Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,084)

Search Parameters:
Keywords = healthy young adults

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1657 KiB  
Systematic Review
Effect of Plant-Based Proteins on Recovery from Resistance Exercise-Induced Muscle Damage in Healthy Young Adults—A Systematic Review
by Karuppasamy Govindasamy, Koulla Parpa, Borko Katanic, Cain C. T. Clark, Masilamani Elayaraja, Ibnu Noufal Kambitta Valappil, Corina Dulceanu, Vlad Adrian Geantă, Gloria Alexandra Tolan and Hassane Zouhal
Nutrients 2025, 17(15), 2571; https://doi.org/10.3390/nu17152571 (registering DOI) - 7 Aug 2025
Abstract
Background: Plant-based protein supplementation in supporting muscle recovery following resistance exercise remains an area of growing interest, particularly among vegan athletes, as a potential alternative to animal-based proteins. This systematic review aimed to evaluate the effectiveness of plant-based proteins on recovery from resistance [...] Read more.
Background: Plant-based protein supplementation in supporting muscle recovery following resistance exercise remains an area of growing interest, particularly among vegan athletes, as a potential alternative to animal-based proteins. This systematic review aimed to evaluate the effectiveness of plant-based proteins on recovery from resistance exercise-induced muscle damage in healthy young adults. Methods: A systematic and comprehensive search was administered in eight databases up to 1 May 2025, identifying 1407 articles. Following deduplication and screening, 24 studies met the eligibility criteria, including 22 randomized controlled trials and 2 non-randomized studies, with the majority from high income western countries. Results: Interventions primarily involved soy, pea, rice, hemp, potato, and blended plant protein sources, with doses ranging from 15 to 50 g, typically administered post resistance exercise. Outcomes assessed included muscle protein synthesis (MPS), delayed-onset muscle soreness (DOMS), inflammatory biomarkers, muscle function, and fatigue. The review findings reaffirm that single-source plant proteins generally offer limited benefits compared to animal proteins such as whey, particularly in acute recovery settings, a limitation well-documented consistently in the literature. However, our synthesis highlights that well-formulated plant protein blends (e.g., combinations of pea, rice, and canola) can stimulate MPS at levels comparable to whey when consumed at adequate doses (≥30 g with ~2.5 g leucine). Some studies also reported improvements in subjective recovery outcomes and reductions in muscle damage biomarkers with soy or pea protein. However, overall evidence remains limited by small sample sizes, moderate to high risk of bias, and heterogeneity in intervention protocols, protein formulations, and outcome measures. Risk of bias assessments revealed concerns related to detection and reporting bias in nearly half the studies. Due to clinical and methodological variability, a meta-analysis was not conducted. Conclusion: plant-based proteins particularly in the form of protein blends and when dosed appropriately, may support muscle recovery in resistance-trained individuals and offer a viable alternative to animal-based proteins. However, further high-quality, long-term trials in vegan populations are needed to establish definitive recommendations for plant protein use in sports nutrition. Full article
(This article belongs to the Special Issue Nutrition Strategy and Resistance Training)
Show Figures

Figure 1

13 pages, 1329 KiB  
Article
The Complex Interaction Between the Sense of Presence, Movement Features, and Performance in a Virtual Reality Spatial Task: A Preliminary Study
by Tommaso Palombi, Andrea Chirico, Laura Mandolesi, Maurizio Mancini, Noemi Passarello, Erica Volta, Fabio Alivernini and Fabio Lucidi
Electronics 2025, 14(15), 3143; https://doi.org/10.3390/electronics14153143 - 7 Aug 2025
Abstract
The present study explores the innovative application of virtual reality (VR) in conducting the Radial Arm Maze (RAM) task, a performance-based test traditionally utilized for assessing spatial memory. This study aimed to develop a gamified version of the RAM implemented in immersive VR [...] Read more.
The present study explores the innovative application of virtual reality (VR) in conducting the Radial Arm Maze (RAM) task, a performance-based test traditionally utilized for assessing spatial memory. This study aimed to develop a gamified version of the RAM implemented in immersive VR and investigate the interaction between the sense of presence, movement features, and performance within the RAM. We developed software supporting a head-mounted display (HMD), addressing prior limitations in the scientific literature concerning user interaction, data collection accuracy, operational flexibility, and immersion level. This study involved a sample of healthy young adults who engaged with the immersive VR version of the RAM, examining the influence of VR experience variables (sense of presence, motion sickness, and usability) on RAM performance. Notably, it also introduced the collection and analysis of movement features within the VR environment to ascertain their impact on performance outcomes and their relationship with VR experience variables. The VR application developed is notable for its user-friendliness, adaptability, and integration capability with physiological monitoring devices, marking a significant advance in utilizing VR for cognitive assessments. Findings from our study underscore the importance of VR experience factors in RAM performance, highlighting how a heightened sense of presence can predict better performance, thereby emphasizing engagement and immersion as crucial for task success in VR settings. Additionally, this study revealed how movement parameters within the VR environment, specifically speed and directness, significantly influence RAM performance, offering new insights into optimizing VR experiences for enhanced task performance. Full article
(This article belongs to the Special Issue Augmented Reality, Virtual Reality, and 3D Reconstruction)
Show Figures

Figure 1

16 pages, 2067 KiB  
Article
Ankle Joint Kinematics in Expected and Unexpected Trip Responses with Dual-Tasking and Physical Fatigue
by Sachini N. K. Kodithuwakku Arachchige, Harish Chander and Adam C. Knight
Biomechanics 2025, 5(3), 62; https://doi.org/10.3390/biomechanics5030062 - 6 Aug 2025
Abstract
Concurrent cognitive tasks, such as avoiding visual, auditory, chemical, and electrical hazards, and concurrent motor tasks, such as load carriage, are prevalent in ergonomic settings. Trips are extremely common in the workplace, leading to fatal and non-fatal fall-related injuries. Intrinsic factors, such as [...] Read more.
Concurrent cognitive tasks, such as avoiding visual, auditory, chemical, and electrical hazards, and concurrent motor tasks, such as load carriage, are prevalent in ergonomic settings. Trips are extremely common in the workplace, leading to fatal and non-fatal fall-related injuries. Intrinsic factors, such as attention, fatigue, and anticipation, as well as extrinsic factors, including tasks at hand, affect trip recovery responses. Objective: The purpose of this study was to investigate the ankle joint kinematics in unexpected and expected trip responses during single-tasking (ST), dual-tasking (DT), and triple-tasking (TT), before and after a physically fatiguing protocol among young, healthy adults. Methods: Twenty volunteers’ (10 females, one left leg dominant, age 20.35 ± 1.04 years, height 174.83 ± 9.03 cm, mass 73.88 ± 15.55 kg) ankle joint kinematics were assessed using 3D motion capture system during unperturbed gait (NG), unexpected trip (UT), and expected trip (ET), during single-tasking (ST), cognitive dual-tasking (CDT), motor dual-tasking (MDT), and triple-tasking (TT), under both PRE and POST fatigue conditions. Results: Greater dorsiflexion angles were observed during UT compared to NG, MDT compared to ST, and TT compared to ST. Significantly greater plantar flexion angles were observed during ET compared to NG and during POST compared to PRE. Conclusions: Greater dorsiflexion angles during dual- and triple-tasking suggest that divided attention affects trip recovery. Greater plantar flexion angles following fatigue are likely an anticipatory mechanism due to altered muscle activity and increased postural control demands. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

18 pages, 1226 KiB  
Article
Addressing Gaps in Ontario’s Sexual Health Education: Supporting Healthy Sexual Lives in Young Adults with Disabilities
by Rsha Soud, Adam Davies, Justin Brass and Shoshanah Jacobs
Sexes 2025, 6(3), 42; https://doi.org/10.3390/sexes6030042 - 4 Aug 2025
Viewed by 213
Abstract
This study examines how Ontario’s Health and Physical Education curriculum addresses the needs of young adults with disabilities. A total of 54 individuals aged 18–35 years old with developmental, learning, or physical disabilities who had completed secondary school in Ontario participated in a [...] Read more.
This study examines how Ontario’s Health and Physical Education curriculum addresses the needs of young adults with disabilities. A total of 54 individuals aged 18–35 years old with developmental, learning, or physical disabilities who had completed secondary school in Ontario participated in a cross-sectional mixed-methods survey. Participants were recruited through disability-focused community networks and a university psychology participant pool. They completed the Sex Education subscale of the Sexual Knowledge, Experience, Feelings and Needs Scale, a 35-item sexual knowledge questionnaire, and open-ended questions. Quantitative data were analyzed using descriptive statistics and independent samples t-tests; qualitative responses were examined using thematic analysis. Participants reported limited factual knowledge, minimal classroom representation, and heavy reliance on independent learning. Barriers included inaccessible materials, teacher discomfort, and the absence of disability narratives in sexuality units. Findings point to three priorities: revising curriculum content, expanding educator training, and creating disability-affirming resources. These measures will help ensure comprehensive and rights-based sexuality education that supports the autonomy and well-being of students with disabilities. Full article
Show Figures

Figure 1

14 pages, 1227 KiB  
Article
Reliability and Inter-Device Agreement Between a Portable Handheld Ultrasound Scanner and a Conventional Ultrasound System for Assessing the Thickness of the Rectus Femoris and Vastus Intermedius
by Carlante Emerson, Hyun K. Kim, Brian A. Irving and Efthymios Papadopoulos
J. Funct. Morphol. Kinesiol. 2025, 10(3), 299; https://doi.org/10.3390/jfmk10030299 - 1 Aug 2025
Viewed by 125
Abstract
Background: Ultrasound (U/S) can be used to evaluate skeletal muscle characteristics in clinical and sports settings. Handheld U/S devices have recently emerged as a cheaper and portable alternative to conventional U/S systems. However, further research is warranted on their reliability. We assessed [...] Read more.
Background: Ultrasound (U/S) can be used to evaluate skeletal muscle characteristics in clinical and sports settings. Handheld U/S devices have recently emerged as a cheaper and portable alternative to conventional U/S systems. However, further research is warranted on their reliability. We assessed the reliability and inter-device agreement between a handheld U/S device (Clarius L15 HD3) and a more conventional U/S system (GE LOGIQ e) for measuring the thickness of the rectus femoris (RF) and vastus intermedius (VI). Methods: Cross-sectional images of the RF and VI muscles were obtained in 20 participants by two assessors, and on two separate occasions by one of those assessors, using the Clarius L15 HD3 and GE LOGIQ e devices. RF and VI thickness measurements were obtained to determine the intra-rater reliability, inter-rater reliability, and inter-device agreement. Results: All intraclass correlation coefficients (ICCs) were above 0.9 for intra-rater reliability (range: 0.94 to 0.97), inter-rater reliability (ICC: 0.97), and inter-device agreement (ICC: 0.98) when comparing the two devices in assessing RF and VI thickness. For the RF, the Bland–Altman plot revealed a mean difference of 0.06 ± 0.07 cm, with limits of agreement ranging from 0.21 to −0.09, whereas for the VI, the Bland–Altman plot showed a mean difference of 0.07 ± 0.10 cm, with limits of agreement ranging from 0.27 to −0.13. Conclusions: The handheld Clarius L15 HD3 was reliable and demonstrated high agreement with the more conventional GE LOGIQ e for assessing the thickness of the RF and VI in young, healthy adults. Full article
(This article belongs to the Section Kinesiology and Biomechanics)
Show Figures

Figure 1

24 pages, 6228 KiB  
Article
Quantification of the Mechanical Properties in the Human–Exoskeleton Upper Arm Interface During Overhead Work Postures in Healthy Young Adults
by Jonas Schiebl, Nawid Elsner, Paul Birchinger, Jonas Aschenbrenner, Christophe Maufroy, Mark Tröster, Urs Schneider and Thomas Bauernhansl
Sensors 2025, 25(15), 4605; https://doi.org/10.3390/s25154605 - 25 Jul 2025
Viewed by 428
Abstract
Exoskeletons transfer loads to the human body via physical human–exoskeleton interfaces (pHEI). However, the human–exoskeleton interaction remains poorly understood, and the mechanical properties of the pHEI are not well characterized. Therefore, we present a novel methodology to precisely characterize pHEI interaction stiffnesses under [...] Read more.
Exoskeletons transfer loads to the human body via physical human–exoskeleton interfaces (pHEI). However, the human–exoskeleton interaction remains poorly understood, and the mechanical properties of the pHEI are not well characterized. Therefore, we present a novel methodology to precisely characterize pHEI interaction stiffnesses under various loading conditions. Forces and torques were applied in three orthogonal axes to the upper arm pHEI of 21 subjects using an electromechanical apparatus. Interaction loads and displacements were measured, and stiffness data were derived as well as mathematically described using linear and non-linear regression models, yielding all the diagonal elements of the stiffness tensor. We find that the non-linear nature of pHEI stiffness is best described using exponential functions, though we also provide linear approximations for simplified modeling. We identify statistically significant differences between loading conditions and report median translational stiffnesses between 2.1 N/mm along and 4.5 N/mm perpendicular to the arm axis, as well as rotational stiffnesses of 0.2 N·m/° perpendicular to the arm, while rotations around the longitudinal axis are almost an order of magnitude smaller (0.03 N·m/°). The resulting stiffness models are suitable for use in digital human–exoskeleton models, potentially leading to more accurate estimations of biomechanical efficacy and discomfort of exoskeletons. Full article
Show Figures

Figure 1

28 pages, 3228 KiB  
Article
Examination of Eye-Tracking, Head-Gaze, and Controller-Based Ray-Casting in TMT-VR: Performance and Usability Across Adulthood
by Panagiotis Kourtesis, Evgenia Giatzoglou, Panagiotis Vorias, Katerina Alkisti Gounari, Eleni Orfanidou and Chrysanthi Nega
Multimodal Technol. Interact. 2025, 9(8), 76; https://doi.org/10.3390/mti9080076 - 25 Jul 2025
Viewed by 422
Abstract
Virtual reality (VR) can enrich neuropsychological testing, yet the ergonomic trade-offs of its input modes remain under-examined. Seventy-seven healthy volunteers—young (19–29 y) and middle-aged (35–56 y)—completed a VR Trail Making Test with three pointing methods: eye-tracking, head-gaze, and a six-degree-of-freedom hand controller. Completion [...] Read more.
Virtual reality (VR) can enrich neuropsychological testing, yet the ergonomic trade-offs of its input modes remain under-examined. Seventy-seven healthy volunteers—young (19–29 y) and middle-aged (35–56 y)—completed a VR Trail Making Test with three pointing methods: eye-tracking, head-gaze, and a six-degree-of-freedom hand controller. Completion time, spatial accuracy, and error counts for the simple (Trail A) and alternating (Trail B) sequences were analysed in 3 × 2 × 2 mixed-model ANOVAs; post-trial scales captured usability (SUS), user experience (UEQ-S), and acceptability. Age dominated behaviour: younger adults were reliably faster, more precise, and less error-prone. Against this backdrop, input modality mattered. Eye-tracking yielded the best spatial accuracy and shortened Trail A time relative to manual control; head-gaze matched eye-tracking on Trail A speed and became the quickest, least error-prone option on Trail B. Controllers lagged on every metric. Subjective ratings were high across the board, with only a small usability dip in middle-aged low-gamers. Overall, gaze-based ray-casting clearly outperformed manual pointing, but optimal choice depended on task demands: eye-tracking maximised spatial precision, whereas head-gaze offered calibration-free enhanced speed and error-avoidance under heavier cognitive load. TMT-VR appears to be accurate, engaging, and ergonomically adaptable assessment, yet it requires age-specific–stratified norms. Full article
(This article belongs to the Special Issue 3D User Interfaces and Virtual Reality—2nd Edition)
Show Figures

Figure 1

17 pages, 1448 KiB  
Article
A Pilot EEG Study on the Acute Neurophysiological Effects of Single-Dose Astragaloside IV in Healthy Young Adults
by Aynur Müdüroğlu Kırmızıbekmez, Mustafa Yasir Özdemir, Alparslan Önder, Ceren Çatı and İhsan Kara
Nutrients 2025, 17(15), 2425; https://doi.org/10.3390/nu17152425 - 24 Jul 2025
Viewed by 380
Abstract
Objective: This study aimed to explore the acute neurophysiological effects of a single oral dose of Astragaloside IV (AS-IV) on EEG-measured brain oscillations and cognitive-relevant spectral markers in healthy young adults. Methods: Twenty healthy adults (8 females, 12 males; mean age: [...] Read more.
Objective: This study aimed to explore the acute neurophysiological effects of a single oral dose of Astragaloside IV (AS-IV) on EEG-measured brain oscillations and cognitive-relevant spectral markers in healthy young adults. Methods: Twenty healthy adults (8 females, 12 males; mean age: 23.4±2.1) underwent eyes-closed resting-state EEG recordings before and approximately 90 min after oral intake of 150 mg AS-IV. EEG data were collected using a 21-channel 10–20 system and cleaned via Artifact Subspace Reconstruction and Independent Component Analysis. Data quality was confirmed using a signal-to-noise ratio and 1/f spectral slope. Absolute and relative power values, band ratios, and frontal alpha asymmetry were computed. Statistical comparisons were made using paired t-tests or Wilcoxon signed-rank tests. Results: Absolute power decreased in delta, theta, beta, and gamma bands (p < 0.05) but remained stable for alpha. Relative alpha power increased significantly (p = 0.002), with rises in relative beta, theta, and delta and a drop in relative gamma (p = 0.003). Alpha/beta and theta/beta ratios increased, while delta/alpha decreased. Frontal alpha asymmetry was unchanged. Sex differences were examined in all measures that showed significant changes; however, no sex-dependent effects were found. Conclusions: A single AS-IV dose may acutely modulate brain oscillations, supporting its potential neuroactive properties. Larger placebo-controlled trials, including concurrent psychometric assessments, are needed to verify and contextualize these findings. A single AS-IV dose may acutely modulate brain oscillations, supporting its potential neuroactive properties. Full article
(This article belongs to the Special Issue Dietary Factors and Interventions for Cognitive Neuroscience)
Show Figures

Graphical abstract

12 pages, 1747 KiB  
Article
The Effects of an Acute Exposure of Virtual vs. Real Slip and Trip Perturbations on Postural Control
by Nathan O. Conner, Harish Chander, Hunter Derby, William C. Pannell, Jacob B. Daniels and Adam C. Knight
Virtual Worlds 2025, 4(3), 34; https://doi.org/10.3390/virtualworlds4030034 - 21 Jul 2025
Viewed by 553
Abstract
Background: Current methods of postural control assessments and interventions to improve postural stability and thereby prevent falls often fail to incorporate the hazardous perturbation situations that frequently accompany falls. Virtual environments can safely incorporate these hazards. The purpose of the study was to [...] Read more.
Background: Current methods of postural control assessments and interventions to improve postural stability and thereby prevent falls often fail to incorporate the hazardous perturbation situations that frequently accompany falls. Virtual environments can safely incorporate these hazards. The purpose of the study was to identify if virtual slip and trip perturbations can be used as an exposure paradigm in place of real slip and trip perturbations to improve postural control. Methods: Fifteen healthy young adults were included in this study. Two paradigms, real gait exposure (real) and virtual environment gait exposure (virtual), consisting of real and virtual slip and trip trials, were performed by each participant in a counterbalanced order to avoid order effects. At baseline and following real and virtual paradigms, the modified clinical test for sensory integration and balance (mCTSIB), limits of stability (LOS), and single-leg stance (SLS) using BTracks balance plate were administered. Separate one-way (baseline vs. Real vs. Virtual) repeated measures analysis of variance were conducted on response variables. Results: In the posterior left quadrant of the LOS, significant differences were found after the real paradigm compared to baseline (p = 0.04). For the anterior left quadrant and total LOS, significant differences post real paradigm (p = 0.002 and p < 0.001) and virtual paradigm (p = 0.007 and p < 0.001) compared to baseline were observed. For the SLS, the left-leg significant differences were observed post real paradigm (p = 0.019) and virtual paradigm (p = 0.009) compared to BL in path length, while significant main effects were found for mean sway velocity for the left leg only (p = 0.004). For the right leg, significant differences were only observed after the virtual paradigm (p = 0.01) compared to BL. Conclusions: Both virtual and real paradigms were identified to improve postural control. The virtual paradigm led to increased postural control in the right-leg SLS condition, while the real paradigm did not, without any adverse effects. Findings suggest virtual reality perturbation exposure acutely improves postural control ability compared to baseline among healthy young adults. Full article
Show Figures

Figure 1

16 pages, 5800 KiB  
Article
Healthy Ageing and Gut Microbiota: A Study on Longevity in Adults
by Lihua Deng, Jun Xu, Qian Xue, Yanan Wei and Jingtong Wang
Microorganisms 2025, 13(7), 1657; https://doi.org/10.3390/microorganisms13071657 - 14 Jul 2025
Viewed by 492
Abstract
Many studies have focused on ageing and gut microbiota, but the correlation between gut microbiota and physical function in older adults, especially those with longevity, remains obscure and deserves further exploration. In this study we investigated changes in the gut microbiota and the [...] Read more.
Many studies have focused on ageing and gut microbiota, but the correlation between gut microbiota and physical function in older adults, especially those with longevity, remains obscure and deserves further exploration. In this study we investigated changes in the gut microbiota and the association between gut microbiota and physical function in adults with longevity. This is a prospective observational study. Fifty-one older adults aged ≥ 60 years (including 27 participants aged 90 years and above) were enrolled. Information on clinical data, physical function including intrinsic capacity by Integrated Care for Older People (ICOPE) tool, and dietary habits of participants was collected and analysed. Gut microbiota structure and functional pathways were analysed by Metagenomics. Intrinsic capacity (measured as ICOPE scores) of adults’ longevity (aged 90–98, longe group) was significantly lower than older adults aged 60–89 years (CON group) (5.44 ± 2.15 vs. 6.71 ± 1.46, p = 0.017). Gut microbiota of the longe group is enriched in Akkermansia and Bifidobacterium, which may be beneficial to health. Gut microbiota was closely related to daily milk (including plain milk, flavoured milk with a content of cow’s milk or reconstituted milk of ≥80%, or reconstituted milk or fermented milk with a content of cow’s milk or milk powder of ≥80%) consumption, anxiety, and physical function including grip strength by the Short Physical Performance Battery (SPPB). Bacteroides plebeius and Bacteroides eggerthii were increased in long-living adults with better physical function. Escherichia coli was more abundant in frail young-old adults. Grip strength is positively correlated with the abundance of Roseburia hominis, Eubacterium rectale, Eubacterium eligens, and Roseburia intestinalis (p < 0.05). Pathways related to amino acid synthesis that include L-isoleucine, L-valine, and L-threonine were over-presented in long-living adults of better physical function. Adults with longevity showed comparable gut microbiota abundance to younger elderly individuals. The gut microbiota of long-living adults showed higher abundance of potentially beneficial bacteria, and the altered bacteria are closely associated with physical function. Changes in the gut microbiota may precede clinical indicators during the process of ageing. Gut microbiota may be a potential biomarker for longevity and healthy ageing. Nutrition and emotional state can be important influencing factors. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

18 pages, 1665 KiB  
Article
Comprehensive Associations Between Spinal–Pelvic Alignment and Muscle Shortening in Healthy Young Men: An Analysis of Individual and Interactive Effects in the Sagittal Plane Using SHapley Additive exPlanation
by Minami Akao, Yuna Ishikura, Takuma Isshiki, Shinnosuke Tsukada, Hayato Shigetoh and Junya Miyazaki
J. Funct. Morphol. Kinesiol. 2025, 10(3), 259; https://doi.org/10.3390/jfmk10030259 - 9 Jul 2025
Viewed by 433
Abstract
Objectives: To comprehensively examine the association between spinopelvic alignment and muscle shortening in healthy young men, focusing on the individual and interactive effects of thoracic kyphosis, lumbar lordosis, and anterior pelvic tilt using SHapley Additive exPlanation (SHAP) analysis. Methods: Forty-one healthy [...] Read more.
Objectives: To comprehensively examine the association between spinopelvic alignment and muscle shortening in healthy young men, focusing on the individual and interactive effects of thoracic kyphosis, lumbar lordosis, and anterior pelvic tilt using SHapley Additive exPlanation (SHAP) analysis. Methods: Forty-one healthy young adult men participated in this cross-sectional study. Thoracic kyphosis, lumbar lordosis, and anterior pelvic tilt were measured using a flexible curve ruler and inclinometer. Muscle length indices for six muscles (iliopsoas, rectus femoris, gluteus maximus, hamstrings, back extensors, and abdominals) were assessed via standardized physical examinations and image analysis. A machine learning model was developed, and SHAP analysis applied to determine individual and interactive contributions of spinopelvic angles to each muscle length index. Results: SHAP analysis showed that hip-related muscle shortening (iliopsoas, rectus femoris, hamstrings, gluteus maximus) was influenced by both individual alignments and interactions, especially between thoracic kyphosis and lumbar lordosis. Lumbar lordosis was most associated with iliopsoas shortening (SHAP = −0.09), while anterior pelvic tilt was linked to hamstring shortening (SHAP = −0.30). Thoracic kyphosis was the key factor for rectus femoris shortening (SHAP = −0.05). Interactive effects exceeded individual contributions for the rectus femoris, gluteus maximus, and hamstrings. In contrast, spinal alignment had minimal influence on the back extensors and abdominals. Conclusions: Both individual and intersegmental spinal alignments are associated with muscle shortening, particularly in hip-related muscles. The interaction between thoracic kyphosis and lumbar lordosis plays a pivotal role. These findings underscore the importance of evaluating segmental spinal interactions when assessing muscle flexibility and posture. Full article
Show Figures

Figure 1

15 pages, 604 KiB  
Article
Converging Minds: EEG Synchrony During Communication About Moral Decision-Making in Dyadic Interactions
by Roberta A. Allegretta, Katia Rovelli and Michela Balconi
Sensors 2025, 25(13), 4239; https://doi.org/10.3390/s25134239 - 7 Jul 2025
Viewed by 410
Abstract
Communication about moral decision-making involves complex emotional and cognitive processes, especially in critical situations. This study adopted a hyperscanning paradigm to explore neural convergence during moral negotiation. Twenty-six healthy young adults (mean age = 23.59 years; 16 women, 10 men), with no neurological [...] Read more.
Communication about moral decision-making involves complex emotional and cognitive processes, especially in critical situations. This study adopted a hyperscanning paradigm to explore neural convergence during moral negotiation. Twenty-six healthy young adults (mean age = 23.59 years; 16 women, 10 men), with no neurological or psychiatric conditions, were paired into 13 same-gender dyads at the Università Cattolica del Sacro Cuore. Each dyad discussed a medical moral dilemma while their electrophysiological (EEG) activity was simultaneously recorded. Participants were first categorized according to their Dominant Reasoning Profile (DRP) (cognitive or affective), and subsequently convergence in DRP within the dyads was established. EEG band dissimilarities within each dyad were analyzed across frontal, temporo-central, and parieto-occipital regions. The results revealed significantly greater dissimilarity in frontal delta-band activity compared to parieto-occipital areas, regardless of the dyad’s DRP. Such results might suggest different emotional and motivational reactions between the two individuals, reflecting a broader gap in how the moral decision-making process was interpreted and internalized by each member, despite their DRP. The EEG hyperscanning paradigm proves useful in the study and understanding of the neural mechanisms involved in social interaction about morally sensitive decisions and provides novel insights into dyadic brain dynamics. Full article
(This article belongs to the Special Issue EEG Signal Processing Techniques and Applications—3rd Edition)
Show Figures

Figure 1

24 pages, 5181 KiB  
Article
Selected Pathway Analyses to Gain Mechanistic Insights into the Pathogenesis of Feline Hypertrophic Cardiomyopathy
by Lea Schurna, Jessica Joshua, Josep Monné Rodríguez, Francesco Prisco, Marco Baron Toaldo, Simon De Neck, Francesca Baggio, Sonja Fonfara and Anja Kipar
Int. J. Mol. Sci. 2025, 26(13), 6497; https://doi.org/10.3390/ijms26136497 - 5 Jul 2025
Viewed by 414
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent acquired heart disease in cats and shares many clinical, phenotypical and pathological features with human HCM. Despite its relevance, knowledge on the pathomechanisms underlying the disease is limited. The present study aimed to characterize the molecular [...] Read more.
Hypertrophic cardiomyopathy (HCM) is the most prevalent acquired heart disease in cats and shares many clinical, phenotypical and pathological features with human HCM. Despite its relevance, knowledge on the pathomechanisms underlying the disease is limited. The present study aimed to characterize the molecular phenotypic changes in cardiomyocytes in feline HCM (fHCM) to better understand their contribution to the pathogenesis. To achieve this, the myocardium of the left ventricular free wall of 15 cats with confirmed fHCM and 30 control cats (two age groups: 16 cats 18-month-old, and 14 older adult cats without cardiac disease) were subjected to RT-qPCRs for markers representative of cardiomyocyte function. Overall, all markers were expressed at the highest level in young control cats, and increasing age correlated with decreased expression, regardless of sex. The comparison between the older adult control cats and those with HCM showed increased transcription levels for most markers associated with the disease, and higher expression of all markers in affected male cats compared to females. The constitutive transcription of all markers provides evidence of continuous myocardial adaptation throughout cats’ life. The high transcription values in the myocardium of young healthy cats and male cats affected by HCM suggest a particularly high myocardial responsiveness early in life and with HCM and reveal sex as relevant factor in the disease process. These results support the relevance of age and sex in the cardiac response to HCM in feline hearts. Full article
Show Figures

Figure 1

14 pages, 908 KiB  
Article
Effect of Tai Chi Practice on the Adaptation to Sensory and Motor Perturbations While Standing in Older Adults
by Arion Dey, Huiyeong Chang, Laila Shaaban, Armaan Suga, Genavieve Braden, Andres Bustamante, Jisang Park, Shenhua Zhang, Yang Hu and Manuel E. Hernandez
Appl. Sci. 2025, 15(13), 7458; https://doi.org/10.3390/app15137458 - 3 Jul 2025
Viewed by 617
Abstract
Tai Chi provides an age-appropriate exercise to decrease fall risks in older adults. However, the exact mechanism underlying the benefits of Tai Chi practice remains an open question. Thus, this study examined how aging and Tai Chi practice impact adaptation to sensory and [...] Read more.
Tai Chi provides an age-appropriate exercise to decrease fall risks in older adults. However, the exact mechanism underlying the benefits of Tai Chi practice remains an open question. Thus, this study examined how aging and Tai Chi practice impact adaptation to sensory and motor perturbations while standing. We hypothesized that older Tai Chi practitioners would exhibit a decreased reliance on visual processes as sensory and motor perturbations increased, relative to naive healthy older adults. Using rambling and trembling decompositions of the center of pressure (COP) and frequency-domain features, we examined changes in low (0–0.3 Hz), medium (0.3–1 Hz), and high (1–3 Hz) frequency components, reflecting contributions from the visual, vestibular/somatosensory, and proprioceptive systems, respectively, in healthy young adults (HYA), healthy older adults (HOA), and Tai Chi practicing older adults (TCOA). Our results revealed statistically significant condition-by-group interactions in high-frequency COP-x and rambling-x and COP-y components, medium-frequency COP-y components, and all low-frequency components in COP and trembling (p < 0.05). Further, a significant trial-by-group interaction in high-frequency rambling-y was observed (p < 0.05). These results indicate age and Tai-chi-related differences in modulation of sensory contributions to balance as perturbations increase, and with repeated practice, which merit further investigation. Full article
Show Figures

Figure 1

24 pages, 316 KiB  
Article
Orthorexia Nervosa Tendencies in Two Cohorts of Polish Young Adults: A Comparative Analysis of Prevalence, Correlates, and Comorbidity
by Izabela Łucka, Artur Mazur, Anna Łucka, Julia Trojniak and Marta Kopańska
Nutrients 2025, 17(13), 2208; https://doi.org/10.3390/nu17132208 - 2 Jul 2025
Viewed by 335
Abstract
Background: The rising focus on dietary choices has contributed to maladaptive eating patterns, including orthorexia nervosa (ON)—a pathological preoccupation with healthy eating. This study investigated ON prevalence and correlates in two Polish young adult cohorts to address inconsistencies in the existing literature and [...] Read more.
Background: The rising focus on dietary choices has contributed to maladaptive eating patterns, including orthorexia nervosa (ON)—a pathological preoccupation with healthy eating. This study investigated ON prevalence and correlates in two Polish young adult cohorts to address inconsistencies in the existing literature and ON’s ambiguous nosological status. We explored its complex interplay with specific lifestyle and sociodemographic factors. Methods: The study sample consisted of 412 young adults, comprising Group 1 (G1; n = 136; 95 women, 38 men, and 3 non-binary individuals) and Group 2 (G2; n = 264; 194 women, 65 men, and 5 non-binary individuals). Data collection utilized a proprietary questionnaire for sociodemographic and health, the ORTO-15 questionnaire (cut-off < 35 points) for ON risk, and the EAT-26 for eating disorder (ED) risk. Depression was self-assessed. An analysis of sociodemographic, clinical, and lifestyle data was conducted to explore the association with orthorexia risk. Results: ON risk was identified in 26.5% of participants in G1 and 76.8% in G2. Logistic regression analysis identified different, independent predictors of ON risk for each group. In G1, these were depressive symptoms (OR = 2.52) and a co-occurring risk of eating disorders (ED) (OR = 11.37). In contrast, for G2, the predictors were smoking (OR = 2.14) and, inversely, a lower ED risk (OR = 0.16). No consistent associations were found with ON risk and age, gender, education, residence, or occupational status. Conclusions: This study confirms a strong link between ON and other eating disorders. The high ON prevalence in G2, combined with low internal consistency of ORTO-15, suggests tool limitations in specific populations. These findings highlight the need for more precise ON diagnostic tools and further research into its correlates, including body image, specific lifestyle factors, and its role within eating pathology. Full article
(This article belongs to the Special Issue Research on Eating Disorders, Physical Activity and Body Image)
Back to TopTop