Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,309)

Search Parameters:
Keywords = heating system characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 11969 KiB  
Article
Spatiotemporal Variability of Cloud Parameters and Their Climatic Impacts over Central Asia Based on Multi-Source Satellite and ERA5 Data
by Xinrui Xie, Liyun Ma, Junqiang Yao and Weiyi Mao
Remote Sens. 2025, 17(15), 2724; https://doi.org/10.3390/rs17152724 - 6 Aug 2025
Abstract
As key components of the climate system, clouds exert a significant influence on the Earth’s radiation budget and hydrological cycle. However, studies focusing on cloud properties over Central Asia are still limited, and the impacts of cloud variability on regional temperature and precipitation [...] Read more.
As key components of the climate system, clouds exert a significant influence on the Earth’s radiation budget and hydrological cycle. However, studies focusing on cloud properties over Central Asia are still limited, and the impacts of cloud variability on regional temperature and precipitation remain poorly understood. This study uses reanalysis and multi-source remote sensing datasets to investigate the spatiotemporal characteristics of clouds and their influence on regional climate. The cloud cover increases from the southwest to the northeast, with mid and low-level clouds predominating in high-altitude regions. All clouds have shown a declining trend during 1981–2020. According to satellite data, the sharpest decline in total cloud cover occurs in summer, while reanalysis data show a more significant reduction in spring. In addition, cloud cover changes influence the local climate through radiative forcing mechanisms. Specifically, the weakening of shortwave reflective cooling and the enhancement of longwave heating of clouds collectively exacerbate surface warming. Meanwhile, precipitation is positively correlated with cloud cover, and its spatial distribution aligns with the cloud water path. The cloud phase composition in Central Asia is dominated by liquid water, accounting for over 40%, a microphysical characteristic that further impacts the regional hydrological cycle. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

25 pages, 2458 KiB  
Article
Numerical Analysis of Heat Transfer in a Double-Pipe Heat Exchanger for an LPG Fuel Supply System
by Seongwoo Lee, Younghun Kim, Ancheol Choi and Sungwoong Choi
Energies 2025, 18(15), 4179; https://doi.org/10.3390/en18154179 - 6 Aug 2025
Abstract
LPG fuel supply systems are increasingly important for improving energy efficiency and reducing carbon emissions in the shipping industry. The primary objective of this research is to investigate the heat transfer phenomena to enhance the thermal performance of double-pipe heat exchangers (DPHEs) in [...] Read more.
LPG fuel supply systems are increasingly important for improving energy efficiency and reducing carbon emissions in the shipping industry. The primary objective of this research is to investigate the heat transfer phenomena to enhance the thermal performance of double-pipe heat exchangers (DPHEs) in LPG fuel supply systems. This study investigates the heat transfer performance of a glycol–steam double-pipe heat exchanger (DPHE) within an LPG fuel supply system under varying operating conditions. A computational model and methodology were developed and validated by comparing the numerical results with experimental data obtained from commissioning tests. Additionally, the effects of turbulence models and parametric variations were evaluated by analyzing the glycol–water mixing ratio and flow direction—both of which are critical operational parameters for DPHE systems. Numerical validation against the commissioning data showed a deviation of ±2% under parallel-flow conditions, confirming the reliability of the proposed model. With respect to the glycol–water mixing ratio and flow configuration, thermal conductance (UA) decreased by approximately 11% in parallel flow and 13% in counter flow for every 20% increase in glycol concentration. Furthermore, parallel flow exhibited approximately 0.6% higher outlet temperatures than counter flow, indicating superior heat transfer efficiency under parallel-flow conditions. Finally, the heat transfer behavior of the DPHE was further examined by considering the effects of geometric characteristics, pipe material, and fluid properties. This study offers significant contributions to the engineering design of double-pipe heat exchanger systems for LPG fuel supply applications. Full article
(This article belongs to the Collection Advances in Heat Transfer Enhancement)
Show Figures

Figure 1

21 pages, 3452 KiB  
Article
Features of Ash and Slag Formation During Incomplete Combustion of Coal from the Karazhyra Deposit in Small- and Medium-Scale Power Plants
by Natalya Seraya, Vadim Litvinov, Gulzhan Daumova, Maksat Shaikhov, Raigul Ramazanova and Roza Aubakirova
Processes 2025, 13(8), 2467; https://doi.org/10.3390/pr13082467 - 4 Aug 2025
Abstract
The study presents a comprehensive assessment of the combustion efficiency of low-grade coal from the Karazhyra deposit in small- and medium-capacity boiler units of the energy workshops operated by Vostokenergo LLP (East Kazakhstan Region, Kazakhstan). It was found that the average annual thermal [...] Read more.
The study presents a comprehensive assessment of the combustion efficiency of low-grade coal from the Karazhyra deposit in small- and medium-capacity boiler units of the energy workshops operated by Vostokenergo LLP (East Kazakhstan Region, Kazakhstan). It was found that the average annual thermal energy output amounts to 2,387,348.85 GJ with a coal consumption of 164,328.5 tons. Based on operational data from 2016 to 2017, the average thermal efficiency (boiler efficiency) was 66.03%, with a maximum value of 75% recorded at the Zhezkent energy workshop. The average lower heating value (LHV) of the coal was 19.41 MJ/kg, which is below the design value of 20.52 MJ/kg, indicating the use of coal with reduced energy characteristics and elevated ash content (21.4%). The unburned carbon content in the ash and slag waste (ASW) was determined to be between 14 and 35%, indicating incomplete combustion. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed the presence of microspheres, porous granules, and coal residues, with silicon and aluminum oxides dominating the composition (up to 70.49%). Differences in the pollutant potential of ash from different boiler units were identified. Recommendations were substantiated regarding the adjustment of the air–fuel regime, modernization of combustion control systems, and utilization of ASW. The results may be used to develop measures aimed at improving the energy efficiency and environmental safety of coal-fired boiler plants. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

21 pages, 2657 KiB  
Article
Research on ATT-BiLSTM-Based Restoration Method for Deflection Monitoring Data of a Steel Truss Bridge
by Yongjian Chen, Rongzhen Liu, Jianlin Wang, Fan Pan, Fei Lian and Hui Cheng
Appl. Sci. 2025, 15(15), 8622; https://doi.org/10.3390/app15158622 (registering DOI) - 4 Aug 2025
Abstract
Given the intricate operating environment of steel truss bridges, data anomalies are frequently initiated by faults in the sensor monitoring system itself during the monitoring process. This paper utilizes a steel truss bridge as a case study in engineering, with a primary focus [...] Read more.
Given the intricate operating environment of steel truss bridges, data anomalies are frequently initiated by faults in the sensor monitoring system itself during the monitoring process. This paper utilizes a steel truss bridge as a case study in engineering, with a primary focus on the deflection of the main girder. The paper establishes an Attention Mechanism-based Bidirectional Long Short-Term Memory Neural Network (ATT-BiLSTM) model, with the objective of accurately repairing abnormal monitoring data. Firstly, correlation heat maps and Gray correlation are employed to detect anomalies in key measurement point data. Subsequently, the ATT-BiLSTM and Support Vector Machine (SVR) models are established to repair the anomalous monitoring data. Finally, various evaluation indexes, including Pearson’s correlation coefficient, mean squared error, and coefficient of determination, are utilized to validate the repairing accuracy of the ATT-BiLSTM model. The findings indicate that the repair efficacy of ATT-BiLSTM on anomalous data surpasses that of SVR. The repaired data exhibited a tendency to decrease in amplitude at the anomalous position, while maintaining the prominence of the data at abrupt deflection change points, thereby preserving the characteristics of the data. The repair rate of anomalous data attained 93.88%, and the mean square error of the actual complete data was only 0.0226, leading to substantial enhancement in the integrity and reliability of the data. Full article
Show Figures

Figure 1

14 pages, 2058 KiB  
Article
Integration of Daylight in Building Design as a Way to Improve the Energy Efficiency of Buildings
by Adrian Trząski and Joanna Rucińska
Energies 2025, 18(15), 4113; https://doi.org/10.3390/en18154113 - 2 Aug 2025
Viewed by 216
Abstract
According to the United Nations Environment Programme reports, buildings are responsible for nearly 40% of energy-related emissions; therefore, energy-optimized building design is crucial to reduce the reliance on non-renewable energy sources as well as greenhouse gas emissions. The OECD reports indicate the use [...] Read more.
According to the United Nations Environment Programme reports, buildings are responsible for nearly 40% of energy-related emissions; therefore, energy-optimized building design is crucial to reduce the reliance on non-renewable energy sources as well as greenhouse gas emissions. The OECD reports indicate the use of Building Information Modelling (BIM) as one of the effective strategies for decarbonization of buildings, since a 3D digital representation of both physical and functional characteristics of a building can help to design a more efficient infrastructure. An efficient integration of solar energy in building design can be vital for the enhancement of energy performance in terms of heating, cooling, and lighting demand. This paper presents results of an analysis of how factors related to the use of daylight, such as automatic control of artificial lighting, external shading, or the visual absorptance of internal surfaces, influence the energy efficiency within an example room in two different climatic zones. The simulation was conducted using Design Builder software, with predefined occupancy schedules and internal heat gains, and standard EPW weather files for Warsaw and Genua climate zones. The study indicates that for the examined room, when no automatic sunshades or a lighting control system is utilized, most of the final energy demand is for cooling purposes (45–54%), followed by lighting (42–43%), with only 3–12% for heating purposes. The introduction of sunshades and/or the use of daylight allowed for a reduction of the total demand by up to half. Moreover, it was pointed out that often neglected factors, like the colour of the internal surfaces, can have a significant effect on the final energy consumption. In variants with light interior, the total energy consumption was lower by about 3–4% of the baseline demand, compared to their corresponding ones with dark surfaces. These results are consistent with previous studies on daylighting strategies and highlight the importance of considering both visual and thermal impacts when evaluating energy performance. Similarly, possible side effects of certain actions were highlighted, such as an increase in heat demand resulting from a reduced need for artificial lighting. The results of the analysis highlight the potential of a simulation-based design approach in optimizing daylight use, contributing to the broader goals of building decarbonization. Full article
Show Figures

Figure 1

31 pages, 4347 KiB  
Article
Optimizing Passive Thermal Enhancement via Embedded Fins: A Multi-Parametric Study of Natural Convection in Square Cavities
by Saleh A. Bawazeer
Energies 2025, 18(15), 4098; https://doi.org/10.3390/en18154098 - 1 Aug 2025
Viewed by 123
Abstract
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a [...] Read more.
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a single horizontal fin on the hot wall. Over 9000 simulations were conducted, methodically varying the Rayleigh number (Ra = 10 to 105), Prandtl number (Pr = 0.1 to 10), and fin characteristics, such as length, vertical position, thickness, and the thermal conductivity ratio (up to 1000), to assess their overall impact on thermal efficiency. Thermal enhancements compared to scenarios without fins are quantified using local and average Nusselt numbers, as well as a Nusselt number ratio (NNR). The results reveal that, contrary to conventional beliefs, long fins positioned centrally can actually decrease heat transfer by up to 11.8% at high Ra and Pr due to the disruption of thermal plumes and diminished circulation. Conversely, shorter fins located near the cavity’s top and bottom wall edges can enhance the Nusselt numbers for the hot wall by up to 8.4%, thereby positively affecting the development of thermal boundary layers. A U-shaped Nusselt number distribution related to fin placement appears at Ra ≥ 103, where edge-aligned fins consistently outperform those positioned mid-height. The benefits of high-conductivity fins become increasingly nonlinear at larger Ra, with advantages limited to designs that minimally disrupt core convective patterns. These findings challenge established notions regarding passive thermal enhancement and provide a predictive thermogeometric framework for designing enclosures. The results can be directly applied to passive cooling systems in electronics, battery packs, solar thermal collectors, and energy-efficient buildings, where optimizing heat transfer is vital without employing active control methods. Full article
Show Figures

Figure 1

16 pages, 4280 KiB  
Article
Dynamic Simulation Model of Single Reheat Steam Turbine and Speed Control System Considering the Impact of Industrial Extraction Heat
by Libin Wen, Hong Hu and Jinji Xi
Processes 2025, 13(8), 2445; https://doi.org/10.3390/pr13082445 - 1 Aug 2025
Viewed by 222
Abstract
This study conducts an in-depth analysis of the dynamic characteristics of a single reheat steam turbine generator unit and its speed control system under variable operating conditions. A comprehensive simulation model was constructed to comprehensively evaluate the impact of the heat extraction system [...] Read more.
This study conducts an in-depth analysis of the dynamic characteristics of a single reheat steam turbine generator unit and its speed control system under variable operating conditions. A comprehensive simulation model was constructed to comprehensively evaluate the impact of the heat extraction system on the dynamic behavior of the unit, which integrates the speed control system, actuator, single reheat steam turbine body, and once-through boiler dynamic coupling. This model focuses on revealing the mechanism of the heat extraction regulation process on the core operating parameters of the unit and the system frequency regulation capability. Based on the actual parameters of a 300 MW heat unit in a power plant in Guangxi, the dynamic response of the established model under typical dynamic conditions such as extraction flow regulation, primary frequency regulation response, and load step disturbance was simulated and experimentally verified. The results show that the model can accurately characterize the dynamic characteristics of the heat unit under variable operating conditions, and the simulation results are in good agreement with the actual engineering, with errors within an acceptable range, effectively verifying the dynamic performance of the heat system module and the rationality of its control parameter design. This study provides a reliable theoretical basis and model support for the accurate simulation of the dynamic behavior of heat units in the power system and the design of optimization control strategies for system frequency regulation. Full article
(This article belongs to the Special Issue Challenges and Advances of Process Control Systems)
Show Figures

Figure 1

19 pages, 1889 KiB  
Article
Infrared Thermographic Signal Analysis of Bioactive Edible Oils Using CNNs for Quality Assessment
by Danilo Pratticò and Filippo Laganà
Signals 2025, 6(3), 38; https://doi.org/10.3390/signals6030038 - 1 Aug 2025
Viewed by 174
Abstract
Nutrition plays a fundamental role in promoting health and preventing chronic diseases, with bioactive food components offering a therapeutic potential in biomedical applications. Among these, edible oils are recognised for their functional properties, which contribute to disease prevention and metabolic regulation. The proposed [...] Read more.
Nutrition plays a fundamental role in promoting health and preventing chronic diseases, with bioactive food components offering a therapeutic potential in biomedical applications. Among these, edible oils are recognised for their functional properties, which contribute to disease prevention and metabolic regulation. The proposed study aims to evaluate the quality of four bioactive oils (olive oil, sunflower oil, tomato seed oil, and pumpkin seed oil) by analysing their thermal behaviour through infrared (IR) imaging. The study designed a customised electronic system to acquire thermographic signals under controlled temperature and humidity conditions. The acquisition system was used to extract thermal data. Analysis of the acquired thermal signals revealed characteristic heat absorption profiles used to infer differences in oil properties related to stability and degradation potential. A hybrid deep learning model that integrates Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) units was used to classify and differentiate the oils based on stability, thermal reactivity, and potential health benefits. A signal analysis showed that the AI-based method improves both the accuracy (achieving an F1-score of 93.66%) and the repeatability of quality assessments, providing a non-invasive and intelligent framework for the validation and traceability of nutritional compounds. Full article
Show Figures

Figure 1

29 pages, 5343 KiB  
Article
Optimizing Electric Bus Efficiency: Evaluating Seasonal Performance in a Southern USA Transit System
by MD Rezwan Hossain, Arjun Babuji, Md. Hasibul Hasan, Haofei Yu, Amr Oloufa and Hatem Abou-Senna
Future Transp. 2025, 5(3), 92; https://doi.org/10.3390/futuretransp5030092 (registering DOI) - 1 Aug 2025
Viewed by 136
Abstract
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced [...] Read more.
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced battery performance, this study presents a contrasting perspective based on a three-year longitudinal analysis of the LYMMO fleet in Orlando, Florida—a subtropical U.S. region. The findings reveal that summer is the most energy-intensive season, primarily due to sustained HVAC usage driven by high ambient temperatures—a seasonal pattern rarely reported in the current literature and a key regional contribution. Additionally, idling time exceeds driving time across all seasons, with HVAC usage during idling emerging as the dominant contributor to total energy consumption. To mitigate these inefficiencies, a proxy-based HVAC energy estimation method and an optimization model were developed, incorporating ambient temperature and peak passenger load. This approach achieved up to 24% energy savings without compromising thermal comfort. Results validated through non-parametric statistical testing support operational strategies such as idling reduction, HVAC control, and seasonally adaptive scheduling, offering practical pathways to improve EB efficiency in warm-weather transit systems. Full article
Show Figures

Figure 1

26 pages, 15885 KiB  
Article
Comparative Analysis of Fully Floating and Semi-Floating Ring Bearings in High-Speed Turbocharger Rotordynamics
by Kyuman Kim and Keun Ryu
Lubricants 2025, 13(8), 338; https://doi.org/10.3390/lubricants13080338 - 31 Jul 2025
Viewed by 190
Abstract
This study presents a detailed experimental comparison of the rotordynamic and thermal performance of automotive turbochargers supported by two distinct hydrodynamic bearing configurations: fully floating ring bearings (FFRBs) and semi-floating ring bearings (SFRBs). While both designs are widely used in commercial turbochargers, they [...] Read more.
This study presents a detailed experimental comparison of the rotordynamic and thermal performance of automotive turbochargers supported by two distinct hydrodynamic bearing configurations: fully floating ring bearings (FFRBs) and semi-floating ring bearings (SFRBs). While both designs are widely used in commercial turbochargers, they exhibit significantly different dynamic behaviors due to differences in ring motion and fluid film interaction. A cold air-driven test rig was employed to assess vibration and temperature characteristics across a range of controlled lubricant conditions. The test matrix included oil supply pressures from 2 bar (g) to 4 bar (g) and temperatures between 30 °C and 70 °C. Rotor speeds reached up to 200 krpm (thousands of revolutions per minute), and data were collected using a high-speed data acquisition system, triaxial accelerometers, and infrared (IR) thermal imaging. Rotor vibration was characterized through waterfall and Bode plots, while jump speeds and thermal profiles were analyzed to evaluate the onset and severity of instability. The results demonstrate that the FFRB configuration is highly sensitive to oil supply parameters, exhibiting strong subsynchronous instabilities and hysteresis during acceleration–deceleration cycles. In contrast, the SFRB configuration consistently provided superior vibrational stability and reduced sensitivity to lubricant conditions. Changes in lubricant supply conditions induced a jump speed variation in floating ring bearing (FRB) turbochargers that was approximately 3.47 times larger than that experienced by semi-floating ring bearing (SFRB) turbochargers. Furthermore, IR images and oil outlet temperature data confirm that the FFRB system experiences greater heat generation and thermal gradients, consistent with higher energy dissipation through viscous shear. This study provides a comprehensive assessment of both bearing types under realistic high-speed conditions and highlights the advantages of the SFRB configuration in improving turbocharger reliability, thermal performance, and noise suppression. The findings support the application of SFRBs in high-performance automotive systems where mechanical stability and reduced frictional losses are critical. Full article
(This article belongs to the Collection Rising Stars in Tribological Research)
Show Figures

Figure 1

20 pages, 3271 KiB  
Article
Calculation Model for the Degree of Hydration and Strength Prediction in Basalt Fiber-Reinforced Lightweight Aggregate Concrete
by Yanqun Sun, Haoxuan Jia, Jianxin Wang, Yanfei Ding, Yanfeng Guan, Dongyi Lei and Ying Li
Buildings 2025, 15(15), 2699; https://doi.org/10.3390/buildings15152699 - 31 Jul 2025
Viewed by 217
Abstract
The combined application of fibers and lightweight aggregates (LWAs) represents an effective approach to achieving high-strength, lightweight concrete. To enhance the predictability of the mechanical properties of fiber-reinforced lightweight aggregate concrete (LWAC), this study conducts an in-depth investigation into its hydration characteristics. In [...] Read more.
The combined application of fibers and lightweight aggregates (LWAs) represents an effective approach to achieving high-strength, lightweight concrete. To enhance the predictability of the mechanical properties of fiber-reinforced lightweight aggregate concrete (LWAC), this study conducts an in-depth investigation into its hydration characteristics. In this study, high-strength LWAC was developed by incorporating low water absorption LWAs, various volume fractions of basalt fiber (BF) (0.1%, 0.2%, and 0.3%), and a ternary cementitious system consisting of 70% cement, 20% fly ash, and 10% silica fume. The hydration-related properties were evaluated through isothermal calorimetry test and high-temperature calcination test. The results indicate that incorporating 0.1–0.3% fibers into the cementitious system delays the early hydration process, with a reduced peak heat release rate and a delayed peak heat release time compared to the control group. However, fitting the cumulative heat release over a 72-h period using the Knudsen equation suggests that BF has a minor impact on the final degree of hydration, with the difference in maximum heat release not exceeding 3%. Additionally, the calculation model for the final degree of hydration in the ternary binding system was also revised based on the maximum heat release at different water-to-binder ratios. The results for chemically bound water content show that compared with the pre-wetted LWA group, under identical net water content conditions, the non-pre-wetted LWA group exhibits a significant reduction at three days, with a decrease of 28.8%; while under identical total water content conditions it shows maximum reduction at ninety days with a decrease of 5%. This indicates that pre-wetted LWAs help maintain an effective water-to-binder ratio and facilitate continuous advancement in long-term hydration reactions. Based on these results, influence coefficients related to LWAs for both final degree of hydration and hydration rate were integrated into calculation models for degrees of hydration. Ultimately, this study verified reliability of strength prediction models based on degrees of hydration. Full article
Show Figures

Figure 1

30 pages, 449 KiB  
Review
Bioactive Compounds and the Performance of Proteins as Wall Materials for Their Encapsulation
by Therys Senna de Castro Oliveira, Jhonathan Valente Ferreira Gusmão, Thaís Caroline Buttow Rigolon, Daiana Wischral, Pedro Henrique Campelo, Evandro Martins and Paulo Cesar Stringheta
Micro 2025, 5(3), 36; https://doi.org/10.3390/micro5030036 - 31 Jul 2025
Viewed by 216
Abstract
The encapsulation of bioactive compounds using proteins as wall materials has emerged as an effective strategy to enhance their stability, bioavailability, and controlled release. Proteins offer unique functional properties, including amphiphilic behavior, gel-forming ability, and interactions with bioactives, making them ideal candidates for [...] Read more.
The encapsulation of bioactive compounds using proteins as wall materials has emerged as an effective strategy to enhance their stability, bioavailability, and controlled release. Proteins offer unique functional properties, including amphiphilic behavior, gel-forming ability, and interactions with bioactives, making them ideal candidates for encapsulation. Animal-derived proteins, such as whey and casein, exhibit superior performance in stabilizing lipophilic compounds, whereas plant proteins, including soy and pea protein, demonstrate greater affinity for hydrophilic bioactives. Advances in protein modification and the formation of protein–polysaccharide complexes have further improved encapsulation efficiency, particularly for heat- and pH-sensitive compounds. This review explores the physicochemical characteristics of proteins used in encapsulation, the interactions between proteins and bioactives, and the main encapsulation techniques, including spray drying, complex coacervation, nanoemulsions, and electrospinning. Furthermore, the potential applications of encapsulated bioactives in functional foods, pharmaceuticals, and nutraceuticals are discussed, highlighting the role of emerging technologies in optimizing delivery systems. Understanding the synergy between proteins, bioactives, and encapsulation methods is essential for developing more stable, bioavailable, and sustainable functional products. Full article
(This article belongs to the Section Microscale Biology and Medicines)
24 pages, 2458 KiB  
Review
Vapor Compression Refrigeration System for Aircrafts: Current Status, Large-Temperature-Range Challenges and Emerging Auto-Cascade Refrigeration Technologies
by Hainan Zhang, Qinghao Wu, Shuo Feng, Sujun Dong and Zanjun Gao
Aerospace 2025, 12(8), 681; https://doi.org/10.3390/aerospace12080681 - 30 Jul 2025
Viewed by 281
Abstract
Modern aircraft increasingly utilizes highly integrated electronic equipment, driving continuously increasing heat dissipation demands. Vapor compression refrigeration systems demonstrate stronger alignment with future aircraft thermal management trends, leveraging their superior volumetric cooling capacity, high energy efficiency, and independence from engine bleed air. This [...] Read more.
Modern aircraft increasingly utilizes highly integrated electronic equipment, driving continuously increasing heat dissipation demands. Vapor compression refrigeration systems demonstrate stronger alignment with future aircraft thermal management trends, leveraging their superior volumetric cooling capacity, high energy efficiency, and independence from engine bleed air. This paper reviews global research progress on aircraft vapor compression refrigeration systems, covering performance optimization, dynamic characteristics, control strategies, fault detection, and international development histories and typical applications. Analysis identifies emerging challenges under large-temperature-range cooling requirements, with comparative assessment establishing zeotropic mixture auto-cascade vapor compression refrigeration systems as the optimal forward-looking solution. Finally, recognizing current research gaps, we propose future research directions for onboard auto-cascade vapor compression refrigeration systems: optimizing refrigerant mixtures for flight conditions, achieving efficient gas-liquid separation during variable overloads and attitude conditions, and developing model predictive control with intelligent optimization to ensure reliability. Full article
(This article belongs to the Special Issue Aerospace Human–Machine and Environmental Control Engineering)
Show Figures

Figure 1

17 pages, 3620 KiB  
Article
Proposal of a Thermal Network Model for Fast Solution of Temperature Rise Characteristics of Aircraft Wire Harnesses
by Tao Cao, Wei Li, Tianxu Zhao and Shumei Cui
Energies 2025, 18(15), 4046; https://doi.org/10.3390/en18154046 - 30 Jul 2025
Viewed by 201
Abstract
The design of aircraft electrical wiring interconnection systems (EWISs) is central to ensuring the safe and reliable operation of aircraft. The calculation of the temperature rise characteristics of aircraft wire harnesses is one of the key technologies in EWIS design, directly affecting the [...] Read more.
The design of aircraft electrical wiring interconnection systems (EWISs) is central to ensuring the safe and reliable operation of aircraft. The calculation of the temperature rise characteristics of aircraft wire harnesses is one of the key technologies in EWIS design, directly affecting the safety margin of the system. However, existing calculation methods generally face a bottleneck in the balance between speed and accuracy, failing to meet the requirements of actual engineering applications. In this paper, we conduct an in-depth study on this issue. Firstly, a finite element harness model is established to accurately obtain the convective heat transfer coefficients of wires and harnesses. Based on the analysis of the influencing factors of the thermal network model for a single wire, an improved thermal resistance hierarchical wire thermal network model is proposed. A structure consisting of series thermal resistance within layers and iterative parallel algorithms between layers is proposed to equivalently integrate and iteratively calculate the mutual thermal influence relationship between each layer of the harness, thereby constructing a hierarchical harness thermal network model. This model successfully achieves a significant improvement in calculation speed while effectively ensuring useable temperature rise results, providing an effective method for EWIS design. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

30 pages, 8885 KiB  
Article
Seasonally Adaptive VMD-SSA-LSTM: A Hybrid Deep Learning Framework for High-Accuracy District Heating Load Forecasting
by Yu Zhang, Keyong Hu, Lei Lu, Qingqing Yang and Min Fang
Mathematics 2025, 13(15), 2406; https://doi.org/10.3390/math13152406 - 26 Jul 2025
Viewed by 221
Abstract
To improve the accuracy of heating load forecasting and effectively address the energy waste caused by supply–demand imbalances and uneven thermal distribution, this study innovatively proposes a hybrid prediction model incorporating seasonal adjustment strategies. The model establishes a dynamically adaptive forecasting framework through [...] Read more.
To improve the accuracy of heating load forecasting and effectively address the energy waste caused by supply–demand imbalances and uneven thermal distribution, this study innovatively proposes a hybrid prediction model incorporating seasonal adjustment strategies. The model establishes a dynamically adaptive forecasting framework through synergistic integration of the Sparrow Search Algorithm (SSA), Variational Mode Decomposition (VMD), and Long Short-Term Memory (LSTM) network. Specifically, VMD is first employed to decompose the historical heating load data from Arizona State University’s Tempe campus into multiple stationary modal components, aiming to reduce data complexity and suppress noise interference. Subsequently, the SSA is utilized to optimize the hyperparameters of the LSTM network, with targeted adjustments made according to the seasonal characteristics of the heating load, enabling the identification of optimal configurations for each season. Comprehensive experimental evaluations demonstrate that the proposed model achieves the lowest values across three key performance metrics—Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE)—under various seasonal conditions. Notably, the MAPE values are reduced to 1.3824%, 0.9549%, 6.4018%, and 1.3272%, with average error reductions of 9.4873%, 3.8451%, 6.6545%, and 6.5712% compared to alternative models. These results strongly confirm the superior predictive accuracy and fitting capability of the proposed model, highlighting its potential to support energy allocation optimization in district heating systems. Full article
Show Figures

Figure 1

Back to TopTop