Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (350)

Search Parameters:
Keywords = heat solar gain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3766 KiB  
Article
Evaluation of Energy and CO2 Reduction Through Envelope Retrofitting: A Case Study of a Public Building in South Korea Conducted Using Utility Billing Data
by Hansol Lee and Gyeong-Seok Choi
Energies 2025, 18(15), 4129; https://doi.org/10.3390/en18154129 - 4 Aug 2025
Viewed by 145
Abstract
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility [...] Read more.
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility billing data collected over one pre-retrofit year (2019) and two post-retrofit years (2023–2024). The retrofit included improvements to exterior walls, roofs, and windows, aiming to enhance thermal insulation and airtightness. The analysis revealed that monthly electricity consumption was reduced by 14.7% in 2023 and 8.0% in 2024 compared to that in the baseline year, with corresponding decreases in electricity costs and carbon dioxide emissions. Seasonal variations were evident: energy savings were significant in the winter due to reduced heating demand, while cooling energy use slightly increased in the summer, likely due to diminished solar heat gains resulting from improved insulation. By addressing both heating and cooling impacts, this study offers practical insights into the trade-offs of envelope retrofitting. The findings contribute to the body of knowledge by demonstrating the real-world performance of retrofit technologies and providing data-driven evidence that can inform policies and strategies for improving energy efficiency in public buildings. Full article
Show Figures

Figure 1

14 pages, 2058 KiB  
Article
Integration of Daylight in Building Design as a Way to Improve the Energy Efficiency of Buildings
by Adrian Trząski and Joanna Rucińska
Energies 2025, 18(15), 4113; https://doi.org/10.3390/en18154113 - 2 Aug 2025
Viewed by 248
Abstract
According to the United Nations Environment Programme reports, buildings are responsible for nearly 40% of energy-related emissions; therefore, energy-optimized building design is crucial to reduce the reliance on non-renewable energy sources as well as greenhouse gas emissions. The OECD reports indicate the use [...] Read more.
According to the United Nations Environment Programme reports, buildings are responsible for nearly 40% of energy-related emissions; therefore, energy-optimized building design is crucial to reduce the reliance on non-renewable energy sources as well as greenhouse gas emissions. The OECD reports indicate the use of Building Information Modelling (BIM) as one of the effective strategies for decarbonization of buildings, since a 3D digital representation of both physical and functional characteristics of a building can help to design a more efficient infrastructure. An efficient integration of solar energy in building design can be vital for the enhancement of energy performance in terms of heating, cooling, and lighting demand. This paper presents results of an analysis of how factors related to the use of daylight, such as automatic control of artificial lighting, external shading, or the visual absorptance of internal surfaces, influence the energy efficiency within an example room in two different climatic zones. The simulation was conducted using Design Builder software, with predefined occupancy schedules and internal heat gains, and standard EPW weather files for Warsaw and Genua climate zones. The study indicates that for the examined room, when no automatic sunshades or a lighting control system is utilized, most of the final energy demand is for cooling purposes (45–54%), followed by lighting (42–43%), with only 3–12% for heating purposes. The introduction of sunshades and/or the use of daylight allowed for a reduction of the total demand by up to half. Moreover, it was pointed out that often neglected factors, like the colour of the internal surfaces, can have a significant effect on the final energy consumption. In variants with light interior, the total energy consumption was lower by about 3–4% of the baseline demand, compared to their corresponding ones with dark surfaces. These results are consistent with previous studies on daylighting strategies and highlight the importance of considering both visual and thermal impacts when evaluating energy performance. Similarly, possible side effects of certain actions were highlighted, such as an increase in heat demand resulting from a reduced need for artificial lighting. The results of the analysis highlight the potential of a simulation-based design approach in optimizing daylight use, contributing to the broader goals of building decarbonization. Full article
Show Figures

Figure 1

34 pages, 7297 KiB  
Article
Passive Design for Residential Buildings in Arid Desert Climates: Insights from the Solar Decathlon Middle East
by Esra Trepci and Edwin Rodriguez-Ubinas
Buildings 2025, 15(15), 2731; https://doi.org/10.3390/buildings15152731 - 2 Aug 2025
Viewed by 339
Abstract
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, [...] Read more.
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, realistic conditions; prescriptive, modeled performance; and monitored performance assessments. The prescriptive assessment reviews geometry, orientation, envelope thermal properties, and shading. Most houses adopt compact forms, with envelope-to-volume and envelope-to-floor area ratios averaging 1 and 3.7, respectively, and window-to-wall ratios of approximately 17%, favoring north-facing openings to optimize daylight while reducing heat gain. Shading is strategically applied, horizontal on south façades and vertical on east and west. The thermal properties significantly exceed the local code requirements, with wall performance up to 80% better than that mandated. The modeled assessment uses Building Energy Models (BEMs) to simulate the impact of prescriptive measures on energy performance. Three variations are applied: assigning minimum local code requirements to all the houses to isolate the geometry (baseline); removing shading; and applying actual envelope properties. Geometry alone accounts for up to 60% of the variation in cooling intensity; shading reduces loads by 6.5%, and enhanced envelopes lower demand by 14%. The monitored assessment uses contest-period data. Indoor temperatures remain stable (22–25 °C) despite outdoor fluctuations. Energy use confirms that houses with good designs and airtightness have lower cooling loads. Airtightness varies widely (avg. 14.5 m3/h/m2), with some well-designed houses underperforming due to construction flaws. These findings highlight the critical role of passive design as the first layer for improving the energy performance of the built environment and advancing toward net-zero targets, specifically in arid desert climates. Full article
(This article belongs to the Special Issue Climate-Responsive Architectural and Urban Design)
Show Figures

Figure 1

17 pages, 5557 KiB  
Article
Optimal Spatial Configuration for Energy and Solar Use in Alpine-Frigid Resettlement Communities
by Bo Liu, Wei Song, Yu Liu, Chuanming Wang and Jie Song
Buildings 2025, 15(15), 2691; https://doi.org/10.3390/buildings15152691 - 30 Jul 2025
Viewed by 223
Abstract
Resettlement communities in Qinghai are located in cold, high-altitude regions with dry climates and strong solar radiation. Although not extremely cold, the moderate heating demand aligns well with high solar availability, making passive design highly effective for reducing energy use. This study investigates [...] Read more.
Resettlement communities in Qinghai are located in cold, high-altitude regions with dry climates and strong solar radiation. Although not extremely cold, the moderate heating demand aligns well with high solar availability, making passive design highly effective for reducing energy use. This study investigates solar-optimized spatial configurations that enhance passive energy performance while addressing functional settlement needs. Through parametric modeling and climate-responsive simulations, four key spatial parameters are examined: building spacing, courtyard depth, density, and volumetric ratio. The findings highlight the dominant role of front–rear spacing in solar access, with optimal values at 3–4 m for single-story and 5–10 m for two-story buildings, balancing radiation gain and land use efficiency. Courtyard depths under 2.7 m significantly limit south façade exposure due to shading from the opposite courtyard wall under low-angle winter sun. This reduction results in the south façade attaining only 55.7–79.6% of the solar radiation acquisition by an unobstructed south façade (the baseline). Meanwhile, clustered orientations reduce inter-building shading losses by 38–42% compared to dispersed layouts. A three-tiered design framework is proposed: (1) macro-scale solar orientation zoning, (2) meso-scale spacing tailored to building height, and (3) micro-scale courtyard modulation for low-angle winter radiation. Together, these strategies provide practical, scalable guidelines for energy-efficient, climate-responsive settlement design in the alpine regions of Qinghai. Full article
Show Figures

Figure 1

33 pages, 7605 KiB  
Article
Dynamic Heat Transfer Modelling and Thermal Performance Evaluation for Cadmium Telluride-Based Vacuum Photovoltaic Glazing
by Changyu Qiu, Hongxing Yang and Kaijun Dong
Buildings 2025, 15(15), 2612; https://doi.org/10.3390/buildings15152612 - 23 Jul 2025
Viewed by 272
Abstract
Building-integrated photovoltaic (BIPV) windows present a viable path towards carbon neutrality in the building sector. However, conventional BIPV windows, such as semi-transparent photovoltaic (STPV) glazings, still suffer from inadequate thermal insulation, which limits their effectiveness across different climate conditions. To address this issue, [...] Read more.
Building-integrated photovoltaic (BIPV) windows present a viable path towards carbon neutrality in the building sector. However, conventional BIPV windows, such as semi-transparent photovoltaic (STPV) glazings, still suffer from inadequate thermal insulation, which limits their effectiveness across different climate conditions. To address this issue, the cadmium telluride-based vacuum PV glazing has been developed to enhance the thermal performance of BIPV applications. To fully understand the complex thermal behaviour under real-world operational scenarios, this study introduces a one-dimensional transient heat transfer model that can efficiently capture the time-dependent thermal dynamics of this novel glazing system. Based on the numerical solutions using the explicit finite difference method (FDM), the temperature profile of the vacuum PV glazing can be obtained dynamically. Consequently, the heat gain of the semi-transparent vacuum PV glazing can be calculated under time-varying outdoor and indoor conditions. The validated heat transfer model was applied under four different scenarios, viz. summer daytime, summer nighttime, winter daytime, and winter nighttime, to provide a detailed analysis of the dynamic thermal behaviour, including the temperature variation and the energy flow. The dynamic thermal characteristics of the vacuum PV glazing calculated by the transient heat transfer model demonstrate its excellent thermal insulation and solar control capabilities. Moreover, the thermal performance of vacuum PV glazing was compared with a standard double-pane window under various weather conditions of a typical summer day and a typical winter day. The results indicate that the vacuum PV glazing can effectively minimise both heat gain and heat loss. The fluctuation of the inner surface temperature can be controlled within a limited range away from the set point of the indoor room temperature. Therefore, the vacuum PV glazing contributes to stabilising the temperature of the indoor environment despite the fluctuating solar radiation and periodic outdoor temperature. It is suggested that the vacuum PV glazing has the potential to enhance the climate adaptability of BIPV windows under different climate backgrounds. Full article
(This article belongs to the Collection Renewable Energy in Buildings)
Show Figures

Figure 1

20 pages, 2071 KiB  
Article
Thermal Performance and Energy Efficiency Evaluation of Building Envelopes Incorporating Trombe Walls, PCM, and Multi-Alveolar Structures in Tunisian Climate
by Nour Lajimi, Noureddine Boukadida, Chemseddine Maatki, Bilel Hadrich, Walid Hassen, Lioua Kolsi and Habib Ben Aissia
Buildings 2025, 15(14), 2575; https://doi.org/10.3390/buildings15142575 - 21 Jul 2025
Viewed by 281
Abstract
Solar energy is one of the most promising solutions for improving building energy efficiency. Among passive heating systems, the combination of a Trombe wall, phase change materials (PCM), and multi-alveolar structures (MAS) stands out. This configuration enhances the wall’s ability to absorb solar [...] Read more.
Solar energy is one of the most promising solutions for improving building energy efficiency. Among passive heating systems, the combination of a Trombe wall, phase change materials (PCM), and multi-alveolar structures (MAS) stands out. This configuration enhances the wall’s ability to absorb solar heat and distribute it evenly throughout the interior. This study evaluated thermal comfort by examining the effects of phase change materials and multi-alveolar structures combined with a Trombe wall on the thermal behavior of a building and improving the thermal inertia of brick walls. Numerical simulations using Visual FORTRAN were conducted to evaluate the thermal properties of different configurations under the climatic conditions recorded in Hammam Sousse, Tunisia. The results show that the integration of the Trombe wall and PCM has a significant impact on interior temperature stability, energy consumption, and overall thermal comfort. The combined effect of the MAS and PCM with the Trombe wall improved heat gain in winter and spring, reaching a low thermal damping factor of 40% in March, reducing heating power, and optimizing thermal comfort for occupants. Full article
Show Figures

Figure 1

18 pages, 5775 KiB  
Article
Precision Solar Spectrum Filtering in Aerogel Windows via Synergistic ITO-Ag Nanoparticle Doping for Hot-Climate Energy Efficiency
by Huilin Yang, Maoquan Huang, Mingyang Yang, Xuankai Zhang and Mu Du
Gels 2025, 11(7), 553; https://doi.org/10.3390/gels11070553 - 18 Jul 2025
Viewed by 209
Abstract
Windows are a major contributor to energy loss in buildings, particularly in hot climates where solar radiation heat gain significantly increases cooling demand. An ideal energy-efficient window must maintain high visible light transmittance while effectively blocking ultraviolet and near-infrared radiation, presenting a significant [...] Read more.
Windows are a major contributor to energy loss in buildings, particularly in hot climates where solar radiation heat gain significantly increases cooling demand. An ideal energy-efficient window must maintain high visible light transmittance while effectively blocking ultraviolet and near-infrared radiation, presenting a significant challenge for material design. We propose a plasma silica aerogel window utilizing the local surface plasmon resonance effect of plasmonic nanoparticles. This design incorporates indium tin oxide (ITO) nanospheres (for broad-band UV/NIR blocking) and silver (Ag) nanocylinders (targeted blocking of the 0.78–0.9 μm NIR band) co-doped into the silica aerogel. This design achieves a visible light transmittance of 0.8, a haze value below 0.12, and a photothermal ratio of 0.91. Building simulations indicate that compared to traditional glass, this window can achieve annual energy savings of 20–40% and significantly reduce the economic losses associated with traditional glass, providing a feasible solution for sustainable buildings. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

20 pages, 3464 KiB  
Article
Methodology of Determining the Intensity of Heat Exchange in a Polytunnel: A Case Study of Synergy Between the Polytunnel and a Stone Heat Accumulator
by Sławomir Kurpaska, Paweł Kiełbasa, Jarosław Knaga, Stanisław Lis and Maciej Gliniak
Energies 2025, 18(14), 3738; https://doi.org/10.3390/en18143738 - 15 Jul 2025
Viewed by 234
Abstract
This paper presents the results of laboratory tests on the intensity of mass and heat exchange in a polytunnel, with a focus on the synergy between the polytunnel and a stone accumulator. The subject of study was a standard polytunnel made of double [...] Read more.
This paper presents the results of laboratory tests on the intensity of mass and heat exchange in a polytunnel, with a focus on the synergy between the polytunnel and a stone accumulator. The subject of study was a standard polytunnel made of double polythene sheathing. In the process of selecting the appropriate working conditions for such a polytunnel, the characteristic operating parameters were modeled and verified. They were related to the process of mass and energy exchange, which takes place in regular controlled-environment agriculture (CEA). Then, experimental tests of a heat accumulator on a fixed stone bed were carried out. The experiments were carried out for various accumulator surfaces ranging from 18.7 m2 to 74.8 m2, which was measured perpendicularly to the heat medium. To standardize the results obtained, the analysis included the unit area of the accumulator and the unit time of the experiment. In this way, 835 heat and mass exchange events were analyzed, including 437 accumulator charging processes and 398 discharging processes from April to October, which is a standard period of polytunnel use in the Polish climate. During the tests, internal and external parameters of the process were recorded, such as temperature, relative humidity, solar radiation, wind speed and air flow speed in the accumulator system. Based on the parameters, a set of empirical relationships was developed using mathematical modeling. This provided the foundation for calculating heat gains as a result of its storage in a stone accumulator and its discharging process. The research results, including the developed dependencies, not only fill the scientific gap in the field of heat storage, but can also be used in engineering design of polytunnels supported by a heat storage system on a stone bed. In addition, the proposed methodology can be used in the study of other heat accumulators, not only in plant production facilities. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

16 pages, 2467 KiB  
Article
Optimal Collector Tilt Angle to Maximize Solar Fraction in Residential Heating Systems: A Numerical Study for Temperate Climates
by Krzysztof Kupiec and Barbara Król
Sustainability 2025, 17(14), 6385; https://doi.org/10.3390/su17146385 - 11 Jul 2025
Viewed by 337
Abstract
The performance of solar thermal systems for space heating and domestic hot water (DHW) production depends on the tilt angle of solar collectors, which governs the amount and seasonal distribution of captured solar radiation. This study evaluates the impact of fixed collector tilt [...] Read more.
The performance of solar thermal systems for space heating and domestic hot water (DHW) production depends on the tilt angle of solar collectors, which governs the amount and seasonal distribution of captured solar radiation. This study evaluates the impact of fixed collector tilt angles on the annual solar fraction (SF) of a solar heating system designed for a typical single-family house located in Kraków, Poland (50° N latitude). A numerical model based on the f-Chart method was employed to simulate system performance under varying collector areas, storage tank volumes, heat exchanger characteristics, and DHW proportions. The analysis revealed that although total annual irradiation decreases with increasing tilt angle, the SF reaches a maximum at a tilt angle of approximately 60°, which is about 10° higher than the local geographic latitude. This configuration offers a favorable balance between winter energy gain and summer overheating mitigation. The results align with empirical recommendations in the literature and offer practical guidance for optimizing fixed-tilt solar heating systems in temperate climates. Full article
Show Figures

Figure 1

20 pages, 2551 KiB  
Article
Theoretical Study on Impact of Solar Radiation Heat Gain on Thermal Comfort and Energy Efficiency in Glass Curtain Wall Buildings Based on PMV Index
by Haoyu Chen, Jinzhe Nie, Yuzhe Liu and Yuelin Li
Buildings 2025, 15(13), 2228; https://doi.org/10.3390/buildings15132228 - 25 Jun 2025
Viewed by 573
Abstract
With rapid global urbanization, glass curtain wall buildings have been widely adopted due to aesthetics and natural lighting. However, during summer time, intense solar radiation leads to significant indoor heat gain, which adversely affect thermal comfort and energy efficiency. The conventional air conditioning [...] Read more.
With rapid global urbanization, glass curtain wall buildings have been widely adopted due to aesthetics and natural lighting. However, during summer time, intense solar radiation leads to significant indoor heat gain, which adversely affect thermal comfort and energy efficiency. The conventional air conditioning systems are typically equipped with a cooling capacity sufficient to maintain an indoor air temperature at the design values specified in the Design standard for energy efficiency of public buildings, which fails to account for the effects of radiation temperature, potentially resulting in reduced thermal comfort and energy inefficiency. By integrating the Thermal Comfort Tool to calculate the PMV index, this study evaluates the affection of solar heat gain on indoor occupants’ thermal comfort and proposes an optimized air temperature control strategy to realize thermal comfort. Based on the dynamic air temperature strategy, an energy consumption model is developed to evaluate the affection of solar radiation on energy consumption for glass curtain wall buildings based on the PMV index. The synergistic effects of shading measures are then evaluated. This study conducts simulation analysis using an office building with a glass curtain wall located in Beijing as a case study. When accounting for radiant heat gain, a significant portion of the time (53.89%) fall outside the thermal comfort range, even when the air conditioning is set to the designated temperature. To maintain thermal comfort, the air conditioning temperature must be lowered by 1.4–3.5 °C, resulting in a 28.08% increase in energy consumption. To address this issue, this study finds that installing interior shading can reduce radiant heat gain. Under the same thermal comfort conditions, the required air temperature reduction is only 0.8–2.1 °C, leading to a 24.26% reduction in energy consumption compared to the case without interior shading. Full article
Show Figures

Figure 1

23 pages, 7624 KiB  
Article
Development of a Solar-Tracking Movable Louver with a PV Module for Building Energy Reduction
by Sowon Han, Janghoo Seo and Heangwoo Lee
Buildings 2025, 15(12), 2100; https://doi.org/10.3390/buildings15122100 - 17 Jun 2025
Viewed by 412
Abstract
In response to rising energy consumption in buildings, this study proposes a solar-tracking movable louver integrated with a photovoltaic (PV) module and evaluates its performance to verify its energy-saving potential. First, the louver system can be configured as either vertical or horizontal by [...] Read more.
In response to rising energy consumption in buildings, this study proposes a solar-tracking movable louver integrated with a photovoltaic (PV) module and evaluates its performance to verify its energy-saving potential. First, the louver system can be configured as either vertical or horizontal by modularizing and rotating its slats. A solar-tracking mechanism for single-axis louver control was also developed and proven effective. Second, for optimal energy-saving performance, the louver operation must respond to external environmental conditions. Its control should account for PV power generation and building energy demands for heating, cooling, and lighting to maintain comfortable indoor and outdoor environments. Third, the proposed louver system achieved a building energy reduction of 4.7–8.8% compared to conventional fixed technologies. However, in winter, the louver may obstruct solar gains, potentially diminishing its effectiveness in reducing energy consumption. While this study demonstrates the potential of the proposed louver technology for energy efficiency, it is limited by the scope of environmental and operational conditions considered in the performance evaluation. Further studies under diverse climatic scenarios are necessary to substantiate its broader applicability. Full article
(This article belongs to the Special Issue Energy Efficiency and Carbon Neutrality in Buildings)
Show Figures

Figure 1

28 pages, 5769 KiB  
Article
Assessment and Enhancement of Indoor Environmental Quality in a School Building
by Ronan Proot-Lafontaine, Abdelatif Merabtine, Geoffrey Henriot and Wahid Maref
Sustainability 2025, 17(12), 5576; https://doi.org/10.3390/su17125576 - 17 Jun 2025
Viewed by 469
Abstract
Achieving both indoor environmental quality (IEQ) and energy efficiency in school buildings remains a challenge, particularly in older structures where renovation strategies often lack site-specific validation. This study evaluates the impact of energy retrofits on a 1970s primary school in France by integrating [...] Read more.
Achieving both indoor environmental quality (IEQ) and energy efficiency in school buildings remains a challenge, particularly in older structures where renovation strategies often lack site-specific validation. This study evaluates the impact of energy retrofits on a 1970s primary school in France by integrating in situ measurements with a validated numerical model for forecasting energy demand and IEQ. Temperature, humidity, and CO2 levels were recorded before and after renovations, which included insulation upgrades and an air handling unit replacement. Results indicate significant improvements in winter thermal comfort (PPD < 20%) with a reduced heating water temperature (65 °C to 55 °C) and stable indoor air quality (CO2 < 800 ppm), without the need for window ventilation. Night-flushing ventilation proved effective in mitigating overheating by shifting peak temperatures outside school hours, contributing to enhanced thermal regulation. Long-term energy consumption analysis (2019–2022) revealed substantial reductions in gas and electricity use, 15% and 29% of energy saving for electricity and gas, supporting the effectiveness of the applied renovation strategies. However, summer overheating (up to 30 °C) persisted, particularly in south-facing upper floors with extensive glazing, underscoring the need for additional optimization in solar gain management and heating control. By providing empirical validation of renovation outcomes, this study bridges the gap between theoretical predictions and real-world effectiveness, offering a data-driven framework for enhancing IEQ and energy performance in aging school infrastructure. Full article
(This article belongs to the Special Issue New Insights into Indoor Air Quality in Sustainable Buildings)
Show Figures

Figure 1

32 pages, 4015 KiB  
Article
Performance Enhancement of Photovoltaic Panels Using Natural Porous Media for Thermal Cooling Management
by Ismail Masalha, Omar Badran and Ali Alahmer
Sustainability 2025, 17(12), 5468; https://doi.org/10.3390/su17125468 - 13 Jun 2025
Viewed by 466
Abstract
This study investigates the potential of low-cost, naturally available porous materials (PoMs), gravel, marble, flint, and sandstone, as thermal management for photovoltaic (PV) panels. Experiments were conducted in a controlled environment at a solar energy laboratory, where variables such as solar irradiance, ambient [...] Read more.
This study investigates the potential of low-cost, naturally available porous materials (PoMs), gravel, marble, flint, and sandstone, as thermal management for photovoltaic (PV) panels. Experiments were conducted in a controlled environment at a solar energy laboratory, where variables such as solar irradiance, ambient temperature, air velocity, and water flow were carefully regulated. A solar simulator delivering a constant irradiance of 1250 W/m2 was used to replicate solar conditions throughout each 3 h trial. The test setup involved polycrystalline PV panels (30 W rated) fitted with cooling channels filled with PoMs of varying porosities (0.35–0.48), evaluated across water flow rates ranging from 1 to 4 L/min. Experimental results showed that PoM cooling significantly outperformed both water-only and passive cooling. Among all the materials tested, sandstone with a porosity of 0.35 and a flow rate of 2.0 L/min demonstrated the highest cooling performance, reducing the panel surface temperature by 58.08% (from 87.7 °C to 36.77 °C), enhancing electrical efficiency by 57.87% (from 4.13% to 6.52%), and increasing power output by 57.81% (from 12.42 W to 19.6 W) compared to the uncooled panel. The enhanced heat transfer (HT) was attributed to improved conductive and convective interactions facilitated by lower porosity and optimal fluid velocity. Furthermore, the cooling system improved I–V characteristics by stabilizing short-circuit current and enhancing open-circuit voltage. Comparative analysis revealed material-dependent efficacy—sandstone > flint > marble > gravel—attributed to thermal conductivity gradients (sandstone: 5 W/m·K vs. gravel: 1.19 W/m·K). The configuration with 0.35 porosity and a 2.0 L/min flow rate proved to be the most effective, offering an optimal balance between thermal performance and resource usage, with an 8–10% efficiency gain over standard water cooling. This study highlights 2.0 L/min as the ideal flow rate, as higher rates lead to increased water usage without significant cooling improvements. Additionally, lower porosity (0.35) enhances convective heat transfer, contributing to improved thermal performance while maintaining energy efficiency. Full article
Show Figures

Figure 1

16 pages, 1449 KiB  
Article
Techno-Economic Analysis of an Air–Water Heat Pump Assisted by a Photovoltaic System for Rural Medical Centers: An Ecuadorian Case Study
by Daniel Icaza, Paul Arévalo and Francisco Jurado
Appl. Sci. 2025, 15(12), 6462; https://doi.org/10.3390/app15126462 - 8 Jun 2025
Viewed by 705
Abstract
Air–water heat pumps are gaining interest in modern architectures, and they are a suitable option as a replacement for fossil fuel-based heating systems. These systems consume less electricity by combining solar panels, a heat pump, thermal storage, and a smart control system. This [...] Read more.
Air–water heat pumps are gaining interest in modern architectures, and they are a suitable option as a replacement for fossil fuel-based heating systems. These systems consume less electricity by combining solar panels, a heat pump, thermal storage, and a smart control system. This study was applied to a completely ecological rural health sub-center built on the basis of recycled bottles, and that, for its regular operation, requires an energy system according to the needs of the patients in the rural community. Detailed analyses were performed for heating and hot water preparation in two scenarios with different conditions (standard and fully integrated). From a technical perspective, different strategies were analyzed to ensure its functionality. If the photovoltaic system is sized to achieve advanced control, the system can even operate autonomously. However, due to the need to guarantee the energy efficiency of the center, the analyses were performed with a grid connection, and it was determined that the photovoltaic system guarantees at least two-thirds of the energy required for its autonomous operation. The results show that the system can operate normally thanks to the optimal size of the photovoltaic system, which positively influences the rural population in the case under analysis. Full article
Show Figures

Figure 1

17 pages, 1310 KiB  
Article
Influence of Building Envelope Modeling Parameters on Energy Simulation Results
by Simon Muhič, Dimitrije Manić, Ante Čikić and Mirko Komatina
Sustainability 2025, 17(12), 5276; https://doi.org/10.3390/su17125276 - 7 Jun 2025
Viewed by 480
Abstract
This study investigates the influence of input values for building energy model parameters on simulation results, with the aim of improving the reliability and sustainability of energy performance assessments. Dynamic simulations were conducted in TRNSYS for three theoretical multi-residential buildings, varying parameters such [...] Read more.
This study investigates the influence of input values for building energy model parameters on simulation results, with the aim of improving the reliability and sustainability of energy performance assessments. Dynamic simulations were conducted in TRNSYS for three theoretical multi-residential buildings, varying parameters such as referent model dimensions, infiltration rates, envelope thermophysical properties, and interior thermal capacitance. The case study, based in Slovenia, demonstrates that glazing-related parameters, particularly the solar heat gain coefficient (g-value), exert the most significant influence—reducing the g-value from 0.62 to 0.22 decreased simulated heating (qH,nd) and cooling (qC,nd) demands by 25% and 95%, respectively. In contrast, referent dimensions for modeled floor area proved least influential. For Building III (BSF = 0.36), dimensional variations altered results by less than ±1%, whereas, for Building I (BSF = 0.62), variations reached up to ±20%. In general, lower shape factors yield more robust energy models that are less sensitive to input deviations. These findings are critical for promoting resource-efficient simulation practices and ensuring that energy modeling contributes effectively to sustainable building design. Understanding which inputs warrant detailed attention supports more targeted and meaningful simulation workflows, enabling more accurate and impactful strategies for building energy efficiency and long-term environmental performance. Full article
Show Figures

Figure 1

Back to TopTop