Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (670)

Search Parameters:
Keywords = heat-up route

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 13584 KiB  
Article
Enhanced Diffraction and Spectroscopic Insight into Layer-Structured Bi6Fe2Ti3O18 Ceramics
by Zbigniew Pędzich, Agata Lisińska-Czekaj, Dionizy Czekaj, Agnieszka Wojteczko and Barbara Garbarz-Glos
Materials 2025, 18(15), 3690; https://doi.org/10.3390/ma18153690 - 6 Aug 2025
Abstract
Bi6Fe2Ti3O18 (BFTO) ceramics were synthesized via a solid-state reaction route using stoichiometric amounts of Bi2O3, TiO2, and Fe2O3 powders. A thermal analysis of the powder mixture was [...] Read more.
Bi6Fe2Ti3O18 (BFTO) ceramics were synthesized via a solid-state reaction route using stoichiometric amounts of Bi2O3, TiO2, and Fe2O3 powders. A thermal analysis of the powder mixture was conducted to optimize the heat treatment parameters. Energy-dispersive X-ray spectroscopy (EDS) confirmed the conservation of the chemical composition following calcination. Final densification was achieved through hot pressing. The crystal structure of the sintered samples, examined via X-ray diffraction at room temperature, revealed a tetragonal symmetry for BFTO ceramics sintered at 850 °C. Electron backscatter diffraction (EBSD) provided detailed insight into the crystallographic orientation and microstructure. Broadband dielectric spectroscopy (BBDS) was employed to investigate the dielectric response of BFTO ceramics over a frequency range of 10 mHz to 10 MHz and a temperature range of −30 °C to +200 °C. The temperature dependence of the relative permittivity (εr) and dielectric loss tangent (tan δ) were measured within a frequency range of 100 kHz to 900 kHz and a temperature range of 25 °C to 570 °C. The impedance data obtained from the BBDS measurements were validated using the Kramers–Kronig test and modeled using the Kohlrausch–Williams–Watts (KWW) function. The stretching parameter (β) ranged from ~0.72 to 0.82 in the impedance formalism within the temperature range from 200 °C to 20 °C. Full article
Show Figures

Figure 1

29 pages, 5343 KiB  
Article
Optimizing Electric Bus Efficiency: Evaluating Seasonal Performance in a Southern USA Transit System
by MD Rezwan Hossain, Arjun Babuji, Md. Hasibul Hasan, Haofei Yu, Amr Oloufa and Hatem Abou-Senna
Future Transp. 2025, 5(3), 92; https://doi.org/10.3390/futuretransp5030092 (registering DOI) - 1 Aug 2025
Viewed by 171
Abstract
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced [...] Read more.
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced battery performance, this study presents a contrasting perspective based on a three-year longitudinal analysis of the LYMMO fleet in Orlando, Florida—a subtropical U.S. region. The findings reveal that summer is the most energy-intensive season, primarily due to sustained HVAC usage driven by high ambient temperatures—a seasonal pattern rarely reported in the current literature and a key regional contribution. Additionally, idling time exceeds driving time across all seasons, with HVAC usage during idling emerging as the dominant contributor to total energy consumption. To mitigate these inefficiencies, a proxy-based HVAC energy estimation method and an optimization model were developed, incorporating ambient temperature and peak passenger load. This approach achieved up to 24% energy savings without compromising thermal comfort. Results validated through non-parametric statistical testing support operational strategies such as idling reduction, HVAC control, and seasonally adaptive scheduling, offering practical pathways to improve EB efficiency in warm-weather transit systems. Full article
Show Figures

Figure 1

22 pages, 9293 KiB  
Article
Thermal Stability of the Ultra-Fine-Grained Structure and Mechanical Properties of AlSi7MgCu0.5 Alloy Processed by Equal Channel Angular Pressing at Room Temperature
by Miloš Matvija, Martin Fujda, Ondrej Milkovič, Marek Vojtko and Katarína Gáborová
Crystals 2025, 15(8), 701; https://doi.org/10.3390/cryst15080701 - 31 Jul 2025
Viewed by 182
Abstract
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by [...] Read more.
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by equal channel angular pressing (ECAP) at room temperature and the mechanical properties of the AlSi7MgCu0.5 alloy were investigated. Prior to ECAP, the plasticity of the as-cast alloy was enhanced by a heat treatment consisting of solution annealing, quenching, and artificial aging to achieve an overaged state. Four repetitive passes via ECAP route A resulted in the homogenization of eutectic Si particles within the α-solid solution, the formation of ultra-fine grains and/or subgrains with high dislocation density, and a significant improvement in alloy strength due to strain hardening. The main objective of this work was to assess the microstructural and mechanical stability of the alloy after post-ECAP annealing in the temperature range of 373–573 K. The UFG microstructure was found to be thermally stable up to 523 K, above which notable grain and/or subgrain coarsening occurred as a result of discontinuous recrystallization of the solid solution. Mechanical properties remained stable up to 423 K; above this temperature, a considerable decrease in strength and a simultaneous increase in ductility were observed. Synchrotron radiation X-ray diffraction (XRD) was employed to analyze the phase composition and crystallographic characteristics, while transmission electron microscopy (TEM) was used to investigate substructural evolution. Mechanical properties were evaluated through tensile testing, impact toughness testing, and hardness measurements. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

30 pages, 78202 KiB  
Article
Climate-Adaptive Architecture: Analysis of the Wei Family Compound’s Thermal–Ventilation Environment in Ganzhou, China
by Xiaolong Tao, Xin Liang and Wenjia Liu
Buildings 2025, 15(15), 2673; https://doi.org/10.3390/buildings15152673 - 29 Jul 2025
Viewed by 484
Abstract
Sustainable building design is significantly impacted by the local climate response knowledge ingrained in traditional architecture. However, its integration and dissemination with contemporary green technologies are limited by the absence of a comprehensive quantitative analysis of the regulation of its humid and temperature [...] Read more.
Sustainable building design is significantly impacted by the local climate response knowledge ingrained in traditional architecture. However, its integration and dissemination with contemporary green technologies are limited by the absence of a comprehensive quantitative analysis of the regulation of its humid and temperature environment. The Ganzhou Wei family compound from China’s wind–heat environmental regulation systems are examined in this study. We statistically evaluate the synergy between spatial morphology, material qualities, and microclimate using field data with Thsware and Ecotect software in a multiscale simulation framework. The findings indicate that the compound’s special design greatly controls the thermal and wind conditions. Cold alleyways and courtyards work together to maximize thermal environment regulation and encourage natural ventilation. According to quantitative studies, courtyards with particular depths (1–4 m) and height-to-width ratios (e.g., 1:1) reduce wind speed loss. A cool alley (5:1 height–width ratio) creates a dynamic wind–speed–temperature–humidity balance by lowering summer daytime temperatures by 2.5 °C. It also serves as a “cold source area” that moderates temperatures in the surrounding area by up to 2.1 °C. This study suggests a quantitative correlation model based on “spatial morphology–material performance–microclimate response,” which offers a technical route for historic building conservation renovation and green renewal, as well as a scientific foundation for traditional buildings to maintain thermal comfort under low energy consumption. Although based on a specific geographical case, the innovative analytical methods and strategies of this study are of great theoretical and practical significance for promoting the modernization and transformation of traditional architecture, low-carbon city construction, and sustainable building design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 5270 KiB  
Article
Co-Pyrolysis of Bamboo and Rice Straw Biomass with Polyethylene Plastic: Characterization, Kinetic Evaluation, and Synergistic Interaction Analysis
by Munir Hussain, Vikul Vasudev, Shri Ram, Sohail Yasin, Nouraiz Mushtaq, Menahil Saleem, Hafiz Tanveer Ashraf, Yanjun Duan, Muhammad Ali and Yu Bin
Polymers 2025, 17(15), 2063; https://doi.org/10.3390/polym17152063 - 29 Jul 2025
Viewed by 312
Abstract
This study investigates the co-pyrolysis behavior of two lignocellulosic biomass blends, bamboo (B), and rice straw (R) with a plastic polyethylene (P). A total of 15 samples, including binary and ternary blends, were analyzed. Firstly, X-ray diffraction (XRD) analysis was performed to reveal [...] Read more.
This study investigates the co-pyrolysis behavior of two lignocellulosic biomass blends, bamboo (B), and rice straw (R) with a plastic polyethylene (P). A total of 15 samples, including binary and ternary blends, were analyzed. Firstly, X-ray diffraction (XRD) analysis was performed to reveal high crystallinity in the B25R75 blend (I/Ic = 13.39). Whereas, the polyethylene samples showed persistent ZrP2O7 and lazurite phases (I/Ic up to 3.12) attributed to additives introduced during the manufacturing of the commercial plastic feedstock. In addition, scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) spectroscopy was performed to characterize the surface morphology and elemental composition of the feedstock. Moreover, thermogravimetric analysis (TGA) was employed at temperatures up to 700 °C at three different heating rates (5, 10, and 20 °C/min) under pyrolysis conditions. Kinetic analysis used TGA data to calculate activation energy via Friedman’s isoconversional method, and the blended samples exhibited a decrease in activation energy compared to the individual components. Furthermore, the study evaluated transient interaction effects among the components by assessing the deviation between experimental and theoretical weight loss. This revealed the presence of significant synergistic behavior in certain binary and ternary blends. The results demonstrate that co-pyrolysis of bamboo and rice straw with polyethylene enhances thermal decomposition efficiency and provides a more favorable energy recovery route. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
Show Figures

Figure 1

10 pages, 609 KiB  
Communication
Scalable Synthesis of 2D TiNCl via Flash Joule Heating
by Gabriel A. Silvestrin, Marco Andreoli, Edson P. Soares, Elita F. Urano de Carvalho, Almir Oliveira Neto and Rodrigo Fernando Brambilla de Souza
Physchem 2025, 5(3), 30; https://doi.org/10.3390/physchem5030030 - 28 Jul 2025
Viewed by 313
Abstract
A scalable synthesis of two-dimensional titanium nitride chloride (TiNCl) via flash Joule heating (FJH) using titanium tetrachloride (TiCl4) precursor has been developed. This single-step method overcomes traditional synthesis challenges, including high energy consumption, multi-step procedures, and hazardous reagent requirements. The structural [...] Read more.
A scalable synthesis of two-dimensional titanium nitride chloride (TiNCl) via flash Joule heating (FJH) using titanium tetrachloride (TiCl4) precursor has been developed. This single-step method overcomes traditional synthesis challenges, including high energy consumption, multi-step procedures, and hazardous reagent requirements. The structural and chemical properties of the synthesized TiNCl were characterized through multiple analytical techniques. X-ray diffraction (XRD) patterns confirmed the presence of TiNCl phase, while Raman spectroscopy data showed no detectable oxide impurities. Fourier transform infrared spectroscopy (FTIR) analysis revealed characteristic Ti–N stretching vibrations, further confirming successful titanium nitride synthesis. Transmission electron microscopy (TEM) imaging revealed thin, plate-like nanostructures with high electron transparency. These analyses confirmed the formation of highly crystalline TiNCl flakes with nanoscale dimensions and minimal structural defects. The material exhibits excellent structural integrity and phase purity, demonstrating potential for applications in photocatalysis, electronics, and energy storage. This work establishes FJH as a sustainable and scalable approach for producing MXenes with controlled properties, facilitating their integration into emerging technologies. Unlike conventional methods, FJH enables rapid, energy-efficient synthesis while maintaining material quality, providing a viable route for industrial-scale production of two-dimensional materials. Full article
(This article belongs to the Section Nanoscience)
Show Figures

Figure 1

20 pages, 18429 KiB  
Article
Automated Strain-Based Processing Route Generation for Curved Plate Forming in Shipbuilding
by Lichun Chang, Yao Zhao, Zhenshuai Wei and Hua Yuan
J. Mar. Sci. Eng. 2025, 13(8), 1399; https://doi.org/10.3390/jmse13081399 - 23 Jul 2025
Viewed by 151
Abstract
Curved plate forming is essential in shipbuilding but traditionally relies on manual methods with low efficiency. Achieving automation in curved plate forming requires robust methods to generate processing solutions. This paper introduces a novel method for deriving the processing routes and strain distributions [...] Read more.
Curved plate forming is essential in shipbuilding but traditionally relies on manual methods with low efficiency. Achieving automation in curved plate forming requires robust methods to generate processing solutions. This paper introduces a novel method for deriving the processing routes and strain distributions necessary to form complex curve plate using integrated heating and mechanical rolling forming equipment. The key aspects of this method include analyzing the target surface and solving for the required processing strains based on finite element analysis, discretizing the strain paths and refining them into engineering-feasible processing routes, deriving processing schemes from the calculated strains, and predicting and validating the processing schemes using the inherent strain method. The method is validated by applying it to typical surface of ship hull plates. Key outcomes demonstrate the method’s effectiveness and applicability: (1) The proposed method effectively establishes a quantitative relationship between the target surface geometry, processing routes, and the required processing strains. (2) By analyzing various target surface cases, the method demonstrates wide applicability. Standardized procedures can be applied to different surface shapes to derive the necessary processing routes and strains, thereby laying a solid foundation for the automation of curved hull plate forming. (3) Experimental forming tests on typical curved surfaces confirm that the processing schemes based on the proposed strain generation method can reliably achieve the desired geometries, showcasing the method’s capability to guide practical forming processes. The comparison between the formed and target shapes shows that the processing deviation of the schemes generated by this method remains within 5 mm, demonstrating high accuracy. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

36 pages, 8968 KiB  
Article
Stabilization of High-Volume Circulating Fluidized Bed Fly Ash Composite Gravels via Gypsum-Enhanced Pressurized Flue Gas Heat Curing
by Nuo Xu, Rentuoya Sa, Yuqing He, Jun Guo, Yiheng Chen, Nana Wang, Yuchuan Feng and Suxia Ma
Materials 2025, 18(15), 3436; https://doi.org/10.3390/ma18153436 - 22 Jul 2025
Viewed by 200
Abstract
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional [...] Read more.
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional cementitious products. Here, we presents a pressurized flue gas heat curing (FHC) route to bridge this scientific deficit, converting up to 85 wt% CFBFA into structural lightweight gravel. The gypsum dosage was optimized, and a 1:16 (gypsum/CFBFA) ratio delivered the best compromise between early ettringite nucleation and CO2-uptake capacity, yielding the highest overall quality. The optimal mix reaches 9.13 MPa 28-day crushing strength, 4.27% in situ CO2 uptake, 1.75 g cm−3 bulk density, and 3.59% water absorption. Multi-technique analyses (SEM, XRD, FTIR, TG-DTG, and MIP) show that FHC rapidly consumes expansive phases, suppresses undesirable granular-ettringite formation, and produces a dense calcite/needle-AFt skeleton. The FHC-treated CFBFA composite gravel demonstrates 30.43% higher crushing strength than JTG/TF20-2015 standards, accompanied by a water absorption rate 28.2% lower than recent studies. Its superior strength and durability highlight its potential as a low-carbon lightweight aggregate for structural engineering. A life-cycle inventory gives a cradle-to-gate energy demand of 1128 MJ t−1 and a process GWP of 226 kg CO2-eq t−1. Consequently, higher point-source emissions paired with immediate mineral sequestration translate into a low overall climate footprint and eliminate the need for CFBFA landfilling. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

29 pages, 6641 KiB  
Article
Climate-Adaptive Passive Design Strategies for Near-Zero-Energy Office Buildings in Central and Southern Anhui, China
by Jun Xu, Yu Gao and Lizhong Yang
Sustainability 2025, 17(14), 6535; https://doi.org/10.3390/su17146535 - 17 Jul 2025
Viewed by 399
Abstract
Driven by the global energy transition and China’s dual-carbon targets, Passive ultra-low-energy buildings are a key route for carbon reduction in the construction sector. This study addresses the high energy demand of office buildings and the limited suitability of current efficiency codes in [...] Read more.
Driven by the global energy transition and China’s dual-carbon targets, Passive ultra-low-energy buildings are a key route for carbon reduction in the construction sector. This study addresses the high energy demand of office buildings and the limited suitability of current efficiency codes in the hot-summer/cold-winter, high-humidity zone of central and southern Anhui. Using multi-year climate records and energy-use surveys from five cities and one scenic area (2013–2024), we systematically investigate climate-adaptive passive-design strategies. Climate-Consultant simulations identify composite envelopes, external shading, and natural ventilation as the three most effective measures. Empirical evidence confirms that optimized envelope thermal properties significantly curb heating and cooling loads; a Huangshan office-building case validates the performance of the proposed passive measures, while analysis of a near-zero-energy demonstration project in Chuzhou yields a coordinated insulation-and-heat-rejection scheme. The results demonstrate that region-specific passive design can provide a comprehensive technical framework for ultra-low-energy buildings in transitional climates and thereby supporting China’s carbon-neutrality targets. Full article
(This article belongs to the Special Issue Building Sustainability within a Smart Built Environment)
Show Figures

Figure 1

15 pages, 1784 KiB  
Review
A Review of Grain Refinement and Texture Engineering in Aluminum Alloy Magnetron Sputtering Targets
by Run-Xin Song, Dong Wang, Yiqiao Yang, Jinjiang He, Song Li, Hai-Le Yan and Liang Zuo
Materials 2025, 18(14), 3235; https://doi.org/10.3390/ma18143235 - 9 Jul 2025
Viewed by 320
Abstract
Aluminum and its alloy magnetron sputtering targets, owing to their superior electrical/thermal conductivity and robust substrate adhesion, serve as critical materials in advanced electronics and information technologies. It is known that the microstructure of the target, including grain uniformity and crystallographic texture, directly [...] Read more.
Aluminum and its alloy magnetron sputtering targets, owing to their superior electrical/thermal conductivity and robust substrate adhesion, serve as critical materials in advanced electronics and information technologies. It is known that the microstructure of the target, including grain uniformity and crystallographic texture, directly affects the sputtering performance and the quality of the deposited thin film. Despite extensive research efforts, the review paper focused on the microstructure of aluminum target materials is still absent. In that context, the recent progress on the Al alloy target is reviewed, focusing on grain refinement and texture control strategies. The roles of alloying elements, such as Si, Cu, and rare-earth Sc and Nd, are described first. The two conventional manufacturing techniques of fabricating Al targets, including melting and powder metallurgy, are introduced. Then, studies on grain refinement by thermomechanical processing routes (hot/cold rolling, annealing and forging) are summarized. Lastly, texture engineering through deformation and heat treatment protocols (unidirectional/multidirectional rolling, deformation thickness, and composite deformation modes) is reviewed. By establishing the relationship between thermomechanical processing and microstructure, this review provides insights for designing high-performance aluminum targets tailored to next-generation advanced thin-film applications. Full article
Show Figures

Figure 1

26 pages, 5399 KiB  
Article
Microwave-Assisted Pyrolysis of Polyethylene and Polypropylene from End-of-Life Vehicles: Hydrogen Production and Energy Valorization
by Grigore Psenovschi, Ioan Calinescu, Alexandru Fiti, Ciprian-Gabriel Chisega-Negrila, Sorin-Lucian Ionascu and Lucica Barbes
Sustainability 2025, 17(13), 6196; https://doi.org/10.3390/su17136196 - 6 Jul 2025
Viewed by 651
Abstract
Plastic waste is currently a major concern in Romania due to the annual increase in quantities generated from anthropogenic and industrial activities, especially from end-of-life vehicles (ELVs), and the need to reduce environmental impact. This study investigates an alternative valorization route for polypropylene [...] Read more.
Plastic waste is currently a major concern in Romania due to the annual increase in quantities generated from anthropogenic and industrial activities, especially from end-of-life vehicles (ELVs), and the need to reduce environmental impact. This study investigates an alternative valorization route for polypropylene (PP) and polyethylene (PE) plastic waste through microwave-assisted pyrolysis, aiming to maximize conversion into gaseous products, particularly hydrogen-rich gas. A monomode microwave reactor was employed, using layered configurations of plastic feedstock, silicon carbide as a microwave susceptor, and activated carbon as a catalyst. The influence of catalyst loading, reactor configuration, and plastic type was assessed through systematic experiments. Results showed that technical-grade PP, under optimal conditions, yielded up to 81.4 wt.% gas with a hydrogen concentration of 45.2 vol.% and a hydrogen efficiency of 44.8 g/g. In contrast, PE and mixed PP + PE waste displayed lower hydrogen performance, particularly when containing inorganic fillers. For all types of plastics studied, the gaseous fractions obtained have a high calorific value (46,941–55,087 kJ/kg) and at the same time low specific CO2 emissions (4.4–6.1 × 10−5 kg CO2/kJ), which makes these fuels very efficient and have a low carbon footprint. Comparative tests using conventional heating revealed significantly lower hydrogen yields (4.77 vs. 19.7 mmol/g plastic). These findings highlight the potential of microwave-assisted pyrolysis as an efficient method for transforming ELV-derived plastic waste into energy carriers, offering a pathway toward low-carbon, resource-efficient waste management. Full article
(This article belongs to the Special Issue Novel and Scalable Technologies for Sustainable Waste Management)
Show Figures

Figure 1

14 pages, 4788 KiB  
Article
Heat Impact Assessment and Heat Prevention Suggestions for Thermal Comfort at Large-Area and Long-Duration Outdoor Sport Events in Taiwan
by Si-Yu Yu, Tzu-Ping Lin and Andreas Matzarakis
Atmosphere 2025, 16(7), 805; https://doi.org/10.3390/atmos16070805 - 1 Jul 2025
Viewed by 390
Abstract
This study aims to (1) analyze thermal comfort at outdoor sport events held outside of fixed venues or locations; (2) establish a method for evaluating environmental thermal comfort for large-scale, long-term outdoor activities; and (3) provide suggestions for the arrangement of shifts in [...] Read more.
This study aims to (1) analyze thermal comfort at outdoor sport events held outside of fixed venues or locations; (2) establish a method for evaluating environmental thermal comfort for large-scale, long-term outdoor activities; and (3) provide suggestions for the arrangement of shifts in routes and participants for heat warning and mitigation. Taiwan ReAnalysis Downscaling (TReAD) data, Sky View Factors (SVFs), GSV2SVF tool, and RayMan Pro were applied to analyze and evaluate thermal comfort at the 2021 Torch Relay Round the Island, Taiwan. In this study, modified Physiologically Equivalent Temperature (mPET), Wet Bulb Globe Temperature (WBGT), and Universal Thermal Climate Index (UTCI) were estimated and selected as thermal indicators for the purpose of obtaining a more comprehensive perspective. We also define and present thermal performance with a simple traffic light symbol (green: comfortable/yellow: warm/red: hot) and try to go beyond the concept of heat and visualize it in an easy-to-understand way. Full article
Show Figures

Figure 1

17 pages, 1570 KiB  
Article
Overcoming Scaling Challenges in Sol–Gel Synthesis: A Microwave-Assisted Approach for Iron-Based Energy Materials
by Judith González-Lavín, Ana Arenillas and Natalia Rey-Raap
Microwave 2025, 1(2), 6; https://doi.org/10.3390/microwave1020006 - 30 Jun 2025
Viewed by 319
Abstract
There is currently an effort to scale up sol–gel nanomaterials without compromising quality, and microwave heating can pave the way for this due to its heating efficiency, resulting in a fast and homogeneous process. In this work, the sol–gel synthesis of transition metal [...] Read more.
There is currently an effort to scale up sol–gel nanomaterials without compromising quality, and microwave heating can pave the way for this due to its heating efficiency, resulting in a fast and homogeneous process. In this work, the sol–gel synthesis of transition metal aerogels, specifically iron-based aerogels, is studied using a microwave-assisted sol–gel methodology in an open-system multimode device as a potential route to scale-up production. Different approaches were tested to evaluate the best way to increase yield per batch, with different vessel shapes and volumes. It is shown that the shape and size of the vessel can be determinant in the interaction with microwaves and, thus, in the heating process, influencing the sol–gel reactions and the characteristics and homogeneity of the obtained nanomaterials. It has been found that a wide vessel is preferable to a tall and narrow one since the heating process is more homogeneous in the former and the sol–gel and cross-linking reactions take place earlier, which improves the mechanical properties of the final nanomaterial. For mass production of nanomaterials, the interaction of the reagents with the microwave field must be considered, and this depends not only on their nature but also on their volume, shape, and arrangement inside the cavity. Full article
Show Figures

Graphical abstract

19 pages, 1272 KiB  
Article
Waste to Biofuel: Process Design and Optimisation for Sustainable Aviation Fuel Production from Corn Stover
by Nur Aina Najihah Halimi, Ademola Odunsi, Alex Sebastiani and Dina Kamel
Energies 2025, 18(13), 3418; https://doi.org/10.3390/en18133418 - 29 Jun 2025
Viewed by 615
Abstract
Addressing the urgent need to decarbonise aviation and valorise agricultural waste, this paper investigates the production of Sustainable Aviation Fuel (SAF) from corn stover. A preliminary evaluation based on a literature review indicates that among various conversion technologies, fast pyrolysis (FP) emerged as [...] Read more.
Addressing the urgent need to decarbonise aviation and valorise agricultural waste, this paper investigates the production of Sustainable Aviation Fuel (SAF) from corn stover. A preliminary evaluation based on a literature review indicates that among various conversion technologies, fast pyrolysis (FP) emerged as the most promising option, offering the highest fuel yield (22.5%) among various pathways, a competitive potential minimum fuel selling price (MFSP) of 1.78 USD/L, and significant greenhouse gas savings of up to 76%. Leveraging Aspen Plus simulation, SAF production via FP was rigorously designed and optimised, focusing on the heat integration strategy within the process to minimise utility consumption and ultimately the total cost. Consequently, the produced fuel exceeded the American Society for Testing and Materials (ASTM) limit for the final boiling point, rendering it unsuitable as a standalone jet fuel. Nevertheless, it achieves regulatory compliance when blended at a rate of up to 10% with conventional jet fuel, marking a practical route for early adoption. Energy optimisation through pinch analysis integrated four hot–cold stream pairs, eliminating external heating, reducing cooling needs by 55%, and improving sustainability and efficiency. Economic analysis revealed that while heat integration slashed utility costs by 84%, the MFSP only decreased slightly from 2.35 USD/L to 2.29 USD/L due to unchanging material costs. Sensitivity analysis confirmed that hydrogen, catalyst, and feedstock pricing are the most influential variables, suggesting targeted reductions could push the MFSP below 2 USD/L. In summary, this work underscores the technical and economic viability of corn stover-derived SAF, providing a promising pathway for sustainable aviation and waste valorisation. While current limitations restrict fuel quality during full substitution, the results affirm the feasibility of SAF blending and present a scalable, low-carbon pathway for future development. Full article
(This article belongs to the Special Issue Biomass and Waste-to-Energy for Sustainable Energy Production)
Show Figures

Figure 1

26 pages, 9395 KiB  
Article
Study on Piping Layout Optimization for Chiller-Plant Rooms Using an Improved A* Algorithm and Building Information Modeling: A Case Study of a Shopping Mall in Qingdao
by Xiaoliang Ma, Hongshe Cui, Yan Zhang and Xinyao Wang
Buildings 2025, 15(13), 2275; https://doi.org/10.3390/buildings15132275 - 28 Jun 2025
Viewed by 275
Abstract
Heating, ventilation, and air-conditioning systems account for 40–60% of the energy consumed in commercial buildings, and much of this load originates from sub-optimal piping layouts in chiller-plant rooms. This study presents an automated routing framework that couples Building Information Modeling (BIM) with an [...] Read more.
Heating, ventilation, and air-conditioning systems account for 40–60% of the energy consumed in commercial buildings, and much of this load originates from sub-optimal piping layouts in chiller-plant rooms. This study presents an automated routing framework that couples Building Information Modeling (BIM) with an enhanced A* search to produce collision-free, low-resistance pipelines while simultaneously guiding component selection. The algorithm embeds protective buffer zones around equipment, reserves maintenance corridors through an attention-based cost term, and prioritizes 135° elbows to cut local losses. Generated paths are exported as Industry Foundation Classes (IFC) objects for validation in a BIM digital twin, where hydraulic feedback drives iterative reselection of high-efficiency devices—including magnetic-bearing chillers, cartridge filters and tilted-disc valves—until global pressure drop and life-cycle cost are minimized. In a full-scale shopping-mall retrofit, the method significantly reduces pipeline resistance and operating costs, confirming its effectiveness and replicability for sustainable chiller-plant design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop