or residency. Finally, our results demonstrate that the microchemistry of otolith formation during early development is a melting of maternal signal during egg yolk elaboration, of the environmental signal during egg incubation, and of individual physiology during early growth. Full article
(This article belongs to the Section Biomineralization and Biominerals)
Show Figures

Figure 1

21 pages, 5869 KiB  
Article
Impacts of Typhoons on the Evolution of Surface Anticyclonic Eddies into Subsurface Anticyclonic Eddies in the Northwestern Subtropical Pacific Ocean
by Shangzhan Cai, Jindian Xu, Weibo Wang, Chunsheng Jing, Kai Li, Junpeng Zhang and Fangfang Kuang
Remote Sens. 2024, 16(22), 4282; https://doi.org/10.3390/rs16224282 - 17 Nov 2024
Viewed by 940
Abstract
In this study, we investigated the impacts of typhoons on the transformation of anticyclonic eddies (AEs) into subsurface anticyclonic eddies (SAEs) in the northwestern subtropical Pacific Ocean (NWSP) based on an ocean reanalysis product and multiple satellite observations. Results suggest that while the [...] Read more.
In this study, we investigated the impacts of typhoons on the transformation of anticyclonic eddies (AEs) into subsurface anticyclonic eddies (SAEs) in the northwestern subtropical Pacific Ocean (NWSP) based on an ocean reanalysis product and multiple satellite observations. Results suggest that while the heavy precipitation and strong positive wind stress curl (WSC) induced by the passage of typhoons may be two main driving factors that transformed shallow mixed layer depth (MLD) AEs (i.e., those shallower than 50 m at the eddy core) into SAEs, the latter played a greater role in such transformation. In addition, shallow MLD AEs with a less depressed isopycnal structure near the eddy center before the passage of typhoons were more likely to be transformed into SAEs under the impacts of typhoons. The likely timing of such transformation may be within 9 days after the passage of typhoons. For deep MLD AEs (i.e., those deeper than 80 m at the eddy core), the impacts of typhoons may be much less prominent below the mixed layer. Based on a diagnostic analysis of the vertical potential vorticity (PV) flux at the surface, we examined the mechanism and dynamic processes involved in the transformation of deep MLD AEs into SAEs under the impacts of typhoons. Results show that while typhoons played a positive role in maintaining low PV within deep MLD AEs, which was favorable for further transformation into SAEs, the diabatic process associated with the net air–sea heat flux was the crucial favorable condition for the transformation of deep MLD AEs into SAEs. Full article
(This article belongs to the Special Issue Recent Advances on Oceanic Mesoscale Eddies II)
Show Figures

Graphical abstract

13 pages, 6828 KiB  
Article
A Regional Paleoclimate Record of the Tropical Aeolian Sands during the Last Deglaciation in Hainan, China
by Fengnian Wang, Baosheng Li, Dongfeng Niu, Xiaoze Li, Yuejun Si, Peixian Shu, Zhiwen Li, Shuhuan Du, Qiwen Chen and Min Chen
Water 2024, 16(20), 2901; https://doi.org/10.3390/w16202901 - 12 Oct 2024
Viewed by 882
Abstract
The KLD segment of the Kenweiyuan section in Wenchang, Hainan, China is a set of aeolian sand deposits of the Last Deglaciation. The chemical element and heavy mineral analysis performed in this study reveals the chemical index of alteration (CIA) in the segment [...] Read more.
The KLD segment of the Kenweiyuan section in Wenchang, Hainan, China is a set of aeolian sand deposits of the Last Deglaciation. The chemical element and heavy mineral analysis performed in this study reveals the chemical index of alteration (CIA) in the segment to be as high as 93–95, with all the heavy minerals identified as stable and extremely stable making up 38–45% of the total. Furthermore, the zircon, tourmaline, and rutile content (ZTR index) of the segment is determined to range between 48–71. The (Al2O3 + TOFE)/SiO2 ratios display obvious fluctuations from old to new strata in the segment, with the low values corresponding to Heinrich event (H1), Dansgaard-Oeschager (D-O), and Younger Dryas (YD) and the high values corresponding to Bølling and Allerød. Our study suggests that these fluctuations are attributed to the alternation of the East Asian winter and summer monsoons. Hainan Island is also impacted by the surface ocean climate of the South China Sea, and characteristics of the KLD segment may be connected to the climate changes in the North Atlantic related to the winter monsoon season or westerlies. Furthermore, the segment presents a clear response to millennium-scale climate changes during the Last Deglaciation on Hainan Island. Based on the high CIA values in the KLD segment, and particularly due to the observed stable detrital minerals, the ratios can be linked to the overall tropical climate, indicating a relatively warm tropical climate environment in the Last Deglaciation in Hainan. The high CIA values also reveal the cause of aeolian sand formation under the tropical environmental conditions in the low latitude region of China in the Late Quaternary. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

21 pages, 9369 KiB  
Article
Improved YOLOv8n for Lightweight Ship Detection
by Zhiguang Gao, Xiaoyan Yu, Xianwei Rong and Wenqi Wang
J. Mar. Sci. Eng. 2024, 12(10), 1774; https://doi.org/10.3390/jmse12101774 - 6 Oct 2024
Cited by 3 | Viewed by 2318
Abstract
Automatic ship detection is a crucial task within the domain of maritime transportation management. With the progressive success of convolutional neural networks (CNNs), a number of advanced CNN models have been presented in order to detect ships. Although these detection models have achieved [...] Read more.
Automatic ship detection is a crucial task within the domain of maritime transportation management. With the progressive success of convolutional neural networks (CNNs), a number of advanced CNN models have been presented in order to detect ships. Although these detection models have achieved marked performance, several undesired results may occur under complex maritime conditions, such as missed detections, false positives, and low detection accuracy. Moreover, the existing detection models endure large number of parameters and heavy computation cost. To deal with these problems, we suggest a lightweight ship model of detection called DSSM–LightNet based upon the improved YOLOv8n. First, we introduce a lightweight Dual Convolutional (DualConv) into the model to lower both the number of parameters and the computational complexity. The principle is that DualConv combines two types of convolution kernels, 3x3 and 1x1, and utilizes group convolution techniques to effectively reduce computational costs while processing the same input feature map channels. Second, we propose a Slim-neck structure in the neck network, which introduces GSConv and VoVGSCSP modules to construct an efficient feature-fusion layer. This fusion strategy helps the model better capture the features of targets of different sizes. Meanwhile, a spatially enhanced attention module (SEAM) is leveraged to integrate with a Feature Pyramid Network (FPN) and the Slim-neck to achieve simple yet effective feature extraction, minimizing information loss during feature fusion. CIoU may not accurately reflect the relative positional relationship between bounding boxes in some complex scenarios. In contrast, MPDIoU can provide more accurate positional information in bounding-box regression by directly minimizing point distance and considering comprehensive loss. Therefore, we utilize the minimum point distance IoU (MPDIoU) rather than the Complete Intersection over Union (CIoU) Loss to further enhance the detection precision of the suggested model. Comprehensive tests carried out on the publicly accessible SeaShips dataset have demonstrated that our model greatly exceeds other algorithms in relation to their detection accuracy and efficiency, while reserving its lightweight nature. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

34 pages, 16479 KiB  
Article
Development of a Six-Degree-of-Freedom Deep-Sea Water-Hydraulic Manipulator
by Heng Gao, Defa Wu, Chuanqi Gao, Changkun Xu, Xing Yang and Yinshui Liu
J. Mar. Sci. Eng. 2024, 12(10), 1696; https://doi.org/10.3390/jmse12101696 - 24 Sep 2024
Cited by 3 | Viewed by 1635
Abstract
With the advancement of deep-sea exploration, the demand for underwater manipulators capable of long-duration heavy-duty operations has intensified. Water-hydraulic systems exhibit less viscosity variation with increasing depth than oil-based systems, offering better adaptability to deep-sea conditions. Using seawater as the driving medium inherently [...] Read more.
With the advancement of deep-sea exploration, the demand for underwater manipulators capable of long-duration heavy-duty operations has intensified. Water-hydraulic systems exhibit less viscosity variation with increasing depth than oil-based systems, offering better adaptability to deep-sea conditions. Using seawater as the driving medium inherently eliminates issues such as oil contamination by water, frequent maintenance limiting underwater operation time, and environmental pollution caused by oil leaks. This paper introduces a deep-sea manipulator directly driven by seawater from the deep-sea environment. To address the challenges of weak lubrication and high corrosion associated with water hydraulics, a reciprocating plunger seal was adopted, and a water-hydraulic actuator was developed. The installation positions of actuator hinges and maximum output force requirements were optimized using particle swarm optimization (PSO), effectively reducing the manipulator’s self-weight. Through kinematic and inverse kinematic analyses and joint performance tests, a six-degree-of-freedom water-hydraulic manipulator was designed with a maximum reach of 2.5 m, a lifting capacity of 5000 N, and end-effector positioning accuracy within 18 mm. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop