Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (260)

Search Parameters:
Keywords = heat-resistant stainless steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1539 KiB  
Article
Heat Exchange and Flow Resistance in a Heat Exchanger Based on a Minimal Surface of the Gyroid Type—Results of Experimental Studies
by Krzysztof Dutkowski, Marcin Kruzel and Marcin Walczak
Energies 2025, 18(15), 4134; https://doi.org/10.3390/en18154134 - 4 Aug 2025
Viewed by 112
Abstract
The gyroid minimal surface is one type of triply periodic minimal surface (TPMS). TPMS is a minimal surface replicated in the three main directions of the Cartesian coordinate system. The minimal surface is a surface stretched between two objects, known as the smallest [...] Read more.
The gyroid minimal surface is one type of triply periodic minimal surface (TPMS). TPMS is a minimal surface replicated in the three main directions of the Cartesian coordinate system. The minimal surface is a surface stretched between two objects, known as the smallest possible area (e.g., a soap bubble with a saddle shape stretched between two parallel circles). The complicated shape of the TPMS makes its production possible only by additive methods (3D printing). This article presents the results of experimental studies on heat transfer and flow resistance in a heat exchanger made of stainless steel. The heat exchange surface, a TPMS gyroid, separates two working media: hot and cold water. The water flow rate was varied in the range from 8 kg/h to 25 kg/h (Re = 246–1171). The water temperature at the inlet to the exchanger was maintained at a constant level of 8.8 ± 0.3 °C and 49.5 ± 0.5 °C for cold and hot water, respectively. The effect of water flow rate on the change in its temperature, the heat output of the exchanger, the average heat transfer coefficient, pressure drop, and overall resistance factor was presented. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

24 pages, 11098 KiB  
Article
Fracture Mechanisms of Electrothermally Fatigued 631 Stainless Steel Fine Wires for Probe Spring Applications
by Chien-Te Huang, Fei-Yi Hung and Kai-Chieh Chang
Appl. Sci. 2025, 15(15), 8572; https://doi.org/10.3390/app15158572 - 1 Aug 2025
Viewed by 188
Abstract
This study systematically investigates 50 μm-diameter 631 stainless steel fine wires subjected to both sequential and simultaneous electrothermomechanical loading to simulate probe spring conditions in microelectronic test environments. Under cyclic current loading (~104 A/cm2), the 50 μm 631SS wire maintained [...] Read more.
This study systematically investigates 50 μm-diameter 631 stainless steel fine wires subjected to both sequential and simultaneous electrothermomechanical loading to simulate probe spring conditions in microelectronic test environments. Under cyclic current loading (~104 A/cm2), the 50 μm 631SS wire maintained electrical integrity up to 0.30 A for 15,000 cycles. Above 0.35 A, rapid oxide growth and abnormal grain coarsening resulted in surface embrittlement and mechanical degradation. Current-assisted tensile testing revealed a transition from recovery-dominated behavior at ≤0.20 A to significant thermal softening and ductility loss at ≥0.25 A, corresponding to a threshold temperature of approximately 200 °C. These results establish the endurance limit of 631 stainless steel wire under coupled thermal–mechanical–electrical stress and clarify the roles of Joule heating, oxidation, and microstructural evolution in electrical fatigue resistance. A degradation map is proposed to inform design margins and operational constraints for fatigue-tolerant, electrically stable interconnects in high-reliability probe spring applications. Full article
(This article belongs to the Special Issue Application of Fracture Mechanics in Structures)
Show Figures

Figure 1

21 pages, 4865 KiB  
Article
Impact of Laser Power and Scanning Speed on Single-Walled Support Structures in Powder Bed Fusion of AISI 316L
by Dan Alexander Gallego, Henrique Rodrigues Oliveira, Tiago Cunha, Jeferson Trevizan Pacheco, Oksana Kovalenko and Neri Volpato
J. Manuf. Mater. Process. 2025, 9(8), 254; https://doi.org/10.3390/jmmp9080254 - 30 Jul 2025
Viewed by 275
Abstract
Laser beam powder bed fusion of metals (PBF-LB/M, or simply L-PBF) has emerged as one of the most competitive additive manufacturing technologies for producing complex metallic components with high precision, design freedom, and minimal material waste. Among the various categories of additive manufacturing [...] Read more.
Laser beam powder bed fusion of metals (PBF-LB/M, or simply L-PBF) has emerged as one of the most competitive additive manufacturing technologies for producing complex metallic components with high precision, design freedom, and minimal material waste. Among the various categories of additive manufacturing processes, L-PBF stands out, paving the way for the execution of part designs with geometries previously considered unfeasible. Despite offering several advantages, parts with overhang features require the use of support structures to provide dimensional stability of the part. Support structures achieve this by resisting residual stresses generated during processing and assisting heat dissipation. Although the scientific community acknowledges the role of support structures in the success of L-PBF manufacturing, they have remained relatively underexplored in the literature. In this context, the present work investigated the impact of laser power and scanning speed on the dimensioning, integrity and tensile strength of single-walled block type support structures manufactured in AISI 316L stainless steel. The method proposed in this work is divided in two stages: processing parameter exploration, and mechanical characterization. The results indicated that support structures become more robust and resistant as laser power increases, and the opposite effect is observed with an increment in scanning speed. In addition, defects were detected at the interfaces between the bulk and support regions, which were crucial for the failure of the tensile test specimens. For a layer thickness corresponding to 0.060 mm, it was verified that the combination of laser power and scanning speed of 150 W and 500 mm/s resulted in the highest tensile resistance while respecting the dimensional deviation requirement. Full article
(This article belongs to the Special Issue Recent Advances in Optimization of Additive Manufacturing Processes)
Show Figures

Figure 1

13 pages, 5115 KiB  
Article
Study the Effect of Heat Treatment on the Corrosion Resistance of AISI 347H Stainless Steel
by Yunyan Peng, Bo Zhao, Jianhua Yang, Fan Bai, Hongchang Qian, Bingxiao Shi and Luntao Wang
Materials 2025, 18(15), 3486; https://doi.org/10.3390/ma18153486 - 25 Jul 2025
Viewed by 249
Abstract
AISI 347H stainless steel is widely used in high-temperature environments due to its excellent creep strength and oxidation resistance; however, its corrosion performance remains highly sensitive to thermal oxidation, and the effects of thermal history on its passive film stability are not yet [...] Read more.
AISI 347H stainless steel is widely used in high-temperature environments due to its excellent creep strength and oxidation resistance; however, its corrosion performance remains highly sensitive to thermal oxidation, and the effects of thermal history on its passive film stability are not yet fully understood. This study addresses this knowledge gap by systematically investigating the influence of solution treatment on the corrosion and oxidation resistance of AISI 347H stainless steel. The specimens were subjected to solution heat treatment at 1050 °C, followed by air cooling, and then evaluated through electrochemical testing, high-temperature oxidation experiments at 550 °C, and multiscale surface characterization techniques. The solution treatment refined the austenitic microstructure by dissolving coarse Nb-rich precipitates, as confirmed by SEM and EBSD, and improved passive film integrity. The stabilizing effect of Nb also played a critical role in suppressing sensitization, thereby enhancing resistance to intergranular attack. Electrochemical measurements and EIS analysis revealed a lower corrosion current density and higher charge transfer resistance in the treated samples, indicating enhanced passivation behavior. ToF-SIMS depth profiling and oxide thickness analysis confirmed a slower parabolic oxide growth rate and reduced oxidation rate constant in the solution-treated condition. At 550 °C, oxidation was suppressed by the formation of compact, Cr-rich scales with dual-distributed Nb oxides, effectively limiting diffusion pathways and stabilizing the protective layer. These findings demonstrate that solution treatment is an effective strategy to improve the long-term corrosion and oxidation performance of AISI 347H stainless steel in harsh service environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

13 pages, 3463 KiB  
Article
The Effects of Heat Treatment Temperatures on the Properties of 316L Stainless Steel Produced via Laser Powder Bed Fusion
by Yizhi Zhou, Mingxia Chai, Fu Zheng and Zhiyong Li
Materials 2025, 18(13), 3167; https://doi.org/10.3390/ma18133167 - 3 Jul 2025
Viewed by 436
Abstract
316L stainless steel (316L SS) exhibits excellent corrosion resistance, mechanical properties, and biocompatibility, but the rapid melting and solidification of the laser powder bed fusion (PBF-LB/M) process reduce the properties of the newly formed parts. This study aims to enhance the mechanical properties [...] Read more.
316L stainless steel (316L SS) exhibits excellent corrosion resistance, mechanical properties, and biocompatibility, but the rapid melting and solidification of the laser powder bed fusion (PBF-LB/M) process reduce the properties of the newly formed parts. This study aims to enhance the mechanical properties of PBF-LB/M PBF-LB/M-formed 316L SS parts by investigating the effects of various heat treatment temperatures. The results show that an appropriate heat treatment temperature can improve the microstructure and mechanical properties of the formed parts. Lower temperatures have minimal effects on performance; however, at 1100 °C, recrystallization occurs, resulting in more uniform grain structures, improved densification, and substantial stress relief. The residual stress is reduced by 85.59% compared to the untreated PBF-LB/M samples, while the ferrite content is significantly decreased, making the phase structure more homogeneous. Although both yield strength and tensile strength decrease, plasticity improves by 21.11%. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 5932 KiB  
Article
Numerical Simulation of Fluid Flow, Heat Transfer, and Solidification in AISI 304 Stainless Steel Twin-Roll Strip Casting
by Jingzhou Lu, Wanlin Wang and Kun Dou
Metals 2025, 15(7), 749; https://doi.org/10.3390/met15070749 - 2 Jul 2025
Viewed by 316
Abstract
The production of AISI 304 stainless steel (a corrosion-resistant alloy prone to solidification defects from high alloy content) particularly benefits from twin-roll strip casting—a short-process green technology enabling sub-rapid solidification (the maximum cooling rate exceeds 1000 °C/s) control for high-performance steels. However, the [...] Read more.
The production of AISI 304 stainless steel (a corrosion-resistant alloy prone to solidification defects from high alloy content) particularly benefits from twin-roll strip casting—a short-process green technology enabling sub-rapid solidification (the maximum cooling rate exceeds 1000 °C/s) control for high-performance steels. However, the internal phenomena within its molten pool remain exceptionally challenging to monitor. This study developed a multiscale numerical model to simulate coupled fluid flow, heat transfer, and solidification in AISI 304 stainless steel twin-roll strip casting. A quarter-symmetry 3D model captured macroscopic transport phenomena, while a slice model resolved mesoscopic solidification structure. Laboratory experiments had verified that the deviation between the predicted temperature field and the measured average value (1384.3 °C) was less than 5%, and the error between the solidification structure simulation and the electron backscatter diffraction (EBSD) data was within 5%. The flow field and flow trajectory showed obvious recirculation zones: the center area was mainly composed of large recirculation zones, and many small recirculation zones appeared at the edges. Parameter studies showed that, compared with the high superheat (110 °C), the low superheat (30 °C) increased the total solid fraction by 63% (from 8.3% to 13.6%) and increased the distance between the kiss point and the bottom of the molten pool by 154% (from 6.2 to 15.8 mm). The location of the kiss point is a key industrial indicator for assessing solidification integrity and the risk of strip fracture. In terms of mesoscopic solidification structure, low superheat promoted the formation of coarse columnar crystals (equiaxed crystals accounted for 8.9%), while high superheat promoted the formation of equiaxed nucleation (26.5%). The model can be used to assist in the setting of process parameters and process optimization for twin-roll strip casting. Full article
(This article belongs to the Special Issue Advances in Metal Rolling Processes)
Show Figures

Figure 1

23 pages, 10696 KiB  
Article
High-Temperature Wear Properties of Laser Powder Directed Energy Deposited Ferritic Stainless Steel 430
by Samsub Byun, Hyun-Ki Kang, Jongyeob Lee, Namhyun Kang and Seunghun Lee
Micromachines 2025, 16(7), 752; https://doi.org/10.3390/mi16070752 - 26 Jun 2025
Viewed by 417
Abstract
Ferritic stainless steels (FSSs) have attracted considerable attention due to their excellent corrosion resistance and significantly lower cost compared with nickel-bearing austenitic stainless steels. However, the high-temperature wear behavior of additively manufactured FSS 430 has not yet been thoroughly investigated. This study aims [...] Read more.
Ferritic stainless steels (FSSs) have attracted considerable attention due to their excellent corrosion resistance and significantly lower cost compared with nickel-bearing austenitic stainless steels. However, the high-temperature wear behavior of additively manufactured FSS 430 has not yet been thoroughly investigated. This study aims to examine the microstructural characteristics and wear properties of laser powder directed energy deposition (LP-DED) FSS 430 fabricated under varying laser powers and hatch distances. Wear testing was conducted at 25 °C and 300 °C after subjecting the samples to solution heat treating at 815 °C and 980 °C for 1 h, followed by forced fan cooling. For comparison, an AISI 430 commercial plate was also tested under the same test conditions. The microstructural evolution and worn surfaces were analyzed using SEM-EDS and EBSD techniques. The wear performance was evaluated based on the friction coefficients and cross-sectional profiles of wear tracks, including wear volume, maximum depth, and scar width. The average friction coefficients (AFCs) of the samples solution heat treated at 980 °C were higher than those treated at 815 °C. Additionally, the AFCs increased with hatch distance at both testing temperatures. A strong correlation was observed between Rockwell hardness and wear resistance, indicating that higher hardness generally results in improved wear performance. Full article
(This article belongs to the Special Issue Laser Additive Manufacturing of Metallic Materials, 2nd Edition)
Show Figures

Figure 1

23 pages, 6167 KiB  
Article
Microstructural Characterization of Martensitic Stainless Steel Blades Manufactured by Directed Energy Deposition (DED)
by Caroline Cristine de Andrade Ferreira, Rafael Humberto Mota de Siqueira, Johan Grass Nuñez, Fábio Edson Mariani, Reginaldo Teixeira Coelho, Daolun Chen and Milton Sérgio Fernandes de Lima
Metals 2025, 15(6), 612; https://doi.org/10.3390/met15060612 - 29 May 2025
Viewed by 625
Abstract
This study explores the feasibility of manufacturing martensitic stainless steel turbine blades via a directed energy deposition (DED) process using a powder precursor. Five different blade geometries were fabricated using AISI 431 L martensitic stainless steel deposited onto an AISI 304 L austenitic [...] Read more.
This study explores the feasibility of manufacturing martensitic stainless steel turbine blades via a directed energy deposition (DED) process using a powder precursor. Five different blade geometries were fabricated using AISI 431 L martensitic stainless steel deposited onto an AISI 304 L austenitic stainless steel substrate. The produced components were characterized in terms of microstructure, surface roughness, porosity, hardness, and residual stresses in both the as-processed condition and after heat treatment at 260 and 593 °C. Optical and scanning electron microscopy (SEM) analyses revealed a predominantly martensitic microstructure with well-defined grain boundaries. Heat treatment influenced the phase distribution and grain size, but did not have a significant impact on the surface roughness or modulus of elasticity. Tomographic assessments confirmed the absence of aligned or coalesced pores, which are critical sites for crack initiation. Residual stress analysis indicated the presence of compressive stresses in all blade geometries, which were effectively relieved by heat treatment. In addition, salt spray corrosion tests demonstrated that the corrosion resistance of the manufactured blades was similar to that of the base material. These findings suggest that DED is a viable technique for producing and repairing turbine blades, providing structural integrity and mechanical properties suitable for high-performance applications. Full article
Show Figures

Figure 1

16 pages, 10435 KiB  
Article
Effect of Heat Treatment on Microstructure and Properties of 304/Q235 Composite Round Steel
by Xiexin Zheng and Yi Ding
Materials 2025, 18(11), 2497; https://doi.org/10.3390/ma18112497 - 26 May 2025
Viewed by 455
Abstract
During the heat treatment of stainless steel (SS)/carbon steel (CS) bimetal composites, the carbon in the CS diffuses into the SS, and carbides precipitate on the grain boundary and in the grains, affecting the microstructure and properties of the composite steel. In order [...] Read more.
During the heat treatment of stainless steel (SS)/carbon steel (CS) bimetal composites, the carbon in the CS diffuses into the SS, and carbides precipitate on the grain boundary and in the grains, affecting the microstructure and properties of the composite steel. In order to change the precipitation and distribution of the carbides seen on hot-rolled 304/Q235 after cold drawing (HR), the microstructure and properties of composite round steel were investigated by optical microscopy, SEM/EDS, and hardness, tensile, fatigue, and electrochemical tests while changing the temperature of the full annealing and aging treatments. The results showed that dispersed chromium carbide particles precipitated at the grain boundaries, and intragranular and slip lines promoted simultaneous dispersion strengthening and fine-grain strengthening and greatly improved the hardness, yield strength, tensile strength, and fatigue strength of the composite round steel. However, the increase in chromium carbide particles leads to the formation of stress concentration points and accelerates the creation of fatigue cracks, resulting in a decrease in the fatigue strength of the steel. Simultaneously, the corrosion resistance of the composite round steel samples was reduced due to the precipitation of a large amount of chromium carbide. Full article
Show Figures

Figure 1

31 pages, 9985 KiB  
Article
Additively Manufactured 316L Stainless Steel: Hydrogen Embrittlement Susceptibility and Electrochemical Gas Production
by Reham Reda, Sabbah Ataya, Mohamed Ayman, Khaled Saad, Shimaa Mostafa, Gehad Elnady, Rashid Khan and Yousef G. Y. Elshaghoul
Appl. Sci. 2025, 15(11), 5824; https://doi.org/10.3390/app15115824 - 22 May 2025
Viewed by 812
Abstract
Interest in hydrogen is rapidly growing due to rising greenhouse gas emissions and the depletion of fossil fuel reserves. Additive manufacturing (AM) is extensively employed to produce high-quality components, with a strong focus on enhancing mechanical properties. The efficiency and cost-effectiveness of AM [...] Read more.
Interest in hydrogen is rapidly growing due to rising greenhouse gas emissions and the depletion of fossil fuel reserves. Additive manufacturing (AM) is extensively employed to produce high-quality components, with a strong focus on enhancing mechanical properties. The efficiency and cost-effectiveness of AM have further increased interest in its application to manufacturing components capable of withstanding demanding conditions, such as those encountered in hydrogen technology. In this study, 316L stainless steel specimens were fabricated using AM via the selective laser melting (SLM) technique. The specimens then underwent various post-processing heat treatments (PPHT). A subset of these specimens, measuring 50 × 50 × 3 mm3, was tested as electrodes in a water electrolysis cell for oxyhydrogen (HHO) gas production. The HHO gas flow rate and electrolyzer efficiency were evaluated at 60 °C under varying currents. The remaining AM specimens were evaluated for their susceptibility to hydrogen embrittlement under various hydrogen storage conditions, including testing at both room and cryogenic temperatures. Tensile and Charpy impact specimens were fabricated and tested before and after hydrogen charging. The fracture surfaces were analyzed using scanning electron microscopy (SEM) to assess the influence of hydrogen on fracture characteristics. Additionally, as-rolled stainless-steel specimens were examined for comparison with AM and PPHT 316L stainless steel. The primary objective of this study is to determine the most efficient alloy processing condition for optimal performance in each application. Results indicate that PPHT 316L stainless steel exhibits superior performance both as electrodes for HHO gas production and as a material for hydrogen storage vessels, demonstrating high resistance to hydrogen embrittlement. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

16 pages, 5598 KiB  
Article
Hybrid Fabrics for Ohmic Heating Applications
by Jiří Militký, Karel Kupka, Veronika Tunáková and Mohanapriya Venkataraman
Polymers 2025, 17(10), 1339; https://doi.org/10.3390/polym17101339 - 14 May 2025
Viewed by 375
Abstract
Textile structures with ohmic (Joule) heating capability are frequently used for personal thermal management by tuning fluctuations in human body temperature that arise due to climatic changes or for medical applications as electrotherapy. They are constructed from electrically conductive textile structures prepared in [...] Read more.
Textile structures with ohmic (Joule) heating capability are frequently used for personal thermal management by tuning fluctuations in human body temperature that arise due to climatic changes or for medical applications as electrotherapy. They are constructed from electrically conductive textile structures prepared in different ways, e.g., from metallic yarns, conductive polymers, conductive coatings, etc. In comparison with other types of flexible ohmic heaters, these structures should be corrosion resistant, air permeable, and comfortable. They should not loose ohmic heating efficiency due to frequent intensive washing and maintenance. In this study, the basic electrical properties of a conductive fabric composed of a polyester/cotton fiber mixture and a small amount of fine stainless-steel staple fibers (SS) were evaluated and predicted. Even though the basic conductive component of SS fibers is iron and its electrical characteristics obey Ohm’s law, the electrical behavior of the prepared fabric was highly nonlinear, resembling a more complex response than that of a classical conductor. The non-linear behavior was probably due to non-ideal, poorly defined random interfaces between individual short SS fibers. A significant time–dynamics relationship was also shown. Using the Stefan–Boltzmann law describing radiation power, we demonstrated that it is possible to predict surface temperature due to the ohmic heating of a fabric related to the input electrical power. Significant local temperature variations in the heated hybrid fabric in both main directions (warp and weft) were identified. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

22 pages, 26736 KiB  
Article
High-Temperature Corrosion of Different Steels in Liquid Sn-Bi-Zn Heat Transfer Alloy
by Qingmeng Wang, Xiuli Wang, Xiaomin Cheng, Qianju Cheng and Yi Yang
Materials 2025, 18(9), 2149; https://doi.org/10.3390/ma18092149 - 7 May 2025
Viewed by 2325
Abstract
In the fields of nuclear engineering and solar thermal utilization, low melting point alloys with excellent thermal conductivity and heat transfer performance have attracted extensive research as a new generation of heat transfer fluids, leading to many fundamental and important application issues. This [...] Read more.
In the fields of nuclear engineering and solar thermal utilization, low melting point alloys with excellent thermal conductivity and heat transfer performance have attracted extensive research as a new generation of heat transfer fluids, leading to many fundamental and important application issues. This study investigates the high-temperature corrosion behavior of Sn-50Bi-2Zn (wt.%) heat transfer alloy against 304 stainless steel (304), 310S heat-resistant steel (310S), and 20 carbon steel (20C) at 600 °C. Theoretical analysis, based on Fick’s diffusion law, and experimental measurements reveal significant differences in corrosion severity. After 473 h, 20 carbon steel exhibited the lowest corrosion layer thickness (0.07 mm), while 310S suffered the most severe corrosion (1.50 mm), exceeding 304SS (0.83 mm) by 81%. Diffusion coefficients derived from Sn penetration depths further quantified these trends: D310S = 2.51 × 10−7 mm2/s (6.8 × higher than 304: 3.7 × 10−8 mm2/s) and D20C = 2.87 × 10−10 mm2/s (128 × lower than 304SS). XRF analysis confirmed the dissolution of steel components into the molten alloy, with Fe, Cr, and Ni content increasing to 0.382 wt.%, 0.417 wt.%, and 0.694 wt.%, respectively, after 480 h. These results underscore the critical role of Ni content in accelerating Sn/Zn diffusion and pore formation, providing actionable insights for material selection in high-temperature heat transfer systems. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

10 pages, 7420 KiB  
Article
Effect of Heat Treatment on the Corrosion Behavior of Selective Laser Melted CX Stainless Steel
by Shaoqian Wu, Shuo Wu, Shilong Xing, Tianshu Wang, Jiabin Hou, Yuantao Zhao, Zongan Li and Yanbo Liu
Metals 2025, 15(5), 517; https://doi.org/10.3390/met15050517 - 3 May 2025
Cited by 1 | Viewed by 493
Abstract
The effects of different heat treatment regimes on the microstructure and corrosion behavior of selectively laser melted (SLM) Corrax (CX) stainless steel were systematically investigated. Three distinct thermal processing approaches solution treatment (ST), aging treatment (AT), and combined solution aging treatment (ST + [...] Read more.
The effects of different heat treatment regimes on the microstructure and corrosion behavior of selectively laser melted (SLM) Corrax (CX) stainless steel were systematically investigated. Three distinct thermal processing approaches solution treatment (ST), aging treatment (AT), and combined solution aging treatment (ST + AT) were comparatively examined to assess their microstructural evolution and corrosion performance. The results demonstrated that the SLM-processed CX sample initially consisted of martensite and retained austenite. After solution treatment at 900 °C for 0.5 h, microsegregation was eliminated, and the retained austenite fully transformed into martensite. During direct aging at 525 °C for 3 h (AT), a portion of the martensite reverted to austenite, accompanied by grain refinement that reduced the average grain size to 1.79 μm. When the CX was solution-aged at 900 °C for 0.5 h and then 525 °C for 4 h (ST + AT), the retained austenite transformed completely into martensite. The results of potentiodynamic polarization measurements and electrochemical impedance spectroscopy (EIS) revealed that the aged specimen demonstrated comparatively superior corrosion resistance with reduced surface accumulation of corrosion products relative to both ST and ST + AT specimens. The electrochemical test results indicate that the selection of heat treatment parameters has a significant impact on the corrosion resistance of SLM-formed CX samples. Compared to ST and ST + AT, the corrosion performance of AT-treated samples is improved to a certain extent, with the highest Epit (322 mV) and the largest ΔE (742). The corrosion potential is relatively high (Ecorr, −414 mV vs. SCE), and the corrosion current density is relatively low (Icorr, 0.405 μA·cm−2). This indicates that the AT samples exhibit good corrosion resistance. Full article
Show Figures

Figure 1

16 pages, 7371 KiB  
Article
Anisotropic Wear Resistance of Heat-Treated Selective Laser-Melted 316L Stainless Steel
by Menghui Sun, Qianqian Zhang, Jinxiu Wu, Hao Wang, Xu Wang, Hao Zhang, Yinong An, Yujie Liu and Long Ma
Lubricants 2025, 13(4), 189; https://doi.org/10.3390/lubricants13040189 - 19 Apr 2025
Viewed by 546
Abstract
Anisotropic microstructures and wear resistance are caused by large thermal gradients during selective laser melting (SLM). Investigating the wear resistance in different planes of SLM specimens is crucial. Hence, the effect of heat treatment on the anisotropy of the microstructure, density, microhardness, and [...] Read more.
Anisotropic microstructures and wear resistance are caused by large thermal gradients during selective laser melting (SLM). Investigating the wear resistance in different planes of SLM specimens is crucial. Hence, the effect of heat treatment on the anisotropy of the microstructure, density, microhardness, and wear resistance of SLM 316L stainless steel was studied. Specimens subjected to solution + aging treatment exhibited γ austenite and α ferrite phases with lower microstrain, as determined via X-ray diffraction (XRD) analysis. Microstructure observations demonstrated that SLM 316L appears as intersecting melt pools on the XOY plane and fish scale-like melt pools on the XOZ plane. After heat treatment, the melt boundaries disappeared, carbides (M23C6) precipitated at grain boundaries and within the grains, and the microstructures coarsened and became more uniform. The microhardness and wear resistance of the XOY plane were shown to be superior to those of the XOZ plane, and the microhardness decreased following heat treatment. Compared with SLM 316L, the microhardness of the XOY and XOZ planes of the specimen subjected to solution + aging treatment decreased by 5.96% and 4.98%. The friction and wear test results revealed that the specimen after solution + aging treatment had the lowest friction coefficient and the smallest wear rate. The wear rates of specimens from the XOY and XOZ planes after solution + aging treatment were 21.1% and 27.1% lower than that of SLM 316L, exhibiting the best wear resistance. Full article
(This article belongs to the Special Issue Friction and Wear of Alloys)
Show Figures

Figure 1

18 pages, 18331 KiB  
Article
The Effect of Cryogenic Treatment and Tempering Duration on the Microstructure and Mechanical Properties of Martensitic Stainless Steel 13Cr-2Ni-2Mo
by Muhammad R. R. Fatih, Hou-Jen Chen and Hsin-Chih Lin
Materials 2025, 18(8), 1784; https://doi.org/10.3390/ma18081784 - 14 Apr 2025
Viewed by 2469
Abstract
Martensitic stainless steel (MSS) is widely used in several parts of automobiles where high strength, hardness, and corrosion resistance are required. However, the metastability of retained austenite can transform into martensite under severe deformation, adversely affecting material properties. Cryogenic treatments (CTs) have been [...] Read more.
Martensitic stainless steel (MSS) is widely used in several parts of automobiles where high strength, hardness, and corrosion resistance are required. However, the metastability of retained austenite can transform into martensite under severe deformation, adversely affecting material properties. Cryogenic treatments (CTs) have been extensively employed in iron-based alloys for fastener application due to their advantageous effect. This study explores the heat treatment processes applied to 13Cr-2Ni-2Mo martensitic stainless steel (MSS), including austenitizing, cryogenic treatment, and tempering cycles. Cryogenic treatment at (−150 °C) for varying durations, followed by tempering at 200 °C for 2 h, and the impact of post-cryogenic tempering at 200 °C for different tempering duration on the microstructure and mechanical properties were evaluated. Experimental results indicate that the sample quenched at 1040 °C for 2 h (CHT) contains lath martensite, retained austenite, δ-ferrite, and undissolved carbide precipitation. Compared to as-quenched samples, hardness decreased by 5.04%, 7.24%, and 7.32% after tempering for 2 h, 5 h, and 10 h, respectively. Extending cryogenic durations to 2 h, 12 h, and 20 h promoted nucleation of a mixture of M3C and M23C6 small globular carbides (SGCs) and grain refinement but resulted in hardness reductions of 5.04%, 5.32%, and 8.36%, respectively. The reduction in hardness is primarily attributed to a decrease in solid solution strengthening and promoted carbide coarsening. Full article
Show Figures

Figure 1

Back to TopTop