Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = heat-stove

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4688 KiB  
Article
How Best to Use Forest Wood for Energy: Perspectives from Energy Efficiency and Environmental Considerations
by John J. Fitzpatrick, Jack Carroll, Strahinja Macura and Neil Murphy
Eng 2025, 6(5), 95; https://doi.org/10.3390/eng6050095 - 8 May 2025
Viewed by 666
Abstract
This paper examines how best to use forest wood for energy application, considering that it is a limited natural resource. Eight systems are considered, including wood stoves, steam systems (boiler, power plant, and combined heat and power (CHP)), and gasification combined systems (gas [...] Read more.
This paper examines how best to use forest wood for energy application, considering that it is a limited natural resource. Eight systems are considered, including wood stoves, steam systems (boiler, power plant, and combined heat and power (CHP)), and gasification combined systems (gas turbine and combined cycle power plant, CHP, and Fischer–Tropsch). The methodology uses energy analysis and modelling and environmental/sustainability considerations to compare the energy systems. In terms of energy conversion efficiency, steam boilers and high-efficiency wood stoves for heating applications provide the highest efficiencies (~80 to 90%) and should be considered. Steam CHP systems provide lower overall energy conversion efficiencies (~75 to 80%) but do provide some electrical energy, and thus should be considered. The use of wood for the production of electricity on its own should not be considered due to low efficiencies (~20 to 30%). Particulate emissions hinder the application of high-efficiency stoves, especially in urban areas, whereas for industrial-scale steam boilers and CHP systems, particle separators can negate this problem. Gasification/Fischer–Tropsch systems have a lower energy efficiency (~30 to 50%); however, a sustainability argument could be made for liquid fuels that have few sustainable alternatives. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

17 pages, 1660 KiB  
Article
Energy and Environmental Valorisation of Residual Wood Pellet by Small Size Residential Heating Systems
by Valentina Coccia, Ramoon Barros Lovate Temporim, Alessandro Paglianti, Alessia Di Giuseppe, Franco Cotana and Andrea Nicolini
Sustainability 2025, 17(9), 3814; https://doi.org/10.3390/su17093814 - 23 Apr 2025
Viewed by 449
Abstract
Particulate matter (PM) emissions from combustion-based heating systems have been identified as a major contributor to environmental issues and human health risks. Particularly, small-scale residential combustion was responsible for 58% of the total PM2.5 emissions in Europe in 2020, with domestic heating [...] Read more.
Particulate matter (PM) emissions from combustion-based heating systems have been identified as a major contributor to environmental issues and human health risks. Particularly, small-scale residential combustion was responsible for 58% of the total PM2.5 emissions in Europe in 2020, with domestic heating using wood-based fuels accounting for around 56% of soot emissions. Reducing PM2.5 emissions has become a major goal of European environmental policies, which have included it among the key targets of the Zero Pollution Action Plan. In this framework, this study presents a performance analysis of a newly developed PM abatement system consisting of a passive cyclone abatement system (PCAS) specifically designed for small residential pellet stoves. The system was tested under steady-state and non-steady-state operating conditions. The experimental results showed that the PCAS abatement system effectively captured PM at a rate of 10.64 mg/MJ, with great efficiency in capturing particles ≥ 10 µm. The heavy metal content in the captured material was below the limit values for agricultural application-destined soil. A Life Cycle Assessment showed that the PCAS could achieve net-zero PM emissions in 1 year and 8 months. Finally, the economic analysis revealed that the PCAS is significantly more cost-effective: over a 10-year period, it could save up to €4000 in installation, maintenance, and energy costs compared to conventional active systems. These findings highlight the effectiveness of this design of PCAS as in reducing PM emissions from residential heating systems and provide valuable insights for the development of future abatement systems. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

18 pages, 7255 KiB  
Article
Effect of Annealing Temperature on the Microstructural and Mechanical Properties of Wire Rod Steel Annealed Using a Biomass Gasifier
by Pathompong Chootapa, Songkran Wiriyasart and Sommas Kaewluan
Energies 2025, 18(8), 1912; https://doi.org/10.3390/en18081912 - 9 Apr 2025
Viewed by 647
Abstract
Natural and liquefied petroleum gases are widely used in industrial heat treatment. However, the rising cost of gas, combined with increased demand, has significantly impacted production costs and the environment. The annealing process typically relies on natural or liquefied petroleum gases as the [...] Read more.
Natural and liquefied petroleum gases are widely used in industrial heat treatment. However, the rising cost of gas, combined with increased demand, has significantly impacted production costs and the environment. The annealing process typically relies on natural or liquefied petroleum gases as the primary heat source. In this study, we aimed to investigate the use of biomass fuel as a replacement for fossil fuels and to evaluate the mechanical properties and microstructure of wire rod steel after annealing using indirect heat from a gasifier. We experimented to examine the effects of annealing temperatures of 650 °C, 700 °C (below the critical temperature Ac1), and 750 °C (above Ac1 but below the upper temperature Ac3). The batch furnace, made of stainless steel, was modified from a traditional wire annealing furnace that originally used CNG and LPG gas burners. It was adapted into a wire annealing furnace connected to a cross-draft gasifier. The furnace’s interior was designed with spiral cooling fins to minimize energy consumption and shorten annealing time. Additionally, it was modified to use biomass as a substitute fuel, reducing environmental pollution. The furnace was coated with thermal insulation, and the biomass gasifier stove was a cross-draft device with primary air feeding at 20 m3/h and secondary air supplied at a constant flow rate of 32 m3/h, 36 m3/h, or 40 m3/h. As a fuel source, we used eucalyptus. The mechanical properties of wire rod steel were measured in terms of tensile strength and torsion, following the TIS 138-2562 standard. This standard specifies that the tensile strength must be at least 260 MPa. Regarding torsion, the TIS 138-2562 requirements state that the wire must withstand at least 75 rounds of twisting without breaking. Our results showed that after annealing at 650 °C, 700 °C, or 750 °C, with a soaking time of 30 min and subsequent cooling in the furnace at natural temperature for 24 h, the tensile strength values were 494.82, 430.87, and 381.33 MPa, respectively. The torsion values were 126.92, 125.8, and 125.76 rounds, respectively. Additionally, ferrite grain size increased with annealing temperature, reaching a maximum of 750 °C. The total annealing duration for each batch was 2 h and 40 min at 650 °C, 2 h and 10 min at 700 °C, and 2 h at 750 °C. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

20 pages, 7269 KiB  
Article
A Study on Carbon-Reduction Strategies for Rural Residential Buildings Based on Economic Benefits in the Gannan Tibetan Area, China
by Jingjing Yang and Xilong Zhang
Sustainability 2025, 17(1), 131; https://doi.org/10.3390/su17010131 - 27 Dec 2024
Cited by 1 | Viewed by 874
Abstract
The building sector contributes approximately half of all carbon emissions. The heating stage accounts for the largest proportion of building carbon emissions. The focus on carbon-reduction strategies in rural areas could not be copied from urban buildings due to different heating modes limited [...] Read more.
The building sector contributes approximately half of all carbon emissions. The heating stage accounts for the largest proportion of building carbon emissions. The focus on carbon-reduction strategies in rural areas could not be copied from urban buildings due to different heating modes limited by economic factors. The Gannan region in Gansu province was selected to carry out an on-site survey on heating conditions, including the heating modes, the energy used for heating, heating fees, residents’ satisfaction with heating, and the thermal environment of the typical building. The results showed that local rural residents burnt scattered coal for heating using primitive heating stoves with low efficiency, causing low air temperatures and high heating fees. The carbon emissions generated by heating reached 5743.28 kgCO2e·m−2. Several strategies for reducing carbon emissions were proposed, considering the economic benefits limited by rural economic development. A parameter of reduced carbon emissions per investment input was proposed to evaluate the carbon-reduction strategies. The results showed that biomass was the most economical way to reduce carbon emissions. Reduced carbon emissions per investment input reached 44.19 kgCO2e·CNY−1 with energy efficiency of 50%, followed by thermal insulation design of 32.31 kgCO2e·CNY−1, natural gas furnaces of 26.08 kgCO2e·CNY−1, and air-source heat pumps of 20.27 kgCO2e·CNY−1. In addition, carbon emissions generated by biomass were 12.4% and 24% of those caused by coal and natural gas supplying the same energy. Moreover, building insulation should be increased according to economic benefits. The optimum energy efficiency was 55% in Gannan. The results provided a reference for building low-carbon heating in rural areas, which could help achieve the low-carbon goal with low investments. Full article
Show Figures

Figure 1

17 pages, 1793 KiB  
Article
Engaging Communities in Energy Transitions: A Study on Attitudes Towards Sustainable Heating Technologies and the Role of Peer Effects in Southern Chile
by Boris Álvarez, Àlex Boso, Ignacio Rodríguez-Rodríguez and Josep Espluga-Trenc
Sustainability 2024, 16(20), 9115; https://doi.org/10.3390/su16209115 - 21 Oct 2024
Cited by 1 | Viewed by 1648
Abstract
This study investigates the role of peer effects in shaping the adoption of sustainable heating systems in two highly polluted communes in Southern Chile. Despite policies promoting cleaner alternatives, wood-burning stoves, a major source of particulate matter emissions, remain widespread. This research work [...] Read more.
This study investigates the role of peer effects in shaping the adoption of sustainable heating systems in two highly polluted communes in Southern Chile. Despite policies promoting cleaner alternatives, wood-burning stoves, a major source of particulate matter emissions, remain widespread. This research work addresses a critical gap in the literature by examining how peer influence—typically studied in relation to visible technologies like solar panels or electric vehicles—affects the adoption of less visible but essential sustainable heating technologies. The main objective of this study is to understand how peer networks can influence the attitudes of residents towards sustainable heating technologies in highly polluted urban environments. Employing a non-experimental, cross-sectional design with a sample of 244 participants, this study reveals that peer effects and health risk perception are significant predictors of positive attitudes towards sustainable heating systems. These findings contribute valuable insights for policymakers seeking to accelerate energy transitions in polluted regions. Full article
(This article belongs to the Collection Air Pollution Control and Sustainable Development)
Show Figures

Figure 1

21 pages, 2515 KiB  
Review
Multidisciplinary Review of Induction Stove Technology: Technological Advances, Societal Impacts, and Challenges for Its Widespread Use
by Nestor O. Romero-Arismendi, Juan C. Olivares-Galvan, Rafael Escarela-Perez, Jose L. Hernandez-Avila, Victor M. Jimenez-Mondragon and Felipe Gonzalez-Montañez
Technologies 2024, 12(10), 206; https://doi.org/10.3390/technologies12100206 - 20 Oct 2024
Cited by 1 | Viewed by 6304
Abstract
Induction stoves are increasingly recognized as the future of cooking technology due to their numerous benefits, including enhanced energy efficiency, improved safety, and precise cooking control. This paper provides a comprehensive review of the key technological advancements in induction stoves, while also examining [...] Read more.
Induction stoves are increasingly recognized as the future of cooking technology due to their numerous benefits, including enhanced energy efficiency, improved safety, and precise cooking control. This paper provides a comprehensive review of the key technological advancements in induction stoves, while also examining the societal and health impacts that need to be addressed to support their widespread adoption. Induction stoves operate based on the principle of eddy currents induced in metal cookware, which generate heat directly within the pot, reducing cooking times and increasing energy efficiency compared with conventional gas and electric stoves. Moreover, induction stoves are considered an environmentally sustainable option, as they contribute to improvements in indoor air quality by reducing emissions associated with fuel combustion during cooking. However, ongoing research is essential to ensure the safe and effective use of this technology on a broader scale. Full article
Show Figures

Figure 1

23 pages, 8664 KiB  
Article
Control System Modification of a 5-kW Pellet Stove: Study and Analysis
by Andrés Álvarez-Murillo, Juan Félix González González, Javier Piquer Carapeto and Sergio Nogales-Delgado
Appl. Sci. 2024, 14(18), 8224; https://doi.org/10.3390/app14188224 - 12 Sep 2024
Cited by 1 | Viewed by 1527
Abstract
The use of sustainable energy sources is an alternative for fossil fuels, which can represent a positive factor to alleviate many current environmental issues. In that sense, not only sustainable industrial development is important, but also sustainable practices at the local level, including [...] Read more.
The use of sustainable energy sources is an alternative for fossil fuels, which can represent a positive factor to alleviate many current environmental issues. In that sense, not only sustainable industrial development is important, but also sustainable practices at the local level, including households. Specifically, heating and cooking are one of the most important activities that require energy in households, where the role of biomass could be of interest, as it can provide an energy source with lower environmental impact. However, there is room for improvement in biomass stoves, whose adaptability to specific wastes, as well as their improvement in efficiency, should be accomplished. The aim of this work was to assess the improvement of combustion performance of a domestic stove by the implementation of a programmable logic converter for a better adaptation to different biomass samples (holm oak, pear tree, poplar, and sugarcane bagasse pellets). This work provides further information about the current working protocol, being an alternative for better approaches that could be implemented in future works. Thus, the working regime of the stove was controlled, especially concerning the screw conveyor (to regulate pellet feeding) and flue gas fan (to change oxygen supply). As a result, better combustion performances were obtained, with heat capacities from 5.66 to 8.67 kW for the selected samples. Also, thermal capacities of the stove (1.43, 1.60, 2.22, and 1.83 kW for holm oak, pear tree, poplar, and sugarcane bagasse, respectively) were obtained, with a better combustion performance compared to previous studies (1600 and 120 ppm peak emissions for CO and NOx, respectively, and 15% as the lowest O2 concentration). On the other hand, different improvements of the combustion stove to avoid blockages, for instance, are proposed as further steps. Full article
(This article belongs to the Special Issue Advances in Biomass Energy and Chemicals)
Show Figures

Figure 1

19 pages, 2627 KiB  
Article
Energy Efficiency in Seasonal Homes: A Study on the Occupancy, Energy Use, and Renovation of Second Homes in Sweden
by Kristina Mjörnell
Energies 2024, 17(17), 4493; https://doi.org/10.3390/en17174493 - 6 Sep 2024
Cited by 1 | Viewed by 1438
Abstract
The escalating utilisation of second homes has led to an extension in heating periods and, to a certain degree, renovations to elevate the standard, resulting in augmented energy and resource consumption. A comprehensive survey was conducted in Sweden, examining user patterns across different [...] Read more.
The escalating utilisation of second homes has led to an extension in heating periods and, to a certain degree, renovations to elevate the standard, resulting in augmented energy and resource consumption. A comprehensive survey was conducted in Sweden, examining user patterns across different seasons, heating systems, and implemented energy efficiency measures. The results indicate that second homes are occupied for extended periods during the summer season and intermittently throughout the year. Over half of the second homes are heated even when unoccupied, with 12% maintaining a temperature above 16 °C. The predominant heating method is direct electricity (32.2%), followed by heat pumps (29.5%) and stoves (17.5%). A variety of renovations are undertaken, primarily to enhance the standard and technical performance, but also to implement energy efficiency measures such as window replacement, additional insulation, or heat pump installation. Based on the reported user and heating patterns, and the energy renovations carried out, the potential energy savings with different energy renovation strategies were estimated for the Swedish second home stock. The results show that though lowering the temperature when a second home is unoccupied emerges as the most efficient measure, both in terms of cost-effectiveness and climate impact, it needs to be complemented with intermittent heating or dehumidification to ensure that the relative humidity is below critical levels, to avoid the risk of damages caused by, for example, mould growth. Installing a heat pump is the second most energy- and cost-effective measure and has the advantage that the indoor temperature can be maintained at rather high levels. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

19 pages, 1343 KiB  
Article
Thermal Performance Evaluation of a Single-Mouth Improved Cookstove: Theoretical Approach Compared with Experimental Data
by Hamed Atajafari, Birendra Raj Pathak and Ramchandra Bhandari
Energies 2024, 17(17), 4355; https://doi.org/10.3390/en17174355 - 30 Aug 2024
Viewed by 1116
Abstract
This work aims to address the knowledge gap in the thermal efficiency performance of a locally made cookstove in Mali. Despite the fact that the thermal efficiency of cookstoves is a crucial aspect of cooking, the performance of commercially produced cookstoves in Mali [...] Read more.
This work aims to address the knowledge gap in the thermal efficiency performance of a locally made cookstove in Mali. Despite the fact that the thermal efficiency of cookstoves is a crucial aspect of cooking, the performance of commercially produced cookstoves in Mali has not been thoroughly studied. In this context, the thermal efficiency of a single-mouth biomass stove has been investigated using a theoretical and experimental approach. First, the fundamental principles of physics for the three forms of heat transfer were applied. Then, the theoretical thermal efficiency of the stove was calculated based on the percentage share of energy gains and losses for the respective heat transfer modes. This analysis shows that the highest energy gain is achieved by radiation heat transfer from the flame and the fuel bed, followed by convection heat transfer to the bottom and sides of the pot, respectively. In order to validate the findings, the theoretical results have been compared with the experimental data at a case study site in Katibougou, Mali. Accordingly, the experimental thermal efficiency is slightly lower than the theoretical value, with a measured value of 27% compared to the theoretical value of 31.45%. The theoretical thermal efficiency can be closer to the experimental efficiency if the combustion losses caused by incomplete combustion of the fuel are taken into account. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

18 pages, 3635 KiB  
Article
Assessment of Heavy Metal Contamination and Health Risks in “Snow Cover–Soil Cover–Vegetation System” of Urban and Rural Gardens of an Industrial City in Kazakhstan
by Alina Faurat, Galymbek Azhayev, Kazbek Shupshibayev, Kairat Akhmetov, Elmira Boribay and Talgat Abylkhassanov
Int. J. Environ. Res. Public Health 2024, 21(8), 1002; https://doi.org/10.3390/ijerph21081002 - 30 Jul 2024
Cited by 2 | Viewed by 2237
Abstract
This article investigates the extent of heavy metal pollution in both urban and rural gardens in Pavlodar, which cultivate potatoes and tomatoes. As a city of industrialization, Pavlodar is exposed to emissions from industrial enterprises, transport and stove heating. The city also has [...] Read more.
This article investigates the extent of heavy metal pollution in both urban and rural gardens in Pavlodar, which cultivate potatoes and tomatoes. As a city of industrialization, Pavlodar is exposed to emissions from industrial enterprises, transport and stove heating. The city also has the highest incidence of environmental diseases among the population. This study examines the accumulation of heavy metals and metalloid in the snow, their migration into the soil and their accumulation in plants, and assesses the non-cancer and cancer health risks of consuming these vegetables. The results show that the concentrations of trace elements in the solid phase of snow decrease in the following order: Fe (26,000) > Mn (592.5) > Cr (371.3) > Zn (338.8) > Pb (161.9) > Cu (142.5) > Ni (30.9) > As (15.1) > Co (12.1) > Cd (2.6). In soils, the concentrations of elements decrease in the following order: Mn (22,125) > Fe (20,375) > Zn (246.9) > Cr (109.5) > Cu (39.3) > Pb (25.6) > Ni (22.4) > As (9) > Co (6.6) > Cd (0.2). In urban gardens, the snow pollution coefficient was the highest. In rural gardens, the contamination index varied from 0.3 (Cr) to 5.3 (Cd). Magnesium in the soil exceeds the maximum allowable concentration (MPC) by 28.6–35.7 times, and zinc by 1.6–10.9 times. Only zinc and copper exceed the MPC for vegetables. Nickel in potatoes exceeds MPC by a factor of 6 and in tomatoes by a factor of 4.4. The cobalt content in tomatoes exceeds the background value by 2.2 times, with a maximum value of 5.3 times. The risk assessment showed that the non-carcinogenic and carcinogenic risks associated with potato and tomato consumption were low. However, these risks are higher in urban areas than in rural areas. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

13 pages, 3344 KiB  
Article
Numerical Study of the Influence of Regenerator Structure on the Performance of Hot Blast Stoves
by Qiuchen Zhang and Yu Tang
Metals 2024, 14(8), 869; https://doi.org/10.3390/met14080869 - 28 Jul 2024
Cited by 1 | Viewed by 1393
Abstract
The properties and arrangement of checker bricks in regenerators are crucial for the heat exchange process of hot blast stoves. In this study, a 3D fluid flow heat transfer model is established to analyze the influence of three regenerator layered structures on the [...] Read more.
The properties and arrangement of checker bricks in regenerators are crucial for the heat exchange process of hot blast stoves. In this study, a 3D fluid flow heat transfer model is established to analyze the influence of three regenerator layered structures on the combustion and air supply performance of hot blast stoves. The results show that a “silica bricks–high-alumina bricks–clay bricks” three-layer arrangement in regenerators produces a “thermal conduction hindrance effect” at the interface between silica and high-alumina bricks during the 2 h combustion period, which raises the local temperature and improves air supply performance. Compared to the “silica bricks–clay bricks” and “high-alumina bricks–silica bricks–clay bricks” structures, this setup increases the maximum air supply temperature difference to 23 and 64 K, respectively, and extends the effective air supply time by 80 and 320 s, respectively. However, the “thermal conduction hindrance effect” diminishes over longer combustion periods, and by 4 h, the performance across all structures becomes increasingly consistent. Additionally, the study suggests that the temperature level and distribution in the upper part of the regenerator are the key factors determining the air supply performance of hot blast stoves. Full article
Show Figures

Figure 1

14 pages, 741 KiB  
Article
Characterization of Beech Wood Pellets as Low-Emission Solid Biofuel for Residential Heating in Serbia
by Vasilije Matijašević, Zdeněk Beňo, Viktor Tekáč and Van Minh Duong
Resources 2024, 13(8), 104; https://doi.org/10.3390/resources13080104 - 25 Jul 2024
Cited by 2 | Viewed by 2505
Abstract
This study evaluated the suitability of two types of beech wood pellets as renewable, low-emission biofuel sources in order to combat the energy mix and poor air quality in Serbia. Key solid biofuel characteristics, including the heating values (18.5–18.7 MJ/kg), moisture content (5.54–7.16%), [...] Read more.
This study evaluated the suitability of two types of beech wood pellets as renewable, low-emission biofuel sources in order to combat the energy mix and poor air quality in Serbia. Key solid biofuel characteristics, including the heating values (18.5–18.7 MJ/kg), moisture content (5.54–7.16%), and volatile matter (82.4–84.4%) were assessed according to established standards. The elemental composition (mass fractions of 48.26–48.53% carbon, 6% hydrogen, 0.12–0.2% nitrogen, 0.02% sulfur, non-detected chlorine) and ash content (0.46–1.2%) demonstrated that the analyzed beech pellets met the criteria for high-quality classification, aligning with the ENplus A1 and ENplus A2 standards. The emissions of O2, CO2, CO, NOx, SO2, and TOC were quantified in the flue gas of an automatic residential pellet stove and compared with the existing literature. While combustion of the beech pellets yielded low emissions of SO2 (6 mg/m3) and NOx (188 mg/m3), the fluctuating CO (1456–2064 mg/m3) and TOC (26.75–61.46 mg/m3) levels were influenced by the appliance performance. These findings underscore the potential of beech wood pellets as a premium solid biofuel option for Serbian households, offering implications for both end-users and policymakers. Full article
Show Figures

Figure 1

18 pages, 5868 KiB  
Article
Indoor Air Quality Evaluation in Rural Houses Using Different Heating Methods in Northern Shanxi, China
by Mengying Zhang, Xujuan Dong and Jing Feng
Sustainability 2024, 16(14), 5912; https://doi.org/10.3390/su16145912 - 11 Jul 2024
Cited by 2 | Viewed by 1463
Abstract
It has been shown that heating methods have a large impact on rural indoor air quality. Previous studies on indoor air quality in rural houses involved a limited number of heating methods and lacked comprehensive comparative research on the three heating methods: coal-fired [...] Read more.
It has been shown that heating methods have a large impact on rural indoor air quality. Previous studies on indoor air quality in rural houses involved a limited number of heating methods and lacked comprehensive comparative research on the three heating methods: coal-fired boiler radiator heating, air-source heat pump radiator heating, and Chinese stove–kang heating. In this paper, subjective surveys and objective tests were conducted on indoor air quality in rural houses using these three heating methods in northern Shanxi, China. The gray relational analysis method and the comprehensive index method were used to evaluate the indoor air pollution levels of the three heating methods. The results were as follows: The subjective evaluations of most rural residents were overly optimistic about the indoor air quality of coal-fired boiler radiator heating and Chinese stove–kang heating. The indoor TVOC concentrations from these two heating methods far exceeded the standard limit of 0.6 mg/m3 at night. The indoor PM2.5 and PM10 concentrations from Chinese stove–kang heating varied greatly over a day and showed intermittent peak fluctuations that far exceeded the standard limits in the initial period of fuel combustion. The pollution levels from coal-fired boiler radiator heating, air-source heat pump radiator heating, and Chinese stove–kang heating were evaluated as light pollution, non-pollution, and medium or heavy pollution, respectively. Full article
Show Figures

Figure 1

16 pages, 2542 KiB  
Article
Low-Cost Sensor Monitoring of Air Quality Indicators during Outdoor Renovation Activities around a Dwelling House
by László Bencs
Atmosphere 2024, 15(7), 790; https://doi.org/10.3390/atmos15070790 - 30 Jun 2024
Viewed by 1092
Abstract
A couple of air quality (AQ) parameters were monitored with two types of low-cost sensors (LCSs) before, during and after the garden fence rebuilding of a dwelling house, located at the junction of a main road and a side street in a suburban [...] Read more.
A couple of air quality (AQ) parameters were monitored with two types of low-cost sensors (LCSs) before, during and after the garden fence rebuilding of a dwelling house, located at the junction of a main road and a side street in a suburban area of Budapest, Hungary. The AQ variables, recorded concurrently indoors and outdoors, were particulate matter (PM1, PM2.5, PM10) and some gaseous trace pollutants, such as CO2, formaldehyde (HCHO) and volatile organic compounds (VOCs). Medium-size aerosol (PM2.5-1), coarse particulate (PM10-2.5) and indoor-to-outdoor (I/O) ratios were calculated. The I/O ratios showed that indoor fine and medium-size PM was mostly of outdoor origin; its increased levels were observed during the renovation. The related pollution events were characterized by peaks as high as 100, 95 and 37 µg/m3 for PM1, PM2.5-1 and PM10-2.5, respectively. Besides the renovation, some indoor sources (e.g., gas-stove cooking) also contributed to the in-house PM1, PM2.5-1 and PM10-2.5 levels, which peaked as high as 160, 255 and 220 µg/m3, respectively. In addition, these sources enhanced the indoor levels of CO2, HCHO and, rarely, VOCs. Increased and highly fluctuating VOC levels were observed in the outdoor air (average: 0.012 mg/m3), mainly due to the use of paints and thinners during the reconstruction, though the use of a nearby wood stove for heating was an occasional contributing factor. The acquired results show the influence of the fence renovation-related activities on the indoor air quality in terms of aerosols and gaseous components, though to a low extent. The utilization of high-resolution LCS-assisted monitoring of gases and PMx helped to reveal the changes in several AQ parameters and to assign some dominant emission sources. Full article
Show Figures

Figure 1

23 pages, 3802 KiB  
Article
Eco-Efficiency of Pellet Production from Dedicated Poplar Plantations
by Giulio Sperandio, Alessandro Suardi, Andrea Acampora and Vincenzo Civitarese
Energies 2024, 17(13), 3137; https://doi.org/10.3390/en17133137 - 26 Jun 2024
Cited by 1 | Viewed by 1380
Abstract
Biomass, due to its neutrality in terms of greenhouse gas emissions into the atmosphere during its life cycle, is considered an interesting renewable source for energy production as an alternative to the use of more polluting fossil fuels. Among the different wood fuels, [...] Read more.
Biomass, due to its neutrality in terms of greenhouse gas emissions into the atmosphere during its life cycle, is considered an interesting renewable source for energy production as an alternative to the use of more polluting fossil fuels. Among the different wood fuels, pellets are convenient for use in dedicated stoves, and pellet heating systems have a high energy efficiency. The aim of this work was to estimate the economic and global warming potential (GWP100a) generated along the thermal energy supply chain of wood pellets, starting from the production of raw biomass from dedicated poplar cultivations and ending with the use of pellets in stoves by the end-user to produce thermal energy and ash. The Eco-Efficiency Indicator (EEI) was used to link the economic and environmental performance for eight proposed scenarios, obtained by combining different levels of mechanisation for poplar harvesting and wood biomass management before arrival at the pellet plant. For the thermal energy produced by the poplar wood pellet, the GWP100a ranged from 1.5 × 10−2 to 2.1 × 10−2 kg CO2−eq MJ−1 for three-year-old plantations and from 1.9 × 10−2 to 2.4 × 10−2 kg CO2−eq MJ−1, for six-year-old plantations. In terms of eco-efficiency of the baseline scenario (EEIb), the most favourable scenarios remain those linked to the use of biomass from three-year-old poplar plantations, with EEIb values ranging from 0.31 to 0.60 € kgCO2−eq−1, compared to from 0.29 to 0.36 € kgCO2−eq−1 for pellets obtained from biomass produced from six-year-old poplar plantations. In terms of the Global Eco-Efficiency Indicator (EEIg), which also takes into account the positive effect on the reduction of greenhouse gases due to the storage of carbon in the soil by the plantations and the reduction of emissions from avoided fossil fuels, the most favourable scenarios remain those linked to the use of biomass from three-year-old poplar plantations, with EEIg values that vary in the range of 0.60 ÷ 1.04 € kgCO2−eq−1, compared to 0.55 ÷ 0.62 € kg CO2−eq−1 for thermal energy obtained using biomass from six-year-old poplar plantations. Full article
Show Figures

Figure 1

Back to TopTop