Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,404)

Search Parameters:
Keywords = healthcare transformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1534 KiB  
Review
Recent Advances in Micro- and Nano-Enhanced Intravascular Biosensors for Real-Time Monitoring, Early Disease Diagnosis, and Drug Therapy Monitoring
by Sonia Kudłacik-Kramarczyk, Weronika Kieres, Alicja Przybyłowicz, Celina Ziejewska, Joanna Marczyk and Marcel Krzan
Sensors 2025, 25(15), 4855; https://doi.org/10.3390/s25154855 - 7 Aug 2025
Abstract
Intravascular biosensors have become a crucial and novel class of devices in healthcare, enabling the constant real-time monitoring of essential physiological parameters directly within the circulatory system. Recent developments in micro- and nanotechnology have relevantly improved the sensitivity, miniaturization, and biocompatibility of these [...] Read more.
Intravascular biosensors have become a crucial and novel class of devices in healthcare, enabling the constant real-time monitoring of essential physiological parameters directly within the circulatory system. Recent developments in micro- and nanotechnology have relevantly improved the sensitivity, miniaturization, and biocompatibility of these devices, thereby enabling their application in precision medicine. This review summarizes the latest advances in intravascular biosensor technologies, with a special focus on glucose and oxygen level monitoring, blood pressure and heart rate assessment, and early disease diagnostics, as well as modern approaches to drug therapy monitoring and delivery systems. Key challenges such as long-term biostability, signal accuracy, and regulatory approval processes are critical considerations. Innovative strategies, including biodegradable implants, nanomaterial-functionalized surfaces, and integration with artificial intelligence, are regarded as promising avenues to overcome current limitations. This review provides a comprehensive roadmap for upcoming research and the clinical translation of advanced intravascular biosensors with a strong emphasis on their transformative impact on personalized healthcare. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

25 pages, 1054 KiB  
Review
Gut Feeling: Biomarkers and Biosensors’ Potential in Revolutionizing Inflammatory Bowel Disease (IBD) Diagnosis and Prognosis—A Comprehensive Review
by Beatriz Teixeira, Helena M. R. Gonçalves and Paula Martins-Lopes
Biosensors 2025, 15(8), 513; https://doi.org/10.3390/bios15080513 - 7 Aug 2025
Abstract
Inflammatory Bowel Diseases (IBDs) are complex, multifactorial disorders with no known cure, necessitating lifelong care and often leading to surgical interventions. This ongoing healthcare requirement, coupled with the increased use of biological drugs and rising disease prevalence, significantly increases the financial burden on [...] Read more.
Inflammatory Bowel Diseases (IBDs) are complex, multifactorial disorders with no known cure, necessitating lifelong care and often leading to surgical interventions. This ongoing healthcare requirement, coupled with the increased use of biological drugs and rising disease prevalence, significantly increases the financial burden on the healthcare systems. Thus, a number of novel technological approaches have emerged in order to face some of the pivotal questions still associated with IBD. In navigating the intricate landscape of IBD, biosensors act as indispensable allies, bridging the gap between traditional diagnostic methods and the evolving demands of precision medicine. Continuous progress in biosensor technology holds the key to transformative breakthroughs in IBD management, offering more effective and patient-centric healthcare solutions considering the One Health Approach. Here, we will delve into the landscape of biomarkers utilized in the diagnosis, monitoring, and management of IBD. From well-established serological and fecal markers to emerging genetic and epigenetic markers, we will explore the role of these biomarkers in aiding clinical decision-making and predicting treatment response. Additionally, we will discuss the potential of novel biomarkers currently under investigation to further refine disease stratification and personalized therapeutic approaches in IBD. By elucidating the utility of biosensors across the spectrum of IBD care, we aim to highlight their importance as valuable tools in optimizing patient outcomes and reducing healthcare costs. Full article
(This article belongs to the Special Issue Feature Papers of Biosensors)
Show Figures

Figure 1

14 pages, 661 KiB  
Article
Epileptic Seizure Prediction Using a Combination of Deep Learning, Time–Frequency Fusion Methods, and Discrete Wavelet Analysis
by Hadi Sadeghi Khansari, Mostafa Abbaszadeh, Gholamreza Heidary Joonaghany, Hamidreza Mohagerani and Fardin Faraji
Algorithms 2025, 18(8), 492; https://doi.org/10.3390/a18080492 - 7 Aug 2025
Abstract
Epileptic seizure prediction remains a critical challenge in neuroscience and healthcare, with profound implications for enhancing patient safety and quality of life. In this paper, we introduce a novel seizure prediction method that leverages electroencephalogram (EEG) data, combining discrete wavelet transform (DWT)-based time–frequency [...] Read more.
Epileptic seizure prediction remains a critical challenge in neuroscience and healthcare, with profound implications for enhancing patient safety and quality of life. In this paper, we introduce a novel seizure prediction method that leverages electroencephalogram (EEG) data, combining discrete wavelet transform (DWT)-based time–frequency analysis, advanced feature extraction, and deep learning using Fourier neural networks (FNNs). The proposed approach extracts essential features from EEG signals—including entropy, power, frequency, and amplitude—to effectively capture the brain’s complex and nonstationary dynamics. We measure the method based on the broadly used CHB-MIT EEG dataset, ensuring direct comparability with prior research. Experimental results demonstrate that our DWT-FS-FNN model achieves a prediction accuracy of 98.96 with a zero false positive rate, outperforming several state-of-the-art methods. These findings underscore the potential of integrating advanced signal processing and deep learning methods for reliable, real-time seizure prediction. Future work will focus on optimizing the model for real-world clinical deployment and expanding it to incorporate multimodal physiological data, further enhancing its applicability in clinical practice. Full article
(This article belongs to the Special Issue 2024 and 2025 Selected Papers from Algorithms Editorial Board Members)
Show Figures

Graphical abstract

20 pages, 741 KiB  
Review
Exploring Design Thinking Methodologies: A Comprehensive Analysis of the Literature, Outstanding Practices, and Their Linkage to Sustainable Development Goals
by Matilde Martínez Casanovas
Sustainability 2025, 17(15), 7142; https://doi.org/10.3390/su17157142 - 6 Aug 2025
Abstract
Design Thinking (DT) has emerged as a relevant methodology for addressing global challenges aligned with the United Nations Sustainable Development Goals (SDGs). This study presents a systematic literature review, conducted following PRISMA 2020 guidelines, which analyzes 42 peer-reviewed publications from 2013 to 2023. [...] Read more.
Design Thinking (DT) has emerged as a relevant methodology for addressing global challenges aligned with the United Nations Sustainable Development Goals (SDGs). This study presents a systematic literature review, conducted following PRISMA 2020 guidelines, which analyzes 42 peer-reviewed publications from 2013 to 2023. Through inductive content analysis, 10 core DT principles—such as empathy, iteration, user-centeredness, and systems thinking—I identified and thematically mapped to specific SDGs, including goals related to health, education, innovation, and climate action. The study also presents five real-world cases from diverse sectors such as technology, healthcare, and urban planning, illustrating how DT has been applied to address practical challenges aligned with the SDGs. However, the review identifies persistent gaps in the field: the lack of standardized evaluation frameworks, limited integration across SDG domains, and weak adaptation of ethical and contextual considerations, particularly in vulnerable communities. As a response, this paper recommends the adoption of structured impact assessment tools (e.g., Cities2030, Responsible Design Thinking), integration of design justice principles, and the development of participatory, iterative ecosystems for innovation. By offering both conceptual synthesis and applied insights, this article positions Design Thinking as a strategic and systemic approach for driving sustainable transformation aligned with the 2030 Agenda. Full article
(This article belongs to the Section Sustainable Education and Approaches)
Show Figures

Figure 1

35 pages, 3289 KiB  
Review
Applications of Machine Learning Algorithms in Geriatrics
by Adrian Stancu, Cosmina-Mihaela Rosca and Emilian Marian Iovanovici
Appl. Sci. 2025, 15(15), 8699; https://doi.org/10.3390/app15158699 - 6 Aug 2025
Abstract
The increase in the elderly population globally reflects a change in the population’s mindset regarding preventive health measures and necessitates a rethinking of healthcare strategies. The integration of machine learning (ML)-type algorithms in geriatrics represents a direction for optimizing prevention, diagnosis, prediction, monitoring, [...] Read more.
The increase in the elderly population globally reflects a change in the population’s mindset regarding preventive health measures and necessitates a rethinking of healthcare strategies. The integration of machine learning (ML)-type algorithms in geriatrics represents a direction for optimizing prevention, diagnosis, prediction, monitoring, and treatment. This paper presents a systematic review of the scientific literature published between 1 January 2020 and 31 May 2025. The paper is based on the applicability of ML techniques in the field of geriatrics. The study is conducted using the Web of Science database for a detailed discussion. The most studied algorithms in research articles are Random Forest, Extreme Gradient Boosting, and support vector machines. They are preferred due to their performance in processing incomplete clinical data. The performance metrics reported in the analyzed papers include the accuracy, sensitivity, F1-score, and Area under the Receiver Operating Characteristic Curve. Nine search categories are investigated through four databases: WOS, PubMed, Scopus, and IEEE. A comparative analysis shows that the field of geriatrics, through an ML approach in the context of elderly nutrition, is insufficiently explored, as evidenced by the 61 articles analyzed from the four databases. The analysis highlights gaps regarding the explainability of the models used, the transparency of cross-sectional datasets, and the validity of the data in real clinical contexts. The paper highlights the potential of ML models in transforming geriatrics within the context of personalized predictive care and outlines a series of future research directions, recommending the development of standardized databases, the integration of algorithmic explanations, the promotion of interdisciplinary collaborations, and the implementation of ethical norms of artificial intelligence in geriatric medical practice. Full article
(This article belongs to the Special Issue Diet, Nutrition and Human Health)
Show Figures

Figure 1

23 pages, 3890 KiB  
Article
Evaluating Nursing and Midwifery Students’ Self-Assessment of Clinical Skills Following a Flipped Classroom Intervention with Innovative Digital Technologies in Bulgaria
by Galya Georgieva-Tsaneva, Ivanichka Serbezova and Milka Serbezova-Velikova
Nurs. Rep. 2025, 15(8), 285; https://doi.org/10.3390/nursrep15080285 - 6 Aug 2025
Abstract
Background/Objectives: The transformation of nursing and midwifery education through digital technologies has gained momentum worldwide, with algorithm-based video instruction and virtual reality (VR) emerging as promising tools for improving clinical learning. This quasi-experimental study explores the impact of an enhanced flipped classroom [...] Read more.
Background/Objectives: The transformation of nursing and midwifery education through digital technologies has gained momentum worldwide, with algorithm-based video instruction and virtual reality (VR) emerging as promising tools for improving clinical learning. This quasi-experimental study explores the impact of an enhanced flipped classroom model on Bulgarian nursing and midwifery students’ self-perceived competence. Methods: A total of 228 participants were divided into a control group receiving traditional instruction (lectures and simulations with manikins) and an experimental group engaged in a digitally enhanced preparatory phase. The latter included pre-class video algorithms, VR, and clinical problem-solving tasks for learning and improving nursing skills. A 25-item self-report questionnaire was administered before and after the intervention to measure perceived competence in injection techniques, hygiene care, midwifery skills, and digital readiness. Results: Statistical analysis using Welch’s t-test revealed significant improvements in the experimental group in all domains (p < 0.001). Qualitative data from focus group interviews further confirmed increased student engagement, motivation, and receptiveness to digital learning tools. Conclusions: The findings highlight the pedagogical value of integrating structured video learning, VR components, and case-based learning within flipped classrooms. The study advocates for the wider adoption of blended learning models to foster clinical confidence and digital competence in healthcare education. The results of the study may be useful for curriculum developers aiming to improve clinical readiness through technology-enhanced learning. Full article
Show Figures

Figure 1

17 pages, 1256 KiB  
Systematic Review
Integrating Artificial Intelligence into Orthodontic Education: A Systematic Review and Meta-Analysis of Clinical Teaching Application
by Carlos M. Ardila, Eliana Pineda-Vélez and Anny Marcela Vivares Builes
J. Clin. Med. 2025, 14(15), 5487; https://doi.org/10.3390/jcm14155487 - 4 Aug 2025
Viewed by 160
Abstract
Background/Objectives: Artificial intelligence (AI) is rapidly emerging as a transformative force in healthcare education, including orthodontics. This systematic review and meta-analysis aimed to evaluate the integration of AI into orthodontic training programs, focusing on its effectiveness in improving diagnostic accuracy, learner engagement, [...] Read more.
Background/Objectives: Artificial intelligence (AI) is rapidly emerging as a transformative force in healthcare education, including orthodontics. This systematic review and meta-analysis aimed to evaluate the integration of AI into orthodontic training programs, focusing on its effectiveness in improving diagnostic accuracy, learner engagement, and the perceived quality of AI-generated educational content. Materials and Methods: A comprehensive literature search was conducted across PubMed, Scopus, Web of Science, and Embase through May 2025. Eligible studies involved AI-assisted educational interventions in orthodontics. A mixed-methods approach was applied, combining meta-analysis and narrative synthesis based on data availability and consistency. Results: Seven studies involving 1101 participants—including orthodontic students, clinicians, faculty, and program directors—were included. AI tools ranged from cephalometric landmarking platforms to ChatGPT-based learning modules. A fixed-effects meta-analysis using two studies yielded a pooled Global Quality Scale (GQS) score of 3.69 (95% CI: 3.58–3.80), indicating moderate perceived quality of AI-generated content (I2 = 64.5%). Due to methodological heterogeneity and limited statistical reporting in most studies, a narrative synthesis was used to summarize additional outcomes. AI tools enhanced diagnostic skills, learner autonomy, and perceived satisfaction, particularly among students and junior faculty. However, barriers such as limited curricular integration, lack of training, and faculty skepticism were recurrent. Conclusions: AI technologies, especially ChatGPT and digital cephalometry tools, show promise in orthodontic education. While learners demonstrate high acceptance, full integration is hindered by institutional and perceptual challenges. Strategic curricular reforms and targeted faculty development are needed to optimize AI adoption in clinical training. Full article
(This article belongs to the Special Issue Orthodontics: State of the Art and Perspectives)
Show Figures

Figure 1

20 pages, 1622 KiB  
Review
Behavioural Cardiology: A Review on an Expanding Field of Cardiology—Holistic Approach
by Christos Fragoulis, Maria-Kalliopi Spanorriga, Irini Bega, Andreas Prentakis, Evangelia Kontogianni, Panagiotis-Anastasios Tsioufis, Myrto Palkopoulou, John Ntalakouras, Panagiotis Iliakis, Ioannis Leontsinis, Kyriakos Dimitriadis, Dimitris Polyzos, Christina Chrysochoou, Antonios Politis and Konstantinos Tsioufis
J. Pers. Med. 2025, 15(8), 355; https://doi.org/10.3390/jpm15080355 - 4 Aug 2025
Viewed by 82
Abstract
Cardiovascular disease (CVD) remains Europe’s leading cause of mortality, responsible for >45% of deaths. Beyond established risk factors (hypertension, diabetes, dyslipidaemia, smoking, obesity), psychosocial elements—depression, anxiety, financial stress, personality traits, and trauma—significantly influence CVD development and progression. Behavioural Cardiology addresses this connection by [...] Read more.
Cardiovascular disease (CVD) remains Europe’s leading cause of mortality, responsible for >45% of deaths. Beyond established risk factors (hypertension, diabetes, dyslipidaemia, smoking, obesity), psychosocial elements—depression, anxiety, financial stress, personality traits, and trauma—significantly influence CVD development and progression. Behavioural Cardiology addresses this connection by systematically incorporating psychosocial factors into prevention and rehabilitation protocols. This review examines the HEARTBEAT model, developed by Greece’s first Behavioural Cardiology Unit, which aligns with current European guidelines. The model serves dual purposes: primary prevention (targeting at-risk individuals) and secondary prevention (treating established CVD patients). It is a personalised medicine approach that integrates psychosocial profiling with traditional risk assessment, utilising tailored evaluation tools, caregiver input, and multidisciplinary collaboration to address personality traits, emotional states, socioeconomic circumstances, and cultural contexts. The model emphasises three critical implementation aspects: (1) digital health integration, (2) cost-effectiveness analysis, and (3) healthcare system adaptability. Compared to international approaches, it highlights research gaps in psychosocial interventions and advocates for culturally sensitive adaptations, particularly in resource-limited settings. Special consideration is given to older populations requiring tailored care strategies. Ultimately, Behavioural Cardiology represents a transformative systems-based approach bridging psychology, lifestyle medicine, and cardiovascular treatment. This integration may prove pivotal for optimising chronic disease management through personalised interventions that address both biological and psychosocial determinants of cardiovascular health. Full article
(This article belongs to the Special Issue Personalized Diagnostics and Therapy for Cardiovascular Diseases)
Show Figures

Graphical abstract

25 pages, 2418 KiB  
Review
Contactless Vital Sign Monitoring: A Review Towards Multi-Modal Multi-Task Approaches
by Ahmad Hassanpour and Bian Yang
Sensors 2025, 25(15), 4792; https://doi.org/10.3390/s25154792 - 4 Aug 2025
Viewed by 248
Abstract
Contactless vital sign monitoring has emerged as a transformative healthcare technology, enabling the assessment of vital signs without physical contact with the human body. This review comprehensively reviews the rapidly evolving landscape of this field, with particular emphasis on multi-modal sensing approaches and [...] Read more.
Contactless vital sign monitoring has emerged as a transformative healthcare technology, enabling the assessment of vital signs without physical contact with the human body. This review comprehensively reviews the rapidly evolving landscape of this field, with particular emphasis on multi-modal sensing approaches and multi-task learning paradigms. We systematically categorize and analyze existing technologies based on sensing modalities (vision-based, radar-based, thermal imaging, and ambient sensing), integration strategies, and application domains. The paper examines how artificial intelligence has revolutionized this domain, transitioning from early single-modality, single-parameter approaches to sophisticated systems that combine complementary sensing technologies and simultaneously extract multiple vital sign parameters. We discuss the theoretical foundations and practical implementations of multi-modal fusion, analyzing signal-level, feature-level, decision-level, and deep learning approaches to sensor integration. Similarly, we explore multi-task learning frameworks that leverage the inherent relationships between vital sign parameters to enhance measurement accuracy and efficiency. The review also critically addresses persisting technical challenges, clinical limitations, and ethical considerations, including environmental robustness, cross-subject variability, sensor fusion complexities, and privacy concerns. Finally, we outline promising future directions, from emerging sensing technologies and advanced fusion architectures to novel application domains and privacy-preserving methodologies. This review provides a holistic perspective on contactless vital sign monitoring, serving as a reference for researchers and practitioners in this rapidly advancing field. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

13 pages, 238 KiB  
Perspective
Leveraging and Harnessing Generative Artificial Intelligence to Mitigate the Burden of Neurodevelopmental Disorders (NDDs) in Children
by Obinna Ositadimma Oleribe
Healthcare 2025, 13(15), 1898; https://doi.org/10.3390/healthcare13151898 - 4 Aug 2025
Viewed by 156
Abstract
Neurodevelopmental disorders (NDDs) significantly impact children’s health and development. They pose a substantial burden to families and the healthcare system. Challenges in early identification, accurate and timely diagnosis, and effective treatment persist due to overlapping symptoms, lack of appropriate diagnostic biomarkers, significant stigma [...] Read more.
Neurodevelopmental disorders (NDDs) significantly impact children’s health and development. They pose a substantial burden to families and the healthcare system. Challenges in early identification, accurate and timely diagnosis, and effective treatment persist due to overlapping symptoms, lack of appropriate diagnostic biomarkers, significant stigma and discrimination, and systemic barriers. Generative Artificial Intelligence (GenAI) offers promising solutions to these challenges by enhancing screening, diagnosis, personalized treatment, and research. Although GenAI is already in use in some aspects of NDD management, effective and strategic leveraging of evolving AI tools and resources will enhance early identification and screening, reduce diagnostic processing by up to 90%, and improve clinical decision support. Proper use of GenAI will ensure individualized therapy regimens with demonstrated 36% improvement in at least one objective attention measure compared to baseline and 81–84% accuracy relative to clinician-generated plans, customize learning materials, and deliver better treatment monitoring. GenAI will also accelerate NDD-specific research and innovation with significant time savings, as well as provide tailored family support systems. Finally, it will significantly reduce the mortality and morbidity associated with NDDs. This article explores the potential of GenAI in transforming NDD management and calls for policy initiatives to integrate GenAI into NDD management systems. Full article
15 pages, 2440 KiB  
Article
An Ultra-Robust, Highly Compressible Silk/Silver Nanowire Sponge-Based Wearable Pressure Sensor for Health Monitoring
by Zijie Li, Ning Yu, Martin C. Hartel, Reihaneh Haghniaz, Sam Emaminejad and Yangzhi Zhu
Biosensors 2025, 15(8), 498; https://doi.org/10.3390/bios15080498 - 1 Aug 2025
Viewed by 134
Abstract
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted [...] Read more.
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted from silkworm cocoons, as a promising material platform for next-generation wearable sensors. Owing to its remarkable biocompatibility, mechanical robustness, and structural tunability, silk fibroin serves as an ideal substrate for constructing capacitive pressure sensors tailored to medical applications. We engineered silk-derived capacitive architecture and evaluated its performance in real-time human motion and physiological signal detection. The resulting sensor exhibits a high sensitivity of 18.68 kPa−1 over a broad operational range of 0 to 2.4 kPa, enabling accurate tracking of subtle pressures associated with pulse, respiration, and joint articulation. Under extreme loading conditions, our silk fibroin sensor demonstrated superior stability and accuracy compared to a commercial resistive counterpart (FlexiForce™ A401). These findings establish silk fibroin as a versatile, practical candidate for wearable pressure sensing and pave the way for advanced biocompatible devices in healthcare monitoring. Full article
(This article belongs to the Special Issue Wearable Biosensors and Health Monitoring)
Show Figures

Figure 1

21 pages, 360 KiB  
Review
Prognostic Models in Heart Failure: Hope or Hype?
by Spyridon Skoularigkis, Christos Kourek, Andrew Xanthopoulos, Alexandros Briasoulis, Vasiliki Androutsopoulou, Dimitrios Magouliotis, Thanos Athanasiou and John Skoularigis
J. Pers. Med. 2025, 15(8), 345; https://doi.org/10.3390/jpm15080345 - 1 Aug 2025
Viewed by 195
Abstract
Heart failure (HF) poses a substantial global burden due to its high morbidity, mortality, and healthcare costs. Accurate prognostication is crucial for optimizing treatment, resource allocation, and patient counseling. Prognostic tools range from simple clinical scores such as ADHERE and MAGGIC to more [...] Read more.
Heart failure (HF) poses a substantial global burden due to its high morbidity, mortality, and healthcare costs. Accurate prognostication is crucial for optimizing treatment, resource allocation, and patient counseling. Prognostic tools range from simple clinical scores such as ADHERE and MAGGIC to more complex models incorporating biomarkers (e.g., NT-proBNP, sST2), imaging, and artificial intelligence techniques. In acute HF, models like EHMRG and STRATIFY aid early triage, while in chronic HF, tools like SHFM and BCN Bio-HF support long-term management decisions. Despite their utility, most models are limited by poor generalizability, reliance on static inputs, lack of integration into electronic health records, and underuse in clinical practice. Novel approaches involving machine learning, multi-omics profiling, and remote monitoring hold promise for dynamic and individualized risk assessment. However, these innovations face challenges regarding interpretability, validation, and ethical implementation. For prognostic models to transition from theoretical promise to practical impact, they must be continuously updated, externally validated, and seamlessly embedded into clinical workflows. This review emphasizes the potential of prognostic models to transform HF care but cautions against uncritical adoption without robust evidence and practical integration. In the evolving landscape of HF management, prognostic models represent a hopeful avenue, provided their limitations are acknowledged and addressed through interdisciplinary collaboration and patient-centered innovation. Full article
(This article belongs to the Special Issue Personalized Treatment for Heart Failure)
18 pages, 2714 KiB  
Article
Assessing the Efficacy of Chemical and Green-Synthesized CuO Nanoparticles in Combatting Clinical Candida Species: A Comparative Study
by Hiba Younis Khalaf, Ferid Ben Nasr, Bashar Sadeq Noomi, Sami Mnif and Sami Aifa
Microbiol. Res. 2025, 16(8), 178; https://doi.org/10.3390/microbiolres16080178 - 1 Aug 2025
Viewed by 137
Abstract
The most prevalent growth of Candida cells is based on biofilm development, which causes the intensification of antifungal resistance against a large range of chemicals. Nanoparticles can be synthesized using green methods via various biological extracts and reducing agents to control Candida biofilms. [...] Read more.
The most prevalent growth of Candida cells is based on biofilm development, which causes the intensification of antifungal resistance against a large range of chemicals. Nanoparticles can be synthesized using green methods via various biological extracts and reducing agents to control Candida biofilms. This study aims to compare copper oxide nanoparticles (CuONPs) synthesized through chemical methods and those synthesized using Cinnamomum verum-based green methods against Candida infections and their biofilms isolated from Iraqi patients, with the potential to improve treatment outcomes. The physical and chemical properties of these nanoparticles were characterized using Fourier-transform infrared spectroscopy (FT-IR,) scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). Four strains of Candida were isolated and characterized from Iraqi patients in Tikrit Hospital and selected based on their ability to form biofilm on polystyrene microplates. The activity of green-synthesized CuONPs using cinnamon extract was compared with both undoped and doped (Fe, Sn) chemically synthesized CuONPs. Four pathogenic Candida strains (Candida glabrata, Candida lusitaniae, Candida albicans, and Candida tropicalis) were isolated from Iraqi patients, demonstrating high biofilm formation capabilities. Chemically and green-synthesized CuONPs from Cinnamomum verum showed comparable significant antiplanktonic and antibiofilm activities against all strains. Doped CuONPs with iron or tin demonstrated lower minimum inhibitory concentration (MIC) values, indicating stronger antibacterial activity, but exhibited weaker anti-adhesive properties compared to other nanoparticles. The antiadhesive activity revealed that C. albicans strain seems to produce the most resistant biofilms while C. glabrata strain seems to be more resistant towards the doped CuONPs. Moreover, C. tropicalis was the most sensitive to all the CuONPs. Remarkably, at a concentration of 100 µg/mL, all CuONPs were effective in eradicating preformed biofilms by 47–66%. The findings suggest that CuONPs could be effective in controlling biofilm formation by Candida species resistant to treatment in healthcare settings. Full article
Show Figures

Figure 1

15 pages, 514 KiB  
Article
Remote Patient Monitoring Applications in Healthcare: Lessons from COVID-19 and Beyond
by Azrin Khan and Dominique Duncan
Electronics 2025, 14(15), 3084; https://doi.org/10.3390/electronics14153084 - 1 Aug 2025
Viewed by 291
Abstract
The COVID-19 pandemic catalyzed the rapid adoption of remote patient monitoring (RPM) technologies such as telemedicine and wearable devices (WDs), significantly transforming healthcare delivery. Telemedicine made virtual consultations possible, reducing in-person visits and infection risks, particularly for the management of chronic diseases. Wearable [...] Read more.
The COVID-19 pandemic catalyzed the rapid adoption of remote patient monitoring (RPM) technologies such as telemedicine and wearable devices (WDs), significantly transforming healthcare delivery. Telemedicine made virtual consultations possible, reducing in-person visits and infection risks, particularly for the management of chronic diseases. Wearable devices enabled the real-time continuous monitoring of health that assisted in condition prediction and management, such as for COVID-19. This narrative review addresses these transformations by uniquely synthesizing findings from 13 diverse studies (sourced from PubMed and Google Scholar, 2020–2024) to analyze the parallel evolution of telemedicine and WDs as interconnected RPM components. It highlights the pandemic’s dual impact, as follows: accelerating RPM innovation and adoption while simultaneously unmasking systemic challenges such as inequities in access and a need for robust integration approaches; while telemedicine usage soared during the pandemic, consumption post-pandemic, as indicated by the reviewed studies, suggests continued barriers to adoption among older adults. Likewise, wearable devices demonstrated significant potential in early disease detection and long-term health management, with promising applications extending beyond COVID-19, including long COVID conditions. Addressing the identified challenges is crucial for healthcare providers and systems to fully embrace these technologies and this would improve efficiency and patient outcomes. Full article
Show Figures

Figure 1

24 pages, 624 KiB  
Systematic Review
Integrating Artificial Intelligence into Perinatal Care Pathways: A Scoping Review of Reviews of Applications, Outcomes, and Equity
by Rabie Adel El Arab, Omayma Abdulaziz Al Moosa, Zahraa Albahrani, Israa Alkhalil, Joel Somerville and Fuad Abuadas
Nurs. Rep. 2025, 15(8), 281; https://doi.org/10.3390/nursrep15080281 - 31 Jul 2025
Viewed by 165
Abstract
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping [...] Read more.
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping review of reviews of AI/ML applications spanning reproductive, prenatal, postpartum, neonatal, and early child-development care. Methods: We searched PubMed, Embase, the Cochrane Library, Web of Science, and Scopus through April 2025. Two reviewers independently screened records, extracted data, and assessed methodological quality using AMSTAR 2 for systematic reviews, ROBIS for bias assessment, SANRA for narrative reviews, and JBI guidance for scoping reviews. Results: Thirty-nine reviews met our inclusion criteria. In preconception and fertility treatment, convolutional neural network-based platforms can identify viable embryos and key sperm parameters with over 90 percent accuracy, and machine-learning models can personalize follicle-stimulating hormone regimens to boost mature oocyte yield while reducing overall medication use. Digital sexual-health chatbots have enhanced patient education, pre-exposure prophylaxis adherence, and safer sexual behaviors, although data-privacy safeguards and bias mitigation remain priorities. During pregnancy, advanced deep-learning models can segment fetal anatomy on ultrasound images with more than 90 percent overlap compared to expert annotations and can detect anomalies with sensitivity exceeding 93 percent. Predictive biometric tools can estimate gestational age within one week with accuracy and fetal weight within approximately 190 g. In the postpartum period, AI-driven decision-support systems and conversational agents can facilitate early screening for depression and can guide follow-up care. Wearable sensors enable remote monitoring of maternal blood pressure and heart rate to support timely clinical intervention. Within neonatal care, the Heart Rate Observation (HeRO) system has reduced mortality among very low-birth-weight infants by roughly 20 percent, and additional AI models can predict neonatal sepsis, retinopathy of prematurity, and necrotizing enterocolitis with area-under-the-curve values above 0.80. From an operational standpoint, automated ultrasound workflows deliver biometric measurements at about 14 milliseconds per frame, and dynamic scheduling in IVF laboratories lowers staff workload and per-cycle costs. Home-monitoring platforms for pregnant women are associated with 7–11 percent reductions in maternal mortality and preeclampsia incidence. Despite these advances, most evidence derives from retrospective, single-center studies with limited external validation. Low-resource settings, especially in Sub-Saharan Africa, remain under-represented, and few AI solutions are fully embedded in electronic health records. Conclusions: AI holds transformative promise for perinatal care but will require prospective multicenter validation, equity-centered design, robust governance, transparent fairness audits, and seamless electronic health record integration to translate these innovations into routine practice and improve maternal and neonatal outcomes. Full article
Show Figures

Figure 1

Back to TopTop