Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,483)

Search Parameters:
Keywords = heating energy assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 5657 KiB  
Article
Modeling of Temperature and Moisture Dynamics in Corn Storage Silos with and Without Aeration Periods in Three Dimensions
by F. I. Molina-Herrera, H. Jiménez-Islas, M. A. Sandoval-Hernández, N. E. Maldonado-Sierra, C. Domínguez Campos, L. Jarquín Enríquez, F. J. Mondragón Rojas and N. L. Flores-Martínez
ChemEngineering 2025, 9(4), 89; https://doi.org/10.3390/chemengineering9040089 - 15 Aug 2025
Viewed by 30
Abstract
This study analyzes the dynamics of temperature and moisture in a cylindrical silo with a conical roof and floor used for storing corn in the Bajío region of Mexico, considering conditions both with and without aeration. The model incorporates external temperature fluctuations, solar [...] Read more.
This study analyzes the dynamics of temperature and moisture in a cylindrical silo with a conical roof and floor used for storing corn in the Bajío region of Mexico, considering conditions both with and without aeration. The model incorporates external temperature fluctuations, solar radiation, grain moisture equilibrium with air humidity through the sorption isotherm (water activity), and grain respiration to simulate real storage conditions. The model is based on continuity, momentum, energy, and moisture conservation equations in porous media. This model was solved using the finite element method (FEM) to evaluate temperature and interstitial humidity variations during January and May, representing cold and warm environmental conditions, respectively. The simulations show that, without aeration, grain temperature progressively accumulates in the center and bottom region of the silo, reaching critical values for safe storage. In January, the low ambient temperature favors the natural dissipation of heat. In contrast, in May, the combination of high ambient temperatures and solar radiation intensifies thermal accumulation, increasing the risk of grain deterioration. However, implementing aeration periods allowed for a reduction in the silo’s internal temperature, achieving more homogeneous cooling and reducing the threats of mold and insect proliferation. For January, an airflow rate of 0.15 m3/(min·ton) was optimal for maintaining the temperature within the safe storage range (≤17 °C). In contrast, in May, neither this airflow rate nor the accumulation of 120 h of aeration was sufficient to achieve optimal storage temperatures. This indicates that, under warm conditions, the aeration strategy needs to be reconsidered, assessing whether a higher airflow rate, longer periods, or a combination of both could improve heat dissipation. The results also show that interstitial relative humidity remains stable with nocturnal aeration, minimizing moisture absorption in January and preventing excessive drying in May. However, it was identified that aeration period management must be adaptive, taking environmental conditions into account to avoid issues such as re-wetting or excessive grain drying. Full article
Show Figures

Figure 1

51 pages, 3445 KiB  
Review
Nanofluid-Enhanced HVAC&R Systems (2015–2025): Experimental, Numerical, and AI-Driven Insights with a Strategic Roadmap
by Aung Myat, Md Mashiur Rahman and Muhammad Akbar
Sustainability 2025, 17(16), 7371; https://doi.org/10.3390/su17167371 (registering DOI) - 14 Aug 2025
Viewed by 118
Abstract
Heating, ventilation, air conditioning, and refrigeration (HVAC&R) systems account for a significant share of global energy demand, prompting intensive research into advanced thermal enhancement techniques. Among these, nanofluids—colloidal suspensions of nanoparticles in base fluids—have shown promise in boosting heat transfer performance. This review [...] Read more.
Heating, ventilation, air conditioning, and refrigeration (HVAC&R) systems account for a significant share of global energy demand, prompting intensive research into advanced thermal enhancement techniques. Among these, nanofluids—colloidal suspensions of nanoparticles in base fluids—have shown promise in boosting heat transfer performance. This review provides a structured and critical evaluation of nanofluid applications in HVAC&R systems, synthesizing research published from 2015 to 2025. A total of 200 peer-reviewed articles were selected from an initial pool of over 900 through a systematic filtering process. The selected literature was thematically categorized into experimental, numerical, hybrid, and AI/ML-based studies, with further classification by fluid type, performance metrics, and system-level relevance. Unlike prior reviews focused narrowly on thermophysical properties or individual components, this work integrates recent advances in artificial intelligence and hybrid modeling to assess both localized and systemic enhancements. Notably, nanofluids have demonstrated up to a 45% improvement in heat transfer coefficients and up to a 51% increase in the coefficient of performance (COP). However, the review reveals persistent gaps, including limited full-system validation, underexplored real-world integration, and minimal use of AI for holistic optimization. By identifying these knowledge gaps and research imbalances, this review proposes a forward-looking, data-driven roadmap to guide future research and facilitate the scalable adoption of nanofluid-enhanced HVAC&R technologies. Full article
Show Figures

Figure 1

31 pages, 946 KiB  
Article
Performance Analysis of a Floating Seawater Desalination Structure Based on Heat Pipes
by Juan J. Vallejo Tejero, María Martínez Gómez, Francisco J. Muñoz Gutiérrez and Alejandro Rodríguez Gómez
Inventions 2025, 10(4), 72; https://doi.org/10.3390/inventions10040072 - 14 Aug 2025
Viewed by 86
Abstract
This study presents a comprehensive numerical simulation and thermal performance analysis of a novel modular floating solar still system, featuring integrated heat-pipe vacuum tube collectors, designed for seawater desalination. This innovative system—subject of International Patent Application WO 2023/062261 A1—not only aims to enhance [...] Read more.
This study presents a comprehensive numerical simulation and thermal performance analysis of a novel modular floating solar still system, featuring integrated heat-pipe vacuum tube collectors, designed for seawater desalination. This innovative system—subject of International Patent Application WO 2023/062261 A1—not only aims to enhance efficiency and scalability beyond traditional solar stills, but also addresses the significant environmental challenge of concentrated brine discharge inherent in conventional desalination methods. The study evolved from an initial theoretical model to a rigorous dynamic thermal model, validated using real hourly meteorological data from Málaga, Andalusia, Spain. This modelling approach was developed to quantify heat transfer mechanisms and accurately predict system performance. The refined hourly simulation forecasts an annual freshwater production of approximately 174 L per unit. Notably, a preliminary economic assessment estimates the Cost of Produced Water per Litre (CPL) at 0.7509 EUR/litre, establishing a valuable baseline for future optimisation. These findings underscore the critical importance of dynamic hourly simulations for realistic performance prediction and validate the technical and preliminary economic feasibility of this novel approach. The system’s projected output, modular floating design, and significant environmental advantages position it as a promising and sustainable solution for freshwater production, particularly in coastal regions and sensitive marine ecosystems. This work provides a solid foundation for future experimental validation, cost optimisation, and scalable implementation of renewable energy-driven desalination. Full article
Show Figures

Figure 1

22 pages, 5568 KiB  
Article
Assessment of a Helium/Argon-Generated Cold Atmospheric Plasma Device’s Safety Utilizing a Pig Model
by Xin-Rui Zhang, Thuy-Tien Thi Trinh, Linh Le Thi Thuy, Nguyen Ngan Giang, Yong-Xun Jin, Young-Hyun Lee, Gun-Young Ahn, Boncheol Leo Goo, Kyoung-Su Jung, Hyun-Soo Hwang, Pham Ngoc Chien and Chan-Yeong Heo
Int. J. Mol. Sci. 2025, 26(16), 7854; https://doi.org/10.3390/ijms26167854 - 14 Aug 2025
Viewed by 171
Abstract
The PlazMagik device is a dual-gas cold atmospheric plasma (CAP) system that was developed and used for skin rejuvenation and inflammation treatment. However, preclinical evaluation and optimization of plasma parameters are crucial for guaranteeing safety. Therefore, this study was performed to evaluate the [...] Read more.
The PlazMagik device is a dual-gas cold atmospheric plasma (CAP) system that was developed and used for skin rejuvenation and inflammation treatment. However, preclinical evaluation and optimization of plasma parameters are crucial for guaranteeing safety. Therefore, this study was performed to evaluate the safety of the PlazMagik device under multiple parameters with different gas resources (helium (He) and argon (Ar) gases) on pig dorsal skin. After application of PlazMagik to the pig’s dorsal skin, temperature and visual assessments were observed immediately and for up to 30 days. All clinical parameters, including body weight and blood serum biochemistry, along with histopathological analysis (H&E, MT, VB, NBTC staining), were monitored pre-application and at 1, 7, 15, and 30 days post-application of the plasma device. Our results confirmed the safety of the machine at low-output energy settings, which showed gentle skin exfoliation but no tissue damage, while high-output settings led to the skin erosion effect, then developing erythema and coagulation. Ar gas resulted in more significant heat production and pathological changes than He under identical conditions. These findings emphasize the importance of the preclinical evaluation of the energy settings and gas selection on optimizing CAP system performance for safe clinical applications and appropriate application purposes. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

39 pages, 854 KiB  
Article
A Hybrid MCDM Approach to Optimize Molten Salt Selection for Off-Grid CSP Systems
by Ghazi M. Magableh, Mahmoud Z. Mistarihi and Saba Abu Dalu
Energies 2025, 18(16), 4323; https://doi.org/10.3390/en18164323 - 14 Aug 2025
Viewed by 270
Abstract
Transitioning to sustainable energy systems demands the creation of innovative methods that deliver dependable and effective renewable energy technologies. CSP systems that integrate parabolic trough designs with thermal energy storage (TES) systems provide essential solutions to overcome energy intermittency challenges. Molten salts serve [...] Read more.
Transitioning to sustainable energy systems demands the creation of innovative methods that deliver dependable and effective renewable energy technologies. CSP systems that integrate parabolic trough designs with thermal energy storage (TES) systems provide essential solutions to overcome energy intermittency challenges. Molten salts serve dual functions as heat transfer fluids (HTFs) and thermal energy storage (TES) media, making them critical to CSP system performance improvements. The study introduces a hybrid MCDM framework that combines the CRITIC method for objective weighting with the SWARA approach for expert-adjusted weighting and utilizes an enhanced Lexicographic Goal Programming to evaluate molten salt options for off-grid parabolic trough systems. The evaluation process considered melting point alongside thermal stability while also assessing cost-effectiveness, recyclability, and safety requirements. The use of Pareto front analysis helped identify non-dominated salts, which then underwent a tiered optimization process emphasizing safety, performance, and sustainability features. Results confirm that the ternary nitrate composition Ca(NO3)2:NaNO3:KNO3 offers the best overall performance across all tested policy scenarios, driven by its superior thermophysical properties. Solar Salt (NaNO3-KNO3) consistently ranks as a robust second choice, excelling in economic and sustainability metrics. The proposed approach provides a flexible, policy-sensitive framework for material selection tailored to enhance the efficiency and sustainability of off-grid CSP systems and support the renewable energy objectives. Full article
Show Figures

Figure 1

13 pages, 4113 KiB  
Article
Metal–Organic Network-Based Composite Phase Change Materials with High Thermal and Photothermal Conversion Performance
by Dian Wei, Yi Wang, Shuoshuo Yu, Qingtang Zhang and Yi Wang
Materials 2025, 18(16), 3814; https://doi.org/10.3390/ma18163814 - 14 Aug 2025
Viewed by 257
Abstract
Solid–liquid phase change materials (PCMs), promising for thermal management, face limited application due to leakage and low thermal conductivity. In this work, a shape-stabilized composite PCM was fabricated using a one-pot in situ process by mixing polyethylene glycol (PEG) with the novel metal–organic [...] Read more.
Solid–liquid phase change materials (PCMs), promising for thermal management, face limited application due to leakage and low thermal conductivity. In this work, a shape-stabilized composite PCM was fabricated using a one-pot in situ process by mixing polyethylene glycol (PEG) with the novel metal–organic network called CFK, which was synthesized from carboxylated multi-walled carbon nanotubes (CMWCNTs), FeCl3, and Kevlar nanofibers (KNFs). The morphology, composition, and thermophysical characteristics of the composite PCM were assessed. Key properties analyzed to validate its performance included leakage rate, thermal conductivity, latent heat, light absorption, photothermal conversion efficiency, and cycling stability. This composite PCM exhibits reduced leakage while maintaining remarkable thermal energy charge/discharge performance. The study establishes that the composite PCM containing 89.9 wt% PEG has a leakage rate of 0.76% since the PEG molecules are deeply embedded in the pores of CFK. The thermal conductivity of this composite PCM was enhanced by 170.5% relative to pure PEG, and the latent heat was measured as 147.9 J·g−1 for fusion and 143.7 J·g−1 for crystallization. Additionally, this composite PCM reveals excellent light absorption capacity, a photothermal conversion efficiency as high as 83.4%, and outstanding stability in photothermal cycling experiments. In short, this work offers a new strategy for both preparing high-performance composite PCMs and applying them in visible light conversion. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

26 pages, 3774 KiB  
Article
Low-Carbon Industrial Heating in the EU and UK: Integrating Waste Heat Recovery, High-Temperature Heat Pumps, and Hydrogen Technologies
by Pouriya H. Niknam
Energies 2025, 18(16), 4313; https://doi.org/10.3390/en18164313 - 13 Aug 2025
Viewed by 355
Abstract
This research introduces a two-stage, low-carbon industrial heating process, leveraging advanced waste heat recovery (WHR) technologies and exploiting waste heat (WH) to drive decentralised hydrogen production. This study is supported by a data-driven analysis of individual technologies, followed by 0D modelling of the [...] Read more.
This research introduces a two-stage, low-carbon industrial heating process, leveraging advanced waste heat recovery (WHR) technologies and exploiting waste heat (WH) to drive decentralised hydrogen production. This study is supported by a data-driven analysis of individual technologies, followed by 0D modelling of the integrated system for technical and feasibility assessment. Within 10 years, the EU industry will be supported by two main strategies to transition to low-carbon energy: (a) shifting from grid-mix electricity towards fully renewable sources, and (b) expanding low-carbon hydrogen infrastructure within industrial clusters. On the demand side, process heating in the industrial sector accounts for 70% of total energy consumption in industry. Almost one-fifth of the energy consumed to fulfil the process heat demand is lost as waste. The proposed heating solution is tailored for process heat in industry and stands apart from the dual-mode residential heating system (i.e., heat pump and gas boiler), as it is based on integrated and simultaneous operation to meet industry-level reliability at higher temperatures, focusing on WHR and low-carbon hydrogen. The solution uses a cascaded heating approach. Low- and medium-temperature WH are exploited to drive high-temperature heat pumps (HTHPs), followed by hydrogen burners fuelled by hydrogen generated on-site by electrolysers, which are powered by advanced WHR technologies. The results revealed that the deployment of the solution at scale could fulfil ~14% of the process heat demand in EU/UK industries by 2035. Moreover, with further availability of renewable energy sources and clean hydrogen, it could have a higher contribution to the total process heat demand as a low-carbon solution. The economic analysis estimates that adopting the combined heating solution—benefiting from the full capacity of WHR for the HTHP and on-site hydrogen production—would result in a levelised cost of heat of ~EUR 84/MWh, which is lower than that of full electrification of industrial heating in 2035. Full article
Show Figures

Figure 1

23 pages, 2126 KiB  
Article
Sustainability Assessment of Energy System Transition Scenarios in Gotland: Integrating Techno-Economic Modeling with Environmental and Social Perspectives
by Sahar Safarian, Maria Lidberg and Mirjam Särnbratt
Energies 2025, 18(16), 4315; https://doi.org/10.3390/en18164315 - 13 Aug 2025
Viewed by 210
Abstract
Gotland has been designated by the Swedish government as a pilot region for the transition to a sustainable, fossil-free energy system by 2030. This transformation emphasizes local renewable energy production and system independence. Within this context, this study investigates the role of industrial [...] Read more.
Gotland has been designated by the Swedish government as a pilot region for the transition to a sustainable, fossil-free energy system by 2030. This transformation emphasizes local renewable energy production and system independence. Within this context, this study investigates the role of industrial waste heat as a resource to improve energy efficiency and support sector integration between electricity, heating, and industry. A mixed-methods approach was used, combining techno-economic energy system modeling, life cycle assessment, spatial GIS data, and stakeholder input. The study develops and analyzes future carbon-neutral energy scenarios for Gotland’s energy system. Industrial waste heat can significantly reduce primary energy demand, particularly in scenarios with expanded industry, carbon capture, and increased sector integration—such as through district heating. In such cases, up to 3000–4000 GWh/year of low-temperature industrial residual heat becomes available, offering substantial potential to improve overall energy efficiency. The scenarios highlight synergies and trade-offs across environmental, economic, and social dimensions, emphasizing the importance of coordinated planning. Scenarios with offshore wind enable energy exports and industrial growth but raise challenges related to emissions and public acceptance, while scenarios without cement production reduce environmental impact but weaken local economic resilience. Limitations of the study include the exclusion of global supply chain impacts and assumptions about future technological costs. The study underscores the need for integrated planning, regulatory innovation, and stakeholder collaboration to ensure a just and resilient transition for Gotland. Full article
Show Figures

Figure 1

23 pages, 1776 KiB  
Article
Assessment of Greenhouse Gas Emissions, Energy Demand and Solid Waste Generation Between Two Manufacturing Processes: A Case Study
by Fernando Nogueira Cardoso, João da Cruz Payão Filho, Margareth Nascimento de Souza Lira and Claudinei de Souza Guimarães
Recycling 2025, 10(4), 163; https://doi.org/10.3390/recycling10040163 - 13 Aug 2025
Viewed by 125
Abstract
Additive manufacturing (AM) is an Industry 4.0 technology that assists or replaces the conventional manufacturing (CM) of complex geometries in various sectors, including transport, steel, aerospace, military, and architecture. The aim is to improve processes, reduce energy consumption, atmospheric emissions, and solid waste, [...] Read more.
Additive manufacturing (AM) is an Industry 4.0 technology that assists or replaces the conventional manufacturing (CM) of complex geometries in various sectors, including transport, steel, aerospace, military, and architecture. The aim is to improve processes, reduce energy consumption, atmospheric emissions, and solid waste, and streamline stages while complying with the new environmental regulations. The main objective of this work was to carry out a cradle-to-gate Life Cycle Assessment (LCA), considering the raw material extraction, pre-processing, manufacturing, and post-processing stages, comparing two manufacturing methods for the same ER-90 metal flange part, conventional forging and wire and arc additive manufacturing (WAAM), all following the requirements and operations proposed by the ISO 14040/44 standard. WAAM is a Directed Energy Deposition (DED) technology that uses welding techniques to produce 3D objects with more complex geometries. Compared to the forging industry, which requires a lot of heat and kinetic energy in its metal part production stages, WAAM is a more sustainable and modern alternative because it does not require high temperatures and energy to produce the same parts. The environmental indicators compared in the process stages were energy consumption, greenhouse gas (GHG) emissions, and solid waste. The total energy consumption in AM was 18,846.61 MJ, the GHG emissions were 864.49 kgCO2-eq, and the solid waste generated was 142.34 kg, which were 63.8 %, 90.5%, and 31.6% lower than the environmental indicators calculated for CM, respectively. Full article
Show Figures

Graphical abstract

27 pages, 5901 KiB  
Article
Assessment of Energy Saving Potential from Heating Room Relocation in Rural Houses Under Varying Meteorological and Design Conditions
by Weixiao Han, Guochen Sang, Shaofu Bai, Junyang Liu, Lei Zhang and Hong Xi
Buildings 2025, 15(16), 2867; https://doi.org/10.3390/buildings15162867 - 13 Aug 2025
Viewed by 112
Abstract
Space layout design has been recognized as a key technical challenge in achieving low-energy and low-carbon rural houses. Adjustment of room location can influence building energy performance and is subject to both meteorological and design parameters. To elucidate the impact of these parameters [...] Read more.
Space layout design has been recognized as a key technical challenge in achieving low-energy and low-carbon rural houses. Adjustment of room location can influence building energy performance and is subject to both meteorological and design parameters. To elucidate the impact of these parameters on the energy saving potential of room relocation (ESR), this study investigated rural houses in Northwest China using dynamic simulations to compare the relative energy saving rates (RES) associated with three types of single heated room location changes: from the west side to the middle (WM), from the east side to the middle (EM), and from the west side to the east side (WE). Simulations were conducted across different climate regions (Lhasa, Xi’an, Tuotuohe, and Altay) and design parameters, including exterior wall U-value, building orientation (BO), building height (BH), and window-to-wall ratio (WWR). Additionally, the maximum differences in energy consumption (MD) among six layouts with multiple heated rooms were assessed. The results demonstrated that ESR varied significantly with room relocation. The ranges of RESWM, RESEM, and RESWE were −7.89% to 13.20%, −7.82% to 10.25%, and −2.29% to 3.36%, respectively. The MD values ranged from 2.42% to 15.01%. For single heated rooms, including direct normal irradiance (Idn), the difference between east and west solar-air temperature (△Tsa), outdoor dry bulb temperature (Te), exterior wall heat transfer coefficient (U), and WWR significantly influenced RESWM and RESEM. The ranking of the factor contributions was U > △Tsa > Idn > Te > WWR for RESWM and U > Idn > △Tsa > Te > WWR for RESEM. In the case of RESWE, Idn, △Tsa, Te, exterior wall U value, and BO had significant effects, ranking Idn > △Tsa > Te > BO > U. For MD, the key influencing factors were Idn, △Tsa, Te, exterior wall U value, and WWR, which were ranked as Idn > △Tsa > U > Te > WWR. The effects of design parameters on ESR varied under different climatic conditions. In high-temperature regions, the exterior wall U-value had a stronger influence on the ESR of WE. In regions with larger |△Tsa|, BO exerted a more pronounced effect on the ESR of WE. In regions characterized by high temperatures and radiation, WWR and BH significantly influenced the ESR of WM and EM. Similarly, in these regions, WWR and BH exhibited a greater impact on MD. Finally, among the meteorological parameters, Idn and △Tsa were significantly correlated with ESR (p < 0.01). These findings provide a valuable reference for the energy-efficient layout design of rural houses in Northwest China and cold regions and support the future development of intelligent and automated rural residential spatial layout design. Full article
Show Figures

Figure 1

24 pages, 5037 KiB  
Article
Managing High Groundwater Velocities in Aquifer Thermal Energy Storage Systems: A Three-Well Conceptual Model
by Max Ohagen, Maximilian Koch, Niklas Scholliers, Hung Tien Pham, Johann Karl Holler and Ingo Sass
Energies 2025, 18(16), 4308; https://doi.org/10.3390/en18164308 - 13 Aug 2025
Viewed by 240
Abstract
Aquifer Thermal Energy Storage (ATES) is a promising technology for the seasonal storage of heat, thereby bridging the temporal gap between summer surpluses and peak winter demand. However, the efficiency of conventional ATES systems is severely compromised in aquifers with high groundwater flow [...] Read more.
Aquifer Thermal Energy Storage (ATES) is a promising technology for the seasonal storage of heat, thereby bridging the temporal gap between summer surpluses and peak winter demand. However, the efficiency of conventional ATES systems is severely compromised in aquifers with high groundwater flow velocities, as advective heat transport leads to significant storage losses. This study explores a novel three-well concept that implements an active hydraulic barrier, created by an additional extraction well upstream of the ATES doublet. This well effectively disrupts the regional groundwater flow, thereby creating a localized zone of stagnant or significantly reduced flow velocity, to protect the stored heat. A comprehensive parametric study was conducted using numerical simulations in FEFLOW. The experiment systematically varied three key parameters: groundwater flow velocity, the distance of the third well and its pumping rate. The performance of the system was evaluated based on its thermal recovery efficiency and a techno-economic analysis. The findings indicate that the hydraulic barrier effectively enhances heat recovery, surpassing twice the efficiency observed in a conventional two-well configuration (100 m/a). The analysis reveals a critical trade-off between hydraulic containment and thermal interference through hydraulic short-circuiting. The techno-economic assessment indicates that the three-well concept has the potential to generate significant cost and CO2e savings. These savings greatly exceed the additional capital and operational costs in comparison to a traditional doublet system in the same conditions. In conclusion, the three-well ATES system can be considered a robust technical and economic solution for expanding HT-ATES to sites with high groundwater velocities; however, its success depends on careful, model-based design to optimize these competing effects. Full article
(This article belongs to the Special Issue Advanced Technologies and Materials for Thermal Energy Storage)
Show Figures

Figure 1

19 pages, 1355 KiB  
Article
Exploring the Thermal Degradation of Bakelite: Non-Isothermal Kinetic Modeling, Thermodynamic Insights, and Evolved Gas Analysis via Integrated In Situ TGA/MS and TGA/FT-IR Techniques
by Gamzenur Özsin
Polymers 2025, 17(16), 2197; https://doi.org/10.3390/polym17162197 - 12 Aug 2025
Viewed by 234
Abstract
Thermogravimetric analysis (TGA) is a key technique for evaluating the kinetics and thermodynamics of thermal degradation, providing essential data for material assessment and system design. When coupled with Fourier-transform infrared (FT-IR) spectroscopy or mass spectroscopy (MS), it enables the identification of evolved gases [...] Read more.
Thermogravimetric analysis (TGA) is a key technique for evaluating the kinetics and thermodynamics of thermal degradation, providing essential data for material assessment and system design. When coupled with Fourier-transform infrared (FT-IR) spectroscopy or mass spectroscopy (MS), it enables the identification of evolved gases and correlates mass loss with specific chemical species, offering detailed insight into decomposition mechanisms. In this study, TGA was coupled with FT-IR and MS to investigate the thermal degradation behavior of Bakelite, with the aim of evaluating its kinetic and thermodynamic parameters under non-isothermal conditions, identifying evolved volatile compounds, and elucidating the degradation process. The results showed that higher heating rates led to increased decomposition temperatures and broader dTG peaks due to thermal lag effects. The degradation proceeded in multiple stages between 220 °C and 860 °C, ultimately yielding a carbonaceous residue. The activation energy increased with conversion, particularly beyond 0.5, indicating a greater energy requirement as degradation progressed. Peak values at conversion degrees of 0.8–0.9 suggested enhanced thermal stability or changes in the dominant reaction mechanism. Detailed kinetic analysis revealed complex decomposition pathways with variable activation energies and a pronounced kinetic compensation effect. Thermodynamic analysis confirmed the endothermic nature of the process, with increasing energy demand and non-spontaneous degradation of the resulting char. TGA/FT-IR and TGA/MS analyses identified the release of several compounds, including CO2, water, formaldehyde, and phenolic derivatives, at distinct stages. This comprehensive understanding of Bakelite’s thermal behavior supports its optimization for high-temperature applications, enhances material reliability and safety, and contributes to sustainable processing and recycling strategies. Full article
(This article belongs to the Special Issue Development in Polymer Recycling)
Show Figures

Graphical abstract

40 pages, 14629 KiB  
Article
Assessing the Geothermal Potential of a Fractured Carbonate Reservoir (Southern Apennines, Italy): Relationships Between Structural Control and Heat Flow
by Chrysanthi Pontikou, Ioannis Vakalas, Sotirios Kokkalas, Raffaele Di Cuia, Angelo Ricciato and Giovanni Toscani
Geosciences 2025, 15(8), 311; https://doi.org/10.3390/geosciences15080311 - 11 Aug 2025
Viewed by 342
Abstract
As part of the energy transition needed to mitigate global warming, the study and sustainable exploitation of geothermal resources—a largely underutilized form of energy and heat production—is crucial. The availability of subsurface data acquired for oil and gas exploration purposes provides an opportunity [...] Read more.
As part of the energy transition needed to mitigate global warming, the study and sustainable exploitation of geothermal resources—a largely underutilized form of energy and heat production—is crucial. The availability of subsurface data acquired for oil and gas exploration purposes provides an opportunity to reconsider these data to enhance the use of geothermal potential. This is the case of a fractured carbonate reservoir in the Southern Apennines (Italy). All available subsurface data were gathered, homogenized, and reinterpreted to build a 3D geological model of the study area, where a positive thermal anomaly is known, yet the mechanisms and pathways of heat transport were previously unclear. By integrating subsurface, temperature, and literature data, a geological model is proposed that explains how high temperatures and heat propagation are closely linked to specific geological features. By cross-referencing and weighing the relevance of data for geothermal purposes, an attempt is made to rank the geothermal potential of existing wells in the area. This study demonstrates how a well-constrained geological model and the joint analysis of multidisciplinary data can provide the necessary knowledge base for conducting further technical, engineering, and economic analyses to assess the commercial viability of the identified geothermal resource. Full article
(This article belongs to the Section Structural Geology and Tectonics)
Show Figures

Figure 1

31 pages, 8280 KiB  
Article
Data-Driven Fouling Detection in Refinery Preheat Train Heat Exchangers Using Neural Networks and Gradient Boosting
by Željka Ujević Andrijić and Nikola Rimac
Sensors 2025, 25(16), 4936; https://doi.org/10.3390/s25164936 - 9 Aug 2025
Viewed by 347
Abstract
Fouling detection in refinery crude distillation unit (CDU) preheat trains is essential for maintaining energy efficiency and operational reliability. This study presents a virtual sensing approach for fouling monitoring using data-driven and semi-empirical models. Specifically, Long Short-Term Memory (LSTM) neural networks, Extreme Gradient [...] Read more.
Fouling detection in refinery crude distillation unit (CDU) preheat trains is essential for maintaining energy efficiency and operational reliability. This study presents a virtual sensing approach for fouling monitoring using data-driven and semi-empirical models. Specifically, Long Short-Term Memory (LSTM) neural networks, Extreme Gradient Boosting (XGB), and the ɛ-NTU method (effectiveness—Number of Transfer Units) were compared for predicting heat exchanger outlet temperatures, which serve as indicators of fouling. Models were trained on clean operational data to estimate baseline performance. A growing discrepancy between predicted and actual outlet temperatures over time indicated heat transfer degradation. Fouling resistance was calculated from the difference between predicted and actual heat transfer coefficients, enabling effectiveness loss assessment. The LSTM model showed high accuracy in capturing dynamic operational trends, while XGB provided a lightweight alternative with limited extrapolation capability under unfamiliar conditions. Both models outperformed the ɛ-NTU approach in fouling detection sensitivity. Inefficiencies from a single fouled exchanger were estimated to result in an additional 175 tons of CO2 emissions and an economic loss of approximately EUR 12,000 over two months. This study highlights the potential of AI-enabled virtual sensors for real-time fouling monitoring in industrial heat exchangers. Such tools can significantly enhance predictive maintenance strategies, improve energy efficiency, and reduce emissions. Full article
Show Figures

Figure 1

18 pages, 4832 KiB  
Article
Variable-Sized Green Mussel Shell Waste: Potential Use in Artificial Sand Production
by Pimthong Thongnopkun, Worachai Roubroumlert and Chutiparn Lertvachirapaiboon
Sustainability 2025, 17(16), 7214; https://doi.org/10.3390/su17167214 - 9 Aug 2025
Viewed by 225
Abstract
This article presents an innovative approach as a potential alternative for the reuse of discarded green mussel shells from the fishing and food sectors. This technique entails the use of harmless chemicals and the consumption of energy in an efficient manner to generate [...] Read more.
This article presents an innovative approach as a potential alternative for the reuse of discarded green mussel shells from the fishing and food sectors. This technique entails the use of harmless chemicals and the consumption of energy in an efficient manner to generate shell powder of different dimensions. The shell powder was categorized into three distinct sizes to investigate changes after heat treatment. SEM-EDS was used to analyze particle sizes before calcination and examine the microstructure of heated shell powder. FTIR spectroscopy was conducted to assess the purity of all sizes before and after calcination, showing excellent cleanliness suitable for practical applications. XRD spectroscopy was used to examine the crystal structure, while thermal characteristics and surface color changes during heat treatment were also analyzed due to their impact on final product quality. The variety in particle size enhances the potential for diverse industrial applications. Each size may be suitable for different artificial sand uses, as noted in the conclusion. The proposed method provides both environmental and economic advantages by converting shell waste into a sustainable substitute for artificial sand. It utilizes low-cost, readily available materials and aligns with circular economy principles by reducing shell waste accumulation and dependence on natural aggregates. Full article
(This article belongs to the Special Issue Sustainable Materials, Waste Management, and Recycling)
Show Figures

Figure 1

Back to TopTop