Fracture Mechanisms of Electrothermally Fatigued 631 Stainless Steel Fine Wires for Probe Spring Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Material and Wire Drawing
- (1)
- Compression and current flow (red arrow), where electrical contact is established during compression, accompanied by Joule heating effects.
- (2)
- Release and power-off (blue arrow), where contact is broken and the current is disconnected during release.
2.2. Electrical Characterization and Electrical Fatigue Method (EFM)
2.3. Simulation Experiment of Probe Spring Operation
2.4. Fracture and Microstructure Characterization
3. Results
3.1. Microstructure of the Wire and Failure Resistance Under Different Tensile Strain Rates
3.2. Dynamic Electrical Characteristic Analysis of Wire After Quantitative Straining
3.3. Wire Electrical Fatigue Lifespan
3.4. Low-Current Electrical Fatigue: Electrical Properties and Wire Microstructure
3.5. Tensile Fracture Mechanism Under Low-Current Electrical Fatigue
3.6. High-Current Electrical Fatigue: Evolution of Electrical Properties and Wire Microstructure
3.7. Tensile Fracture Mechanism Under High-Current Electrical Fatigue
3.8. Current-Assisted Tensile Testing and Thermal Simulation Conditions
4. Discussion
4.1. Electrical Change Following Quantitative Straining
4.2. Electrical Fatigue Failure Mechanisms of Wire
4.3. Electrical Characteristic, Microstructure Evolution, and Tensile Fracture Mechanism After Low-Current Electrical Fatigue
4.4. Electrical Characteristic, Microstructure Evolution, and Tensile Fracture Mechanism After High-Current Electrical Fatigue
4.5. Current-Assisted Tensile Testing Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, D.; Cho, J.; Kim, C.H.; Lee, S.H. Application of laser spot cutting on spring contact probe for semiconductor package inspection. Opt. Laser Technol. 2017, 97, 90–96. [Google Scholar] [CrossRef]
- Lee, M.K.; Lee, T.J.; Choi, H.W.; Shin, S.J.; Park, J.Y.; Lee, S.J. A Universal Spring-Probe System for Reliable Probing of Electrochemical Lab-on-a-Chip Devices. Sensors 2014, 14, 944–956. [Google Scholar] [CrossRef]
- Wang, W.Y.; Liu, B.; Kodur, V. Effect of temperature on strength and elastic modulus of high-strength steel. J. Mater. Civ. Eng. 2013, 25, 174–182. [Google Scholar] [CrossRef]
- Lee, K.; Kim, B. MEMS spring probe for non-destructive wafer level chip test. J. Micromechanics Microengineering 2005, 15, 953. [Google Scholar] [CrossRef]
- Hantschel, T.; Wong, L.; Chua, C.L.; Fork, D.K. Fabrication of highly conductive stressed-metal springs and their use as sliding-contact interconnects. Microelectron. Eng. 2003, 67, 690–695. [Google Scholar] [CrossRef]
- Giordano, N. Experimental study of localization in thin wires. Phys. Rev. B 1980, 22, 5635. [Google Scholar] [CrossRef]
- Glushko, O.; Cordill, M.J. In-operando fatigue behavior of gold metallization lines on polyimide substrate. Scr. Mater. 2020, 186, 48–51. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Q.; Sun, Z.; Lu, Y. Experimental and Numerical Investigation of Electromigration Behavior of Printed Silver Wire Under High Current Density. J. Electron. Packag. 2023, 145, 021006. [Google Scholar] [CrossRef]
- Kimberley, J.; Chasiotis, I.; Lambros, J. Failure of microelectromechanical systems subjected to impulse loads. Int. J. Solids Struct. 2008, 45, 497–512. [Google Scholar] [CrossRef]
- Kolchuzhin, V.A.; Sheremet, E.; Bhattacharya, K.; Rodriguez, R.D.; Paul, S.D.; Mehner, J.; Hietschold, M.; Zahn, D.R. Mechanical properties and applications of custom-built gold AFM cantilevers. Mechatronics 2016, 40, 281–286. [Google Scholar] [CrossRef]
- Lo, K.H.; Shek, C.H.; Lai, J.K.L. Recent developments in stainless steels. Mater. Sci. Eng. R Rep. 2009, 65, 39–104. [Google Scholar] [CrossRef]
- Yang, J.L.; Li, Y.; Wang, F.; Zang, Z.G.; Li, S.J. New application of stainless steel. J. Iron Steel Res. Int. 2006, 13, 62–66. [Google Scholar] [CrossRef]
- Moon, J.; Ha, H.Y.; Kim, K.W.; Park, S.J.; Lee, T.H.; Kim, S.D.; Lee, C.H. A new class of lightweight, stainless steels with ultra-high strength and large ductility. Sci. Rep. 2020, 10, 12140. [Google Scholar] [CrossRef] [PubMed]
- Takahata, K.; Gianchandani, Y.B. Batch mode micro-electro-discharge machining. J. Microelectromechanical Syst. 2002, 11, 102–110. [Google Scholar] [CrossRef]
- Tseng, C.Y.; Lin, J.W.; Tai, C.L.; Chung, T.F.; Yang, Y.L.; Tsao, T.C.; Lu, S.Y.; Chen, J.J.; Chiu, P.H.; Chen, C.Y.; et al. Effect of repeated-tempering induced martensite on the microstructural evolution in 17–7 PH stainless steel. Mater. Charact. 2024, 214, 114091. [Google Scholar] [CrossRef]
- Peng, S.; Wei, Y.; Gao, H. Nanoscale precipitates as sustainable dislocation sources for enhanced ductility and high strength. Proc. Natl. Acad. Sci. USA 2020, 117, 5204–5209. [Google Scholar] [CrossRef]
- Long, H.; Zhou, X.; Ma, Y.; Li, K.; Ren, J. The Effect of Heat Treatment on the Plasma Nitriding of Hot-Rolled 17–7 PH Stainless Steel. Metals 2024, 14, 1061. [Google Scholar] [CrossRef]
- Yamasaki, S.; Takano, K. The Effect of Aging Conditions on the Stress Relaxation Behavior of 17-7PH Stainless Steel. In Materials Science Forum; Trans Tech Publications Ltd.: Bäch, Switzerland, 2021; Volume 1016, pp. 1664–1669. [Google Scholar]
- Pervikov, A.V. Structural and phase transformations in zinc and brass wires under heating with high-density current pulse. Phys. Plasmas 2016, 23. [Google Scholar] [CrossRef]
- Chang, Y.T.; Hung, F.Y.; Wu, B.D. Study on Material Properties and Copper-to-Copper Wire Bonding of Cu-Pt-Au-Pd Fine Micro-Alloyed Wires. J. Electron. Mater. 2024, 53, 8048–8065. [Google Scholar] [CrossRef]
- Chang, Y.T.; Hung, F.Y.; Wu, B.D. Comparison of the Microstructural Characteristics and the Electrothermal Fracture Mechanism of Au-Pd-Coated Copper Wire and Cu-Ti Micro-alloyed Wire. J. Electron. Mater. 2024, 53, 1695–1707. [Google Scholar] [CrossRef]
- Milad, M.; Zreiba, N.; Elhalouani, F.; Baradai, C. The effect of cold work on structure and properties of AISI 304 stainless steel. J. Mater. Process. Technol. 2008, 203, 80–85. [Google Scholar] [CrossRef]
- Kumar, A.; Khatirkar, R.K.; Chalapathi, D.; Kumar, G.; Suwas, S. Microstructure and texture development during cold rolling in UNS S32205 and UNS S32760 duplex stainless steels. Metall. Mater. Trans. A 2017, 48, 2349–2362. [Google Scholar] [CrossRef]
- Fang, F.; Zhou, L.; Hu, X.; Zhou, X.; Tu, Y.; Xie, Z.; Jiang, J. Microstructure and mechanical properties of cold-drawn pearlitic wires affect by inherited texture. Mater. Des. 2015, 79, 60–67. [Google Scholar] [CrossRef]
- Chae, H.; Huang, E.W.; Woo, W.; Kang, S.H.; Jain, J.; An, K.; Lee, S.Y. Unravelling thermal history during additive manufacturing of martensitic stainless steel. J. Alloys Compd. 2021, 857, 157555. [Google Scholar] [CrossRef]
- Skvortsov, A.A.; Zuev, S.M.; Koryachko, M.V. Contact melting of aluminum-silicon structures under conditions of thermal shock. Key Eng. Mater. 2018, 771, 118–123. [Google Scholar] [CrossRef]
- Islam, M.M.; Couvant, T.; Marcus, P.; Diawara, B. Stress concentration in the bulk Cr2O3: Effects of temperature and point defects. J. Chem. 2017, 2017, 7039436. [Google Scholar] [CrossRef]
- Padilha, A.F.; Rios, P.R. Decomposition of Austenite in Austenitic Stainless Steels. ISIJ Int. 2002, 42, 325–337. [Google Scholar] [CrossRef]
- Walker, D.J.; Honeycombe, R.W.K. Effects of deformation on decomposition of austenite: Part II–Carbide precipitation. Met. Sci. 1980, 14, 184–188. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, D.; Li, Y.; Wang, Y.; Zhang, W.; Zhang, X. Effect of Al content on the high-temperature oxidation behavior of 18Cr–Al–Si ferritic heat-resistant stainless steel. J. Mater. Res. Technol. 2021, 11, 1730–1740. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Chen, G.; Lu, Z. Improvement of high-temperature oxidation resistance and strength in alumina-forming austenitic stainless steels. Mater. Lett. 2011, 65, 3285–3288. [Google Scholar] [CrossRef]
- Blonde, R.J.P. Austenite Stability in TRIP Steels Studied by Synchrotron Radiation. Ph.D. Dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands, 2014. [Google Scholar]
- Tao, H.; Zhou, C.; Hong, Y.; Zheng, Y.; Zhang, K.; Zheng, J.; Zhang, L. Influence of Warm Predeformation Temperature on the Corrosion Property of Type 304 Austenitic Stainless Steel. J. Mater. Eng. Perform. 2020, 29, 4515–4528. [Google Scholar] [CrossRef]
- Miyajima, Y.; Komatsu, S.Y.; Mitsuhara, M.; Hata, S.; Nakashima, H.; Tsuji, N. Change in electrical resistivity of commercial purity aluminium severely plastic deformed. Philos. Mag. 2010, 90, 4475–4488. [Google Scholar] [CrossRef]
- Sunderland, K.J.; Slavin, A.J. Thermal decomposition of the (15× 3) R14° two-dimensional carbide on the W (110) surface. Surf. Sci. 1990, 233, 89–96. [Google Scholar] [CrossRef]
- Byun, T.S.; Hashimoto, N.; Farrell, K. Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels. Acta Mater. 2004, 52, 3889–3899. [Google Scholar] [CrossRef]
- Mitchell, T.E.; Voss, D.A.; Butler, E.P. The observation of stress effects during the high temperature oxidation of iron. J. Mater. Sci. 1982, 17, 1825–1833. [Google Scholar] [CrossRef]
- Talonen, J.; Hänninen, H. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater. 2007, 55, 6108–6118. [Google Scholar] [CrossRef]
Current (A) | 0.00 | 0.10 | 0.20 | 0.25 | 0.30 | 0.35 | 0.37 | 0.39 | 0.41 |
J (A/ cm2) | 0.00 | 5.09 × 103 | 1.02 × 104 | 1.27 × 104 | 1.53 × 104 | 1.78 × 104 | 1.88 × 104 | 1.99 × 104 | 2.09 × 104 |
Temp. (°C) | 25 | 43–83 | 182–222 | 288–328 | 425–465 | 594–634 | 675–715 | 770–810 | 840–880 |
Strain (%) | 0 | 0.5 | 1.5 | 5 | 10 | 15 |
FC (A) | 0.51 | 0.5 | 0.5 | 0.5 | 0.5 | 0.49 |
Sample | 0.35-C100 | 0.35-C200 | 0.35-C300 | 0.37-C100 | 0.37-C200 | 0.37-C300 |
FC (A) | 0.49 | 0.48 | 0.48 | 0.49 | 0.43 | X |
Sample | 0.37-C20 | 0.37-C40 | 0.39-C20 | 0.39-C40 | 0.41-C20 | 0.41-C40 |
FC (A) | 0.5 | 0.49 | 0.49 | 0.49 | 0.48 | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-T.; Hung, F.-Y.; Chang, K.-C. Fracture Mechanisms of Electrothermally Fatigued 631 Stainless Steel Fine Wires for Probe Spring Applications. Appl. Sci. 2025, 15, 8572. https://doi.org/10.3390/app15158572
Huang C-T, Hung F-Y, Chang K-C. Fracture Mechanisms of Electrothermally Fatigued 631 Stainless Steel Fine Wires for Probe Spring Applications. Applied Sciences. 2025; 15(15):8572. https://doi.org/10.3390/app15158572
Chicago/Turabian StyleHuang, Chien-Te, Fei-Yi Hung, and Kai-Chieh Chang. 2025. "Fracture Mechanisms of Electrothermally Fatigued 631 Stainless Steel Fine Wires for Probe Spring Applications" Applied Sciences 15, no. 15: 8572. https://doi.org/10.3390/app15158572
APA StyleHuang, C.-T., Hung, F.-Y., & Chang, K.-C. (2025). Fracture Mechanisms of Electrothermally Fatigued 631 Stainless Steel Fine Wires for Probe Spring Applications. Applied Sciences, 15(15), 8572. https://doi.org/10.3390/app15158572