Influence of Building Envelope Modeling Parameters on Energy Simulation Results
Abstract
1. Introduction
2. Materials and Methods
- Geometric reference for floor area modeling (internal, middle, or external wall surface);
- Infiltration modeled using either air changes per hour (ACH) or fixed airflow rate (m3/h);
- Window parameters: frame U-value, frame factor (FF), glazing U-value, and solar heat gain coefficient (g-value);
- Wall U-values and thermal bridge linear transmittance (ψ-values);
- Thermal mass of interior space, with added wood furniture occupying 1% and 2% of internal volume.
2.1. Baseline Building Description
2.2. Variation of Referent Dimensions for Modeled Floor Area
2.3. Variations of Building Envelope Modeling Parameters
2.4. Variation of Thermal Bridging
2.5. Variation of Interior Space Thermophysical Properties
3. Results and Discussion
3.1. Simulation Results for Variation of Referent Dimensions
3.2. Simulation Results for Variations of Windows Parameters
3.3. Simulation Results for Variations in External Wall Parameters
3.4. Simulation Results for Variation of Internal Volume Thermal Capacitance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACH | Number of air changes per hour |
BSF | Building shape factor |
FF | Frame factor |
g | Total solar energy transmittance of the transparent part of the element |
Isol | Annual solar irradiance, per unit area of collecting area of surface (W·m−2) |
U | Thermal transmittance (W·m−2K−1) |
qH,nd | Annual energy need for heating per unit floor area of conditioned space (kWh·m−2) |
qC,nd | Annual energy need for cooling per unit floor area of conditioned space (kWh·m−2) |
Convection heat flux from the inside surface to the air | |
Convection heat flux to the outside surface from the boundary/ambient | |
Net radiative heat transfer with all other surfaces within the zone | |
Net radiative heat transfer with all surfaces in view of the outside surface | |
Conduction heat flux from the wall at the inside surface | |
Into the wall at the outside surface | |
Ss,i | Radiation heat flux absorbed at the inside surface (solar gains and radiative gains) |
Ss,o | Radiation heat flux absorbed at the outside surface (solar gains) |
References
- Eurostat. Energy Statistics—Final Energy Consumption in the Residential Sector. Available online: https://ec.europa.eu/eurostat (accessed on 15 May 2025).
- European Environment Agency (EEA). Final Energy Consumption by Sector and Fuel Type. Available online: https://www.eea.europa.eu (accessed on 15 May 2025).
- Li, Y.; O’Neill, Z.; Zhang, L.; Chen, J.; Im, P.; DeGraw, J. Grey-box modeling and application for building energy simulations—A critical review. Renew. Sustain. Energy Rev. 2021, 146, 111174. [Google Scholar] [CrossRef]
- Crawley, D.B.; Hand, J.W.; Kummert, M.; Griffith, B.T. Contrasting the capabilities of building energy performance simulation programs. Build. Environ. 2008, 43, 661–673. [Google Scholar] [CrossRef]
- Ferrero, A.; Lenta, E.; Monetti, V.; Fabrizio, E.; Filippi, M.; To, G. How to apply building energy performance simulation at the various design stages: A recipes approach. In Proceedings of the 14th IBPSA Conference, Hyderabad, India, 7–9 December 2015; pp. 2286–2293. [Google Scholar]
- Pacheco, R.; Ordóñez, J.; Martínez, G. Energy efficient design of buildings: A review. Renew. Sustain. Energy Rev. 2012, 16, 3559–3573. [Google Scholar] [CrossRef]
- Zakula, T.; Bagaric, M.; Ferdelji, N.; Milovanovic, B.; Mudrinic, S.; Ritosa, K. Comparison of dynamic simulations and the ISO 52016 standard for the assessment of building energy performance. Appl. Energy 2019, 254, 113553. [Google Scholar] [CrossRef]
- De Wilde, P. The gap between predicted and measured energy performance of buildings: A framework for investigation. Autom. Constr. 2014, 41, 40–49. [Google Scholar] [CrossRef]
- Menezes, A.C.; Cripps, A.; Bouchlaghem, D.; Buswell, R. Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap. Appl. Energy 2012, 97, 355–364. [Google Scholar] [CrossRef]
- De Wit, S.; Augenbroe, G. Analysis of uncertainty in building design evaluations and its implications. Energy Build. 2002, 34, 951–958. [Google Scholar] [CrossRef]
- Rugani, R.; Picco, M.; Salvadori, G.; Fantozzi, F.; Marengo, M. A numerical analysis of occupancy profile databases impact on dynamic energy simulation of buildings. Energy Build. 2024, 310, 114114. [Google Scholar] [CrossRef]
- Oldewurtel, F.; Sturzenegger, D.; Morari, M. Importance of occupancy information for building climate control. Appl. Energy 2013, 101, 521–532. [Google Scholar] [CrossRef]
- Viganò, G.S.M.; Rugani, R.; Marengo, M.; Picco, M. Assessing the impact of climate change on building energy performance: A future-oriented analysis on the UK. Architecture 2024, 4, 1201–1224. [Google Scholar] [CrossRef]
- Saltelli, A.; Chan, K.; Scott, E.M. Sensitivity Analysis: Gauging the Worth of Scientific Models; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Capozzoli, A.; Mechri, H.E.; Corrado, V. Impacts of Architectural Design Choices on Building Energy Performance—Applications of Uncertainty and Sensitivity Techniques. In Proceedings of the 11th International IBPSA Conference, Glasgow, UK, 27–30 July 2009. [Google Scholar]
- Hensen, J.L.M.; Lamberts, R. Building Performance Simulation for Design and Operation, 2nd ed.; Routledge: London, UK, 2019. [Google Scholar]
- Wang, S.; Yan, C.; Xiao, F. Quantitative energy performance assessment methods for existing buildings. Energy Build. 2012, 55, 873–888. [Google Scholar] [CrossRef]
- Dermentzis, G.; Ochs, F.; Gustafsson, M.; Calabrese, T.; Siegele, D.; Feist, W.; Dipasquale, C.; Fedrizzi, R.; Bales, C. A comprehensive evaluation of a monthly-based energy auditing tool through dynamic simulations, and monitoring in a renovation case study. Energy Build. 2019, 183, 713–726. [Google Scholar] [CrossRef]
- Nageler, P.; Schweiger, G.; Pichler, M.; Brandl, D.; Mach, T.; Heimrath, R.; Schranzhofer, H.; Hochenauer, C. Validation of dynamic building energy simulation tools based on a real test-box with thermally activated building systems (TABS). Energy Build. 2018, 168, 42–55. [Google Scholar] [CrossRef]
- Mangi, M.; Ochs, F.; de Vries, S.; Maccarini, A.; Sigg, F. Detailed cross comparison of building energy simulation tools results using a reference office building as a case study. Energy Build. 2021, 250, 111260. [Google Scholar] [CrossRef]
- Calleja Rodríguez, G.; Carrillo Andrés, A.; Domínguez Muñoz, F.; Cejudo López, J.M.; Zhang, Y. Uncertainties and sensitivity analysis in building energy simulation using macroparameters. Energy Build. 2013, 67, 79–87. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.V.; Leahy, M. A review of computer tools for analysing the integration of renewable energy into various energy systems. Appl. Energy 2010, 87, 1059–1082. [Google Scholar] [CrossRef]
- Gelesz, A.; Catto Lucchino, E.; Goia, F.; Serra, V.; Reith, A. Characteristics that matter in a climate façade: A sensitivity analysis with building energy simulation tools. Energy Build. 2020, 229, 110467. [Google Scholar] [CrossRef]
- Mazzeo, D.; Matera, N.; Cornaro, C.; Oliveti, G.; Romagnoni, P.; De Santoli, L. EnergyPlus, IDA ICE and TRNSYS predictive simulation accuracy for building thermal behaviour evaluation by using an experimental campaign in solar test boxes with and without a PCM module. Energy Build. 2020, 212, 109812. [Google Scholar] [CrossRef]
- Klein, S.A.; Beckman, W.A.; Mitchell, J.W.; Duffie, J.A.; Duffie, N.A.; Freeman, T.L.; Mitchell, J.C.; Braun, J.E.; Evans, B.L.; Kummer, J.P.; et al. TRNSYS 18: A Transient System Simulation Program; University of Wisconsin: Madison, WI, USA, 2017. [Google Scholar]
- Republic of Slovenia, Ministry of the Environment and Spatial Planning. Pures 2010: Rules on Efficient Use of Energy in Buildings; Off. Gaz. Repub. Slov. No. 52/2010, 30 June 2010; Republic of Slovenia, Ministry of the Environment and Spatial Planning: Ljubljana, Slovenia, 2010; pp. 8315–8354.
- ISO 7730; Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. International Organization for Standardization: Geneva, Switzerland, 2005.
- Šijanec Zavrl, M.; Zbašnik-Senegačnik, M.; Kristl, Ž. Building Typologies and Energy Renovation Scenarios in Slovenia. Energy Policy 2020, 140, 111424. [Google Scholar] [CrossRef]
- Dolinar, M.; Vidrih, B.; Zavrl, M. Assessment of the energy performance of the existing residential building stock in Slovenia. Energy Build. 2017, 152, 163–175. [Google Scholar] [CrossRef]
- Canadian Commission on Building and Fire Codes; National Research Council of Canada. National Energy Code of Canada for Buildings 2017; National Research Council of Canada: Ottawa, ON, Canada, 2017.
- Scott West, P.E.; Ndiaye, D. Energy simulation aided design for buildings. ASHRAE J. 2019, 61, 20–26. [Google Scholar]
- Ge, H.; Baba, F. Dynamic effect of thermal bridges on the energy performance of a low-rise residential building. Energy Build. 2015, 105, 106–118. [Google Scholar] [CrossRef]
- Al-Sanea, S.A.; Zedan, M.F. Effect of thermal bridges on transmission loads and thermal resistance of building walls under dynamic conditions. Appl. Energy 2012, 98, 584–593. [Google Scholar] [CrossRef]
- Johra, H.; Heiselberg, P. Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: A review. Renew. Sustain. Energy Rev. 2017, 69, 19–32. [Google Scholar] [CrossRef]
- Zhang, Y.; Omer, S.; Hu, R. Impact of window size modification on energy consumption in UK residential buildings: A feasibility and simulation study. Sustainability 2025, 17, 3258. [Google Scholar] [CrossRef]
Label | Footprint | Height | BSF |
---|---|---|---|
Building I | 10 m × 10 m | 9 m (three stories) | 0.62 |
Building II | 20 m × 20 m | 9 m (three stories) | 0.42 |
Building III | 30 m × 30 m | 9 m (three stories) | 0.36 |
Thickness (m) | Density (kg/m3) | Conductivity (W/mK) | Specific Heat (kJ/kgK) | |
---|---|---|---|---|
Mortar1900 | 0.020 | 1900 | 3.564 | 1.05 |
Hollow Brick | 0.290 | 1400 | 2.196 | 0.92 |
Mineral Wool | 0.200 | 140 | 0.144 | 1.03 |
Mortar_ext | 0.005 | 1550 | 2.520 | 1.05 |
Mortar Silikat | 0.005 | 1550 | 2.520 | 1.05 |
Thickness (m) | Density (kg/m3) | Conductivity (W/mK) | Specific Heat (kJ/kgK) | |
---|---|---|---|---|
Parquet | 0.020 | 700 | 0.756 | 1.67 |
Concrete2200 | 0.060 | 2200 | 5.436 | 0.96 |
XPS | 0.100 | 35 | 0.137 | 1.50 |
Hydro insulation | 0.010 | 1100 | 0.684 | 1.46 |
Thickness (m) | Density (kg/m3) | Conductivity (W/mK) | Specific Heat (kJ/kgK) | |
---|---|---|---|---|
Mortar1900 | 0.020 | 1900 | 3.564 | 1.05 |
Concrete2400 | 0.120 | 2200 | 5.436 | 0.96 |
Concrete2200 | 0.050 | 2200 | 7.344 | 0.96 |
Hydro insulation | 0.010 | 1100 | 0.684 | 1.46 |
XPS | 0.220 | 35 | 0.137 | 1.50 |
Gravel | 0.080 | 1700 | 2.916 | 0.84 |
Modeled Dimensions | MFA [m2] | Internal Volume [m3] | ACH | Volume Flow m3/h | Simulation ID | |
---|---|---|---|---|---|---|
Building I | Internal | 300.00 | 900.00 | 0.50 | 450 | 1.1 (baseline) |
Middle | 332.01 | 996.03 | 0.50 | 498 | 1.2 | |
0.45 | 450 | 1.3 | ||||
External | 365.65 | 1096.93 | 0.50 | 548 | 1.4 | |
0.41 | 450 | 1.5 | ||||
Building II | Internal | 1200 | 3600 | 0.50 | 1800 | 2.1 (baseline) |
Middle | 1263 | 3790 | 0.50 | 1895 | 2.2 | |
0.47 | 1800 | 2.3 | ||||
External | 1328 | 3984 | 0.50 | 1992 | 2.4 | |
0.45 | 1800 | 2.5 | ||||
Building III | Internal | 2700 | 8100 | 0.50 | 4050 | 3.1 (baseline) |
Middle | 2794 | 8383 | 0.50 | 4192 | 3.2 | |
0.48 | 4050 | 3.3 | ||||
External | 2890 | 8671 | 0.50 | 4336 | 3.4 | |
0.47 | 4050 | 3.5 |
Building I | Building II | Building III | ||
---|---|---|---|---|
Envelope Parameter | Value | Simulation ID | Simulation ID | Simulation ID |
Window to floor ratio | 20% | 1.1 (baseline) | 2.1 (baseline) | 3.1 (baseline) |
25% | 1.6 | 2.6 | 3.6 | |
30% | 1.7 | 2.7 | 3.7 | |
Windows frame U-value | 1.5 W/m2K | 1.1 (baseline) | 2.1 (baseline) | 3.1 (baseline) |
1.2 W/m2K | 1.8 | 2.8 | 3.8 | |
0.9 W/m2K | 1.9 | 2.9 | 3.9 | |
Window frame factor | 30% | 1.1 | 2.1 | 3.1 |
25% | 1.10 | 2.10 | 3.10 | |
20% | 1.11 | 2.11 | 3.11 | |
Glazing U-value (g = 0.62) | 1.10 W/m2K | 1.1 (baseline) | 2.1 (baseline) | 3.1 (baseline) |
0.88 W/m2K | 1.12 | 2.12 | 3.12 | |
0.62 W/m2K | 1.13 | 2.13 | 3.13 | |
Glazing g-value (U = 1.1 W/m2K) | 0.62 | 1.1 (baseline) | 2.1 (baseline) | 3.1 (baseline) |
0.42 | 1.14 | 2.14 | 3.14 | |
0.22 | 1.15 | 2.15 | 3.15 | |
External wall U-value | 0.176 W/m2K | 1.1 (baseline) | 2.1 (baseline) | 3.1 (baseline) |
0.140 W/m2K | 1.16 | 2.16 | 3.16 | |
0.315 W/m2K | 1.17 | 2.17 | 3.17 |
Building I | Building II | Building III | ||
---|---|---|---|---|
Envelope Parameter | Value | Simulation ID | Simulation ID | Simulation ID |
ψ | 0 W/mK | 1.1 (baseline) | 2.1 (baseline) | 3.1 (baseline) |
0.05 W/mK | 1.18 | 2.18 | 3.18 | |
0.10 W/mK | 1.19 | 2.19 | 3.19 |
Building I | Building II | Building III | ||
---|---|---|---|---|
Parameter | Value | Simulation ID | Simulation ID | Simulation ID |
Thermal capacitance | air | 1.1 (baseline) | 2.1 (baseline) | 3.1 (baseline) |
1% wood | 1.20 | 2.20 | 3.20 | |
2% wood | 1.21 | 2.21 | 3.21 |
Building I (10 × 10) | |||||
---|---|---|---|---|---|
Simulation ID | Description | qH,nd [kWh/m2] | Δ qH,nd | qC,nd [kWh/m2] | Δ qC,nd |
1.1 | internal; 0.5 ACH (450 m3/h) | 52.49 | Baseline | 6.48 | Baseline |
1.2 | middle; 0.5 ACH (498 m3/h) | 57.51 | 9.57% | 5.84 | −9.92% |
1.3 | external; 0.5 ACH (548 m3/h) | 62.78 | 19.61% | 5.23 | −19.28% |
1.4 | middle; 450 m3/h | 53.60 | 2.13% | 6.31 | −2.70% |
1.5 | external; 450 m3/h | 54.75 | 4.31% | 6.14 | −5.37% |
Building II (20 × 20) | |||||
---|---|---|---|---|---|
Simulation ID | Description | qH,nd [kWh/m2] | Δ qH,nd | qC,nd [kWh/m2] | Δ qC,nd |
2.1 | internal; 0.5 ACH (1800 m3/h) | 45.51 | Baseline | 7.47 | Baseline |
2.2 | middle; 0.5 ACH (1895 m3/h) | 47.76 | 4.96% | 7.12 | −4.67% |
2.3 | external; 0.5 ACH (1992 m3/h) | 50.08 | 10.05% | 6.78 | −9.18% |
2.4 | middle; 1800 m3/h | 45.86 | 0.77% | 7.40 | −0.91% |
2.5 | external; 1800 m3/h | 46.21 | 1.56% | 7.33 | −1.81% |
Building III (30 × 30) | |||||
---|---|---|---|---|---|
Simulation ID | Description | qH,nd [kWh/m2] | Δ qH,nd | qC,nd [kWh/m2] | Δ qC,nd |
3.1 | internal; 0.5 ACH (4050 m3/h) | 43.28 | Baseline | 7.80 | Baseline |
3.2 | middle; 0.5 ACH (4192 m3/h) | 44.72 | 3.34% | 7.57 | −3.01% |
3.3 | external; 0.5 ACH (4336 m3/h) | 46.19 | 6.74% | 7.33 | −5.98% |
3.4 | middle; 4050 m3/h | 43.46 | 0.43% | 7.77 | −0.46% |
3.5 | external; 4050 m3/h | 43.65 | 0.87% | 7.73 | −0.92% |
Building I (10 × 10) | |||||
---|---|---|---|---|---|
Simulation ID | Description | qH,nd [kWh/m2] | Δ qH,nd | qC,nd [kWh/m2] | Δ qC,nd |
1.6 | Window to floor 25% | 52.20 | −0.54% | 10.19 | 57.20% |
1.7 | Window to floor 30% | 52.18 | −0.57% | 14.30 | 120.51% |
1.8 | Frame U-value 1.2 W/m2K | 51.60 | −1.69% | 6.63 | 2.22% |
1.9 | Frame U-value 0.9 W/m2K | 50.69 | −3.43% | 6.78 | 4.55% |
1.10 | FF = 0.25 | 51.33 | −2.20% | 7.60 | 17.22% |
1.11 | FF = 0.2 | 50.21 | −4.33% | 8.79 | 35.57% |
1.12 | Glazing U-value 0.88 W/m2K | 47.91 | −8.72% | 6.90 | 6.44% |
1.13 | Glazing U-value 0.62 W/m2K | 45.86 | −12.63% | 7.22 | 11.30% |
1.14 | Glazing g-value 0.42 | 57.74 | 10.00% | 2.04 | −68.49% |
1.15 | Glazing g-value 0.22 | 64.51 | 22.91% | 0.04 | −99.37% |
Building II (20 × 20) | |||||
---|---|---|---|---|---|
Simulation ID | Description | qH,nd [kWh/m2] | Δ qH,nd | qC,nd [kWh/m2] | Δ qC,nd |
2.6 | Window to floor 25% | 45.49 | −0.04% | 11.37 | 52.19% |
2.7 | Window to floor 30% | 45.74 | 0.51% | 15.53 | 107.96% |
2.8 | Frame U-value 1.2 W/m2K | 44.62 | −1.94% | 7.64 | 2.34% |
2.9 | Frame U-value 0.9 W/m2K | 43.72 | −3.93% | 7.83 | 4.80% |
2.10 | Frame ratio 25% | 44.43 | −2.37% | 8.68 | 16.29% |
2.11 | Frame ratio 20% | 43.39 | −4.65% | 9.96 | 33.42% |
2.12 | Glazing U-value 0.88 W/m2K | 40.93 | −10.05% | 7.98 | 6.81% |
2.13 | Glazing U-value 0.62 W/m2K | 38.89 | −14.53% | 8.38 | 12.17% |
2.14 | Glazing g-value 0.42 | 50.47 | 10.91% | 2.64 | −64.64% |
2.15 | Glazing g-value 0.22 | 56.94 | 25.13% | 0.16 | −97.84% |
Building III (30 × 30) | |||||
---|---|---|---|---|---|
Simulation ID | Description | qH,nd [kWh/m2] | Δ qH,nd | qC,nd [kWh/m2] | Δ qC,nd |
3.6 | Window to floor 25% | 43.37 | 0.23% | 13.71 | 50.16% |
3.7 | Window to floor 30% | 43.75 | 3.09% | 15.85 | 103.18% |
3.8 | Frame U-value 1.2 W/m2K | 42.39 | −2.05% | 7.99 | 2.38% |
3.9 | Frame U-value 0.9 W/m2K | 43.48 | −4.14% | 8.18 | 4.88% |
3.10 | Frame ratio 25% | 42.23 | −2.42% | 9.04 | 15.86% |
3.11 | Frame ratio 20% | 43.22 | −4.75% | 10.34 | 32.50% |
3.12 | Glazing U-value 0.88 W/m2K | 38.69 | −10.60% | 8.34 | 6.92% |
3.13 | Glazing U-value 0.62 W/m2K | 36.64 | −15.32% | 8.78 | 12.50% |
3.14 | Glazing g-value 0.42 | 48.13 | 13.22% | 2.83 | −63.72% |
3.15 | Glazing g-value 0.22 | 54.47 | 25.88% | 0.24 | −96.98% |
Building I (10 × 10) | |||||
---|---|---|---|---|---|
Simulation ID | Description | qH,nd [kWh/m2] | Δ qH,nd | qC,nd [kWh/m2] | Δ qC,nd |
1.16 | Ext. wall U-value 0.140 W/m2K | 49.99 | −4.75% | 6.81 | 5.04% |
1.17 | Ext. wall U-value 0.315 W/m2K | 62.27 | 18.64% | 5.40 | −16.72% |
1.18 | Thermal brid. ψ = 0.05 W/mK | 55.79 | 6.31% | 6.08 | −6.25% |
1.19 | Thermal brid. ψ = 0.10 W/mK | 59.11 | 12.63% | 5.70 | −12.03% |
Building II (20 × 20) | |||||
---|---|---|---|---|---|
Simulation ID | Description | qH,nd [kWh/m2] | Δ qH,nd | qC,nd [kWh/m2] | Δ qC,nd |
2.16 | Ext. wall U-value 0.140 W/m2K | 44.52 | −2.17% | 7.63 | 2.16% |
2.17 | Ext. wall U-value 0.315 W/m2K | 49.38 | 8.52% | 6.90 | −7.65% |
2.18 | Thermal brid. ψ = 0.05 W/mK | 47.04 | 3.36% | 7.24 | −3.06% |
2.19 | Thermal brid. ψ = 0.10 W/mK | 48.57 | 6.73% | 7.02 | −5.98% |
Building III (30 × 30) | |||||
---|---|---|---|---|---|
Simulation ID | Description | qH,nd [kWh/m2] | Δ qH,nd | qC,nd [kWh/m2] | Δ qC,nd |
3.16 | Ext. wall U-value 0.140 W/m2K | 42.78 | −3.14% | 7.89 | 3.10% |
3.17 | Ext. wall U-value 0.315 W/m2K | 45.21 | 4.46% | 7.48 | −4.05% |
3.18 | Thermal brid. ψ = 0.05 W/mK | 44.27 | 2.29% | 7.64 | −2.02% |
3.19 | Thermal brid. ψ = 0.10 W/mK | 45.26 | 4.59% | 7.49 | −3.98% |
Building I (10 × 10) | |||||
---|---|---|---|---|---|
Simulation ID | Description | qH,nd [kWh/m2] | Δ qH,nd | qC,nd [kWh/m2] | Δ qC,nd |
1.20 | Heat capacity, 1% vol. furniture | 52.44 | −0.09% | 6.41 | −1.11% |
1.21 | Heat capacity, 2% vol. furniture | 52.39 | −0.17% | 6.34 | −2.24% |
Building II (20 × 20) | |||||
---|---|---|---|---|---|
Simulation ID | Description | qH,nd [kWh/m2] | Δ qH,nd | qC,nd [kWh/m2] | Δ qC,nd |
3.16 | Heat capacity, 1% vol. furniture | 45.45 | −0.12% | 7.37 | −1.35% |
3.17 | Heat capacity, 2% vol. furniture | 45.39 | −0.24% | 7.27 | −2.70% |
Building III (30 × 30) | |||||
---|---|---|---|---|---|
Simulation ID | Description | qH,nd [kWh/m2] | Δ qH,nd | qC,nd [kWh/m2] | Δ qC,nd |
3.16 | Heat capacity, 1% vol. furniture | 43.22 | −0.14% | 7.69 | −1.43% |
3.17 | Heat capacity, 2% vol. furniture | 43.16 | −0.28% | 7.58 | −2.84% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhič, S.; Manić, D.; Čikić, A.; Komatina, M. Influence of Building Envelope Modeling Parameters on Energy Simulation Results. Sustainability 2025, 17, 5276. https://doi.org/10.3390/su17125276
Muhič S, Manić D, Čikić A, Komatina M. Influence of Building Envelope Modeling Parameters on Energy Simulation Results. Sustainability. 2025; 17(12):5276. https://doi.org/10.3390/su17125276
Chicago/Turabian StyleMuhič, Simon, Dimitrije Manić, Ante Čikić, and Mirko Komatina. 2025. "Influence of Building Envelope Modeling Parameters on Energy Simulation Results" Sustainability 17, no. 12: 5276. https://doi.org/10.3390/su17125276
APA StyleMuhič, S., Manić, D., Čikić, A., & Komatina, M. (2025). Influence of Building Envelope Modeling Parameters on Energy Simulation Results. Sustainability, 17(12), 5276. https://doi.org/10.3390/su17125276