Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,694)

Search Parameters:
Keywords = health infrastructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 596 KiB  
Article
Household Satisfaction and Drinking Water Quality in Rural Areas: A Comparison with Official Access Data
by Zhanerke Bolatova, Riza Sharapatova, Kaltay Kanagat, Yerlan Kabiyev, Ronny Berndtsson and Kamshat Tussupova
Sustainability 2025, 17(15), 7107; https://doi.org/10.3390/su17157107 - 5 Aug 2025
Abstract
Background: Access to safe and reliable water and sanitation remains a critical public health and development challenge, with rural and low-income communities being disproportionately affected by inadequate services and heightened exposure to waterborne diseases. Despite global efforts and infrastructure-based progress indicators, significant disparities [...] Read more.
Background: Access to safe and reliable water and sanitation remains a critical public health and development challenge, with rural and low-income communities being disproportionately affected by inadequate services and heightened exposure to waterborne diseases. Despite global efforts and infrastructure-based progress indicators, significant disparities persist, and these often overlook users’ perceptions of water quality, reliability, and safety. This study explores the determinants of household satisfaction with drinking water in rural areas, comparing subjective user feedback with official access data to reveal gaps in current monitoring approaches and support more equitable, user-centered water governance. Methods: This study was conducted in Kazakhstan’s Atyrau Region, where 1361 residents from 86 rural villages participated in a structured survey assessing household access to drinking water and perceptions of its quality. Data were analyzed using descriptive statistics and multinomial logistic regression to identify key predictors of user satisfaction, with results compared against official records to evaluate discrepancies between reported experiences and administrative data. Results: The field survey results revealed substantial discrepancies between official statistics and residents’ reports, with only 58.1% of respondents having in-house tap water access despite claims of universal coverage. Multinomial logistic regression analysis identified key predictors of user satisfaction, showing that uninterrupted supply and the absence of complaints about turbidity, odor, or taste significantly increased the likelihood of higher satisfaction levels with drinking water quality. Conclusions: This study underscores the critical need to align official water access statistics with household-level experiences, revealing that user satisfaction—strongly influenced by supply reliability and sensory water quality—is essential for achieving equitable and effective rural water governance. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

8 pages, 5870 KiB  
Proceeding Paper
Classification of Urban Environments Using State-of-the-Art Machine Learning: A Path to Sustainability
by Tesfaye Tessema, Neda Azarmehr, Parisa Saadati, Dale Mortimer and Fabio Tosti
Eng. Proc. 2025, 94(1), 14; https://doi.org/10.3390/engproc2025094014 - 4 Aug 2025
Abstract
Urban green infrastructure plays a vital role in the sustainable development of cities. As urban areas expand, green spaces are increasingly affected. The pressure from new developments leads to a reduction in vegetation and raises new public health risks. Addressing this challenge requires [...] Read more.
Urban green infrastructure plays a vital role in the sustainable development of cities. As urban areas expand, green spaces are increasingly affected. The pressure from new developments leads to a reduction in vegetation and raises new public health risks. Addressing this challenge requires effective planning, maintenance, and continuous monitoring. To enhance traditional approaches, remote sensing is becoming a vital tool for city-wide observations. Publicly available large-scale data, combined with machine learning models, can improve our understanding. We explore the potential of Sentinel-2 to classify and extract meaningful features from urban landscapes. Using advanced machine learning techniques, we aim to develop a robust and scalable framework for classifying urban environments. The proposed models will assist in monitoring changes in green spaces across diverse urban settings, enabling timely and informed decisions to foster sustainable urban growth. Full article
Show Figures

Figure 1

22 pages, 2103 KiB  
Article
Air-STORM: Informed Decision Making to Improve the Success of Solar-Powered Air Quality Samplers in Challenging Environments
by Kyan Kuo Shlipak, Julian Probsdorfer and Christian L’Orange
Sensors 2025, 25(15), 4798; https://doi.org/10.3390/s25154798 - 4 Aug 2025
Abstract
Outdoor air pollution poses a major global health risk, yet monitoring remains insufficient, especially in regions with limited infrastructure. Solar-powered monitors could allow for increased coverage in regions lacking robust connectivity. However, reliable sample collection can be challenging with these systems due to [...] Read more.
Outdoor air pollution poses a major global health risk, yet monitoring remains insufficient, especially in regions with limited infrastructure. Solar-powered monitors could allow for increased coverage in regions lacking robust connectivity. However, reliable sample collection can be challenging with these systems due to extreme temperatures and insufficient solar energy. Proper planning can help overcome these challenges. Air Sampler Solar and Thermal Optimization for Reliable Monitoring (Air-STORM) is an open-source tool that uses meteorological and solar radiation data to identify temperature and solar charging risks for air pollution monitors based on the target deployment area. The model was validated experimentally, and its utility was demonstrated through illustrative case studies. Air-STORM simulations can be customized for specific locations, seasons, and monitor configurations. This capability enables the early detection of potential sampling risks and provides opportunities to optimize monitor design, proactively mitigate temperature and power failures, and increase the likelihood of successful sample collection. Ultimately, improving sampling success will help increase the availability of high-quality outdoor air pollution data necessary to reduce global air pollution exposure. Full article
(This article belongs to the Special Issue Recent Trends in Air Quality Sensing)
Show Figures

Figure 1

25 pages, 1751 KiB  
Review
Large Language Models for Adverse Drug Events: A Clinical Perspective
by Md Muntasir Zitu, Dwight Owen, Ashish Manne, Ping Wei and Lang Li
J. Clin. Med. 2025, 14(15), 5490; https://doi.org/10.3390/jcm14155490 - 4 Aug 2025
Abstract
Adverse drug events (ADEs) significantly impact patient safety and health outcomes. Manual ADE detection from clinical narratives is time-consuming, labor-intensive, and costly. Recent advancements in large language models (LLMs), including transformer-based architectures such as Bidirectional Encoder Representations from Transformers (BERT) and Generative Pretrained [...] Read more.
Adverse drug events (ADEs) significantly impact patient safety and health outcomes. Manual ADE detection from clinical narratives is time-consuming, labor-intensive, and costly. Recent advancements in large language models (LLMs), including transformer-based architectures such as Bidirectional Encoder Representations from Transformers (BERT) and Generative Pretrained Transformer (GPT) series, offer promising methods for automating ADE extraction from clinical data. These models have been applied to various aspects of pharmacovigilance and clinical decision support, demonstrating potential in extracting ADE-related information from real-world clinical data. Additionally, chatbot-assisted systems have been explored as tools in clinical management, aiding in medication adherence, patient engagement, and symptom monitoring. This narrative review synthesizes the current state of LLMs in ADE detection from a clinical perspective, organizing studies into categories such as human-facing decision support tools, immune-related ADE detection, cancer-related and non-cancer-related ADE surveillance, and personalized decision support systems. In total, 39 articles were included in this review. Across domains, LLM-driven methods have demonstrated promising performances, often outperforming traditional approaches. However, critical limitations persist, such as domain-specific variability in model performance, interpretability challenges, data quality and privacy concerns, and infrastructure requirements. By addressing these challenges, LLM-based ADE detection could enhance pharmacovigilance practices, improve patient safety outcomes, and optimize clinical workflows. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

20 pages, 8930 KiB  
Article
Beyond Homogeneous Perception: Classifying Urban Visitors’ Forest-Based Recreation Behavior for Policy Adaptation
by Young-Jo Yun, Ga Eun Choi, Ji-Ye Lee and Yun Eui Choi
Land 2025, 14(8), 1584; https://doi.org/10.3390/land14081584 - 3 Aug 2025
Viewed by 197
Abstract
Urban forests, as a form of green infrastructure, play a vital role in enhancing urban resilience, environmental health, and quality of life. However, users perceive and utilize these spaces in diverse ways. This study aims to identify latent perception types among urban forest [...] Read more.
Urban forests, as a form of green infrastructure, play a vital role in enhancing urban resilience, environmental health, and quality of life. However, users perceive and utilize these spaces in diverse ways. This study aims to identify latent perception types among urban forest visitors and analyze their behavioral, demographic, and policy-related characteristics in Incheon Metropolitan City (Republic of Korea). Using latent class analysis, four distinct visitor types were identified: multipurpose recreationists, balanced relaxation seekers, casual forest users, and passive forest visitors. Multipurpose recreationists preferred active physical use and sports facilities, while balanced relaxation seekers emphasized emotional well-being and cultural experiences. Casual users engaged lightly with forest settings, and passive forest visitors exhibited minimal recreational interest. Satisfaction with forest elements such as vegetation, facilities, and management conditions varied across visitor types and age groups, especially among older adults. These findings highlight the need for perception-based green infrastructure planning. Policy recommendations include expanding accessible neighborhood green spaces for aging populations, promoting community-oriented events, and offering participatory forest programs for youth engagement. By integrating user segmentation into urban forest planning and governance, this study contributes to more inclusive, adaptive, and sustainable management of urban green infrastructure. Full article
Show Figures

Graphical abstract

19 pages, 2359 KiB  
Article
Research on Concrete Crack Damage Assessment Method Based on Pseudo-Label Semi-Supervised Learning
by Ming Xie, Zhangdong Wang and Li’e Yin
Buildings 2025, 15(15), 2726; https://doi.org/10.3390/buildings15152726 - 1 Aug 2025
Viewed by 214
Abstract
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to [...] Read more.
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to solve two core tasks: one is binary classification of pixel-level cracks, and the other is multi-category assessment of damage state based on crack morphology. Using three-channel RGB images as input, a dual-path collaborative training framework based on U-Net encoder–decoder architecture is constructed, and a binary segmentation mask of the same size is output to achieve the accurate segmentation of cracks at the pixel level. By constructing a dual-path collaborative training framework and employing a dynamic pseudo-label refinement mechanism, the model achieves an F1-score of 0.883 using only 50% labeled data—a mere 1.3% decrease compared to the fully supervised benchmark DeepCrack (F1 = 0.896)—while reducing manual annotation costs by over 60%. Furthermore, a quantitative correlation model between crack fractal characteristics and structural damage severity is established by combining a U-Net segmentation network with the differential box-counting algorithm. The experimental results demonstrate that under a cyclic loading of 147.6–221.4 kN, the fractal dimension monotonically increases from 1.073 (moderate damage) to 1.189 (failure), with 100% accuracy in damage state identification, closely aligning with the degradation trend of macroscopic mechanical properties. In complex crack scenarios, the model attains a recall rate (Re = 0.882), surpassing U-Net by 13.9%, with significantly enhanced edge reconstruction precision. Compared with the mainstream models, this method effectively alleviates the problem of data annotation dependence through a semi-supervised strategy while maintaining high accuracy. It provides an efficient structural health monitoring solution for engineering practice, which is of great value to promote the application of intelligent detection technology in infrastructure operation and maintenance. Full article
Show Figures

Figure 1

19 pages, 2528 KiB  
Systematic Review
The Nexus Between Green Finance and Artificial Intelligence: A Systemic Bibliometric Analysis Based on Web of Science Database
by Katerina Fotova Čiković, Violeta Cvetkoska and Dinko Primorac
J. Risk Financial Manag. 2025, 18(8), 420; https://doi.org/10.3390/jrfm18080420 - 1 Aug 2025
Viewed by 274
Abstract
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, [...] Read more.
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, and highlighting methodological trends at this nexus. A dataset of 268 peer-reviewed publications (2014–June 2025) was retrieved from the Web of Science Core Collection, filtered by the Business Economics category. Analytical techniques employed include Bibliometrix in R, VOSviewer, and science mapping tools such as thematic mapping, trend topic analysis, co-citation networks, and co-occurrence clustering. Results indicate an annual growth rate of 53.31%, with China leading in both productivity and impact, followed by Vietnam and the United Kingdom. The most prolific affiliations and authors, primarily based in China, underscore a concentrated regional research output. The most relevant journals include Energy Economics and Finance Research Letters. Network visualizations identified 17 clusters, with focused analysis on the top three: (1) Emission, Health, and Environmental Risk, (2) Institutional and Technological Infrastructure, and (3) Green Innovation and Sustainable Urban Development. The methodological landscape is equally diverse, with top techniques including blockchain technology, large language models, convolutional neural networks, sentiment analysis, and structural equation modeling, demonstrating a blend of traditional econometrics and advanced AI. This study not only uncovers intellectual structures and thematic evolution but also identifies underdeveloped areas and proposes future research directions. These include dynamic topic modeling, regional case studies, and ethical frameworks for AI in sustainable finance. The findings provide a strategic foundation for advancing interdisciplinary collaboration and policy innovation in green AI–finance ecosystems. Full article
(This article belongs to the Special Issue Commercial Banking and FinTech in Emerging Economies)
Show Figures

Figure 1

42 pages, 28030 KiB  
Article
Can AI and Urban Design Optimization Mitigate Cardiovascular Risks Amid Rapid Urbanization? Unveiling the Impact of Environmental Stressors on Health Resilience
by Mehdi Makvandi, Zeinab Khodabakhshi, Yige Liu, Wenjing Li and Philip F. Yuan
Sustainability 2025, 17(15), 6973; https://doi.org/10.3390/su17156973 - 31 Jul 2025
Viewed by 308
Abstract
In rapidly urbanizing environments, environmental stressors—such as air pollution, noise, heat, and green space depletion—substantially exacerbate public health burdens, contributing to the global rise of non-communicable diseases, particularly hypertension, cardiovascular disorders, and mental health conditions. Despite expanding research on green spaces and health [...] Read more.
In rapidly urbanizing environments, environmental stressors—such as air pollution, noise, heat, and green space depletion—substantially exacerbate public health burdens, contributing to the global rise of non-communicable diseases, particularly hypertension, cardiovascular disorders, and mental health conditions. Despite expanding research on green spaces and health (+76.9%, 2019–2025) and optimization and algorithmic approaches (+63.7%), the compounded and synergistic impacts of these stressors remain inadequately explored or addressed within current urban planning frameworks. This study presents a Mixed Methods Systematic Review (MMSR) to investigate the potential of AI-driven urban design optimizations in mitigating these multi-scalar environmental health risks. Specifically, it explores the complex interactions between urbanization, traffic-related pollutants, green infrastructure, and architectural intelligence, identifying critical gaps in the integration of computational optimization with nature-based solutions (NBS). To empirically substantiate these theoretical insights, this study draws on longitudinal 24 h dynamic blood pressure (BP) monitoring (3–9 months), revealing that chronic exposure to environmental noise (mean 79.84 dB) increases cardiovascular risk by approximately 1.8-fold. BP data (average 132/76 mmHg), along with observed hypertensive spikes (systolic > 172 mmHg, diastolic ≤ 101 mmHg), underscore the inadequacy of current urban design strategies in mitigating health risks. Based on these findings, this paper advocates for the integration of AI-driven approaches to optimize urban environments, offering actionable recommendations for developing adaptive, human-centric, and health-responsive urban planning frameworks that enhance resilience and public health in the face of accelerating urbanization. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

15 pages, 5631 KiB  
Article
Design and Evaluation of a Capacitive Micromachined Ultrasonic Transducer(CMUT) Linear Array System for Thickness Measurement of Marine Structures Under Varying Environmental Conditions
by Changde He, Mengke Luo, Hanchi Chai, Hongliang Wang, Guojun Zhang, Renxin Wang, Jiangong Cui, Yuhua Yang, Wendong Zhang and Licheng Jia
Micromachines 2025, 16(8), 898; https://doi.org/10.3390/mi16080898 (registering DOI) - 31 Jul 2025
Viewed by 154
Abstract
This paper presents the design, fabrication, and experimental evaluation of a capacitive micromachined ultrasonic transducer (CMUT) linear array for non-contact thickness measurement of marine engineering structures. A 16-element CMUT array was fabricated using a silicon–silicon wafer bonding process, and encapsulated in polyurethane to [...] Read more.
This paper presents the design, fabrication, and experimental evaluation of a capacitive micromachined ultrasonic transducer (CMUT) linear array for non-contact thickness measurement of marine engineering structures. A 16-element CMUT array was fabricated using a silicon–silicon wafer bonding process, and encapsulated in polyurethane to ensure acoustic impedance matching and environmental protection in underwater conditions. The acoustic performance of the encapsulated CMUT was characterized using standard piezoelectric transducers as reference. The array achieved a transmitting sensitivity of 146.82 dB and a receiving sensitivity of −229.55 dB at 1 MHz. A complete thickness detection system was developed by integrating the CMUT array with a custom transceiver circuit and implementing a time-of-flight (ToF) measurement algorithm. To evaluate environmental robustness, systematic experiments were conducted under varying water temperatures and salinity levels. The results demonstrate that the absolute thickness measurement error remains within ±0.1 mm under all tested conditions, satisfying the accuracy requirements for marine structural health monitoring. The results validate the feasibility of CMUT-based systems for precise and stable thickness measurement in underwater environments, and support their application in non-destructive evaluation of marine infrastructure. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 3rd Edition)
Show Figures

Figure 1

22 pages, 1007 KiB  
Systematic Review
Mapping Drone Applications in Rural and Regional Cities: A Scoping Review of the Australian State of Practice
by Christine Steinmetz-Weiss, Nancy Marshall, Kate Bishop and Yuan Wei
Appl. Sci. 2025, 15(15), 8519; https://doi.org/10.3390/app15158519 (registering DOI) - 31 Jul 2025
Viewed by 140
Abstract
Consumer-accessible and user-friendly smart products such as unmanned aerial vehicles (UAVs), or drones, have become widely used, adaptable, and acceptable devices to observe, assess, measure, and explore urban and natural environments. A drone’s relatively low cost and flexibility in the level of expertise [...] Read more.
Consumer-accessible and user-friendly smart products such as unmanned aerial vehicles (UAVs), or drones, have become widely used, adaptable, and acceptable devices to observe, assess, measure, and explore urban and natural environments. A drone’s relatively low cost and flexibility in the level of expertise required to operate it has enabled users from novice to industry professionals to adapt a malleable technology to various disciplines. This review examines the academic literature and maps how drones are currently being used in 93 rural and regional city councils in New South Wales, Australia. Through a systematic review of the academic literature and scrutiny of current drone use in these councils using publicly available information found on council websites, findings reveal potential uses of drone technology for local governments who want to engage with smart technology devices. We looked at how drones were being used in the management of the council’s environment; health and safety initiatives; infrastructure; planning; social and community programmes; and waste and recycling. These findings suggest that drone technology is increasingly being utilised in rural and regional areas. While the focus is on rural and regional New South Wales, a review of the academic literature and local council websites provides a snapshot of drone use examples that holds global relevance for local councils in urban and remote areas seeking to incorporate drone technology into their daily practice of city, town, or region governance. Full article
Show Figures

Figure 1

37 pages, 7777 KiB  
Review
Cement-Based Electrochemical Systems for Structural Energy Storage: Progress and Prospects
by Haifeng Huang, Shuhao Zhang, Yizhe Wang, Yipu Guo, Chao Zhang and Fulin Qu
Materials 2025, 18(15), 3601; https://doi.org/10.3390/ma18153601 - 31 Jul 2025
Viewed by 285
Abstract
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material [...] Read more.
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material strategies, and performance metrics remains insufficient. In this review, CBB systems are categorized into two representative configurations: probe-type galvanic cells and layered monolithic structures. Their structural characteristics and electrochemical behaviors are critically compared. Strategies to enhance performance include improving ionic conductivity through alkaline pore solutions, facilitating electron transport using carbon-based conductive networks, and incorporating redox-active materials such as zinc–manganese dioxide and nickel–iron couples. Early CBB prototypes demonstrated limited energy densities due to high internal resistance and inefficient utilization of active components. Recent advancements in electrode architecture, including nickel-coated carbon fiber meshes and three-dimensional nickel foam scaffolds, have achieved stable rechargeability across multiple cycles with energy densities surpassing 11 Wh/m2. These findings demonstrate the practical potential of CBBs for both energy storage and additional functionalities, such as strain sensing enabled by conductive cement matrices. This review establishes a critical basis for future development of CBBs as multifunctional structural components in infrastructure applications. Full article
Show Figures

Figure 1

15 pages, 478 KiB  
Article
Towards Inclusive and Sustainable Nature Education in Austria: Evaluation of Organization, Infrastructure, Risk Assessment, and Legal Frameworks of Forest and Nature Childcare Groups
by Elisabeth Quendler, Dominik Mühlberger, Bernhard Spangl, Daniel Ennöckl and Alina Branco
Sustainability 2025, 17(15), 6965; https://doi.org/10.3390/su17156965 - 31 Jul 2025
Viewed by 139
Abstract
Early childhood forest and nature education plays a vital role in shaping values and promoting sustainability throughout life. Conceptualized in Denmark, forest and nature childcare groups have been established in Austria for over 20 years, contributing to mental well-being and supporting both Education [...] Read more.
Early childhood forest and nature education plays a vital role in shaping values and promoting sustainability throughout life. Conceptualized in Denmark, forest and nature childcare groups have been established in Austria for over 20 years, contributing to mental well-being and supporting both Education for Sustainable Development (ESD) and Early Childhood Education and Care (ECEC). With increasing demand for childcare and a growing disconnect from nature—factors linked to physical and mental health challenges—there is a pressing need to expand these groups and integrate them into formal legal frameworks. This study examines the organization, staffing, infrastructure, risk prevention, and hygiene of 79 Austrian forest and nature kindergarten groups, identifying key areas of improvement to ensure safe access for all children, including those in public childcare. A semi-standardized online survey of 72 groups was analyzed using descriptive and statistical methods, including a Spearman correlation, Kruskal–Wallis test, Chi-square test, and ANOVA. Results revealed three main infrastructure types—house, container/trailer, and tipi—with houses offering the most comprehensive facilities. The ANOVA indicated significant effects of sponsorship type (p < 0.01), caregiver numbers (p < 0.001), and their interaction (p < 0.05) on half-day care costs. Currently, legal frameworks exist only in Tyrol and Salzburg. Broader access requires standardized infrastructure and risk assessment guidelines, collaboratively developed with stakeholders, to ensure safety and inclusivity in Austrian forest and nature childcare groups. Full article
(This article belongs to the Section Sustainable Education and Approaches)
Show Figures

Figure 1

23 pages, 1447 KiB  
Article
Heat Risk Perception and Vulnerability in Puerto Rico: Insights for Climate Adaptation in the Caribbean
by Brenda Guzman-Colon, Zack Guido, Claudia P. Amaya-Ardila, Laura T. Cabrera-Rivera and Pablo A. Méndez-Lázaro
Int. J. Environ. Res. Public Health 2025, 22(8), 1197; https://doi.org/10.3390/ijerph22081197 - 31 Jul 2025
Viewed by 207
Abstract
Extreme heat poses growing health risks in tropical regions, yet public perception of this threat remains understudied in the Caribbean. This study examines how residents in Puerto Rico perceived heat-related health risks and how these perceptions relate to vulnerability and protective behaviors during [...] Read more.
Extreme heat poses growing health risks in tropical regions, yet public perception of this threat remains understudied in the Caribbean. This study examines how residents in Puerto Rico perceived heat-related health risks and how these perceptions relate to vulnerability and protective behaviors during the extreme heat events of the summer of 2020. We conducted a cross-sectional telephone survey of 500 adults across metropolitan and non-metropolitan areas of Puerto Rico, using stratified probability sampling. The questionnaire assessed heat risk perception, sociodemographic characteristics, health status, prior heat exposure, and heat-related behaviors. While most participants expressed concern about climate change and high temperatures, fewer than half perceived heat as a high level of personal health risk. Higher levels of risk perception were significantly associated with being male, aged 50–64, unemployed, and in fair health, having multiple chronic conditions, and prior experience with heat-related symptoms. Those with symptoms were nearly five times more likely to report high levels of risk perception (OR = 4.94, 95% CI: 2.93–8.34). In contrast, older adults (65+), despite their higher level of vulnerability, reported lower levels of risk perception and fewer symptoms. Nighttime heat exposure was widespread and strongly associated with heat-related symptoms. Common coping strategies included the use of fans and air conditioning, though economic constraints and infrastructure instability limited access. The findings highlight the disparity between actual and perceived vulnerability, particularly among older adults. Public health strategies should focus on risk communication tailored to vulnerable groups and address barriers to heat adaptation. Strengthening heat resilience in Puerto Rico requires improved infrastructure, equitable access to cooling, and targeted outreach. Full article
Show Figures

Figure 1

17 pages, 4148 KiB  
Article
Contribution of the Gravity Component and Surface Type During the Initial Stages of Biofilm Formation at Solid–Liquid Interfaces
by Elisavet Malea, Maria Petala, Margaritis Kostoglou and Theodoros Karapantsios
Water 2025, 17(15), 2277; https://doi.org/10.3390/w17152277 - 31 Jul 2025
Viewed by 288
Abstract
Water systems are highly vulnerable to biofilm formation, which can compromise water quality, operational efficiency, and public health. Factors such as surface material properties and gravitational orientation of the surface play critical roles in the early stages of microbial attachment and biofilm development. [...] Read more.
Water systems are highly vulnerable to biofilm formation, which can compromise water quality, operational efficiency, and public health. Factors such as surface material properties and gravitational orientation of the surface play critical roles in the early stages of microbial attachment and biofilm development. This study examines the impact of gravity and surface composition on the initial adhesion of Pseudomonas fluorescens AR11—a model organism for biofilm research. Focusing on stainless steel (SS) and polycarbonate (PC), two materials commonly used in water and wastewater infrastructure, bacterial adhesion was evaluated at surface inclinations of 0°, 45°, 90°, and 180° to assess gravitational impact. After three hours of contact, fluorescence microscopy and image analysis were used to quantify surface coverage and cluster size distribution. The results showed that both material type and orientation significantly affected early biofilm formation. PC surfaces consistently exhibited higher bacterial adhesion at all angles, with modest variations, suggesting that material properties are a dominant factor in initial colonization. In contrast, SS showed angle-dependent variation, indicating a combined effect of gravitational convection and surface characteristics. These insights contribute to a deeper understanding of biofilm dynamics under realistic environmental conditions, including those encountered in space systems, and support the development of targeted strategies for biofilm control in water systems and spaceflight-related infrastructure. Full article
Show Figures

Figure 1

12 pages, 558 KiB  
Review
The Challenge of Rebuilding Gaza’s Health System: A Narrative Review Towards Sustainability
by Eduardo Missoni and Kasturi Sen
Healthcare 2025, 13(15), 1860; https://doi.org/10.3390/healthcare13151860 - 30 Jul 2025
Viewed by 1019
Abstract
Background: Since the election of Hamas in 2006, Gaza has endured eight major military conflicts, culminating in the ongoing 2023–2025 war, now surpassing 520 days. This protracted violence, compounded by a 17-year blockade, has resulted in the near-total collapse of Gaza’s health [...] Read more.
Background: Since the election of Hamas in 2006, Gaza has endured eight major military conflicts, culminating in the ongoing 2023–2025 war, now surpassing 520 days. This protracted violence, compounded by a 17-year blockade, has resulted in the near-total collapse of Gaza’s health system. Over 49,000 deaths, widespread displacement, and the destruction of more than 60% of health infrastructure have overwhelmed both local capacity and international humanitarian response. Objectives: This narrative review aims to examine and synthesize the current literature (October 2023–April 2025) on the health crisis in Gaza, with a specific focus on identifying key themes and knowledge gaps relevant to rebuilding a sustainable health system. The review also seeks to outline strategic pathways for recovery in the context of ongoing conflict and systemic deprivation. Methods: Given the urgency and limitations of empirical data from conflict zones, a narrative review approach was adopted. Fifty-two sources—including peer-reviewed articles, editorials, reports, and correspondence—were selected through targeted searches using Medline and Google Scholar. The analysis was framed within a public health and political economy perspective, also taking health system building blocks into consideration. Results: The reviewed literature emphasizes emergency needs: trauma care, infectious disease control, and supply chain restoration. Innovations such as mobile clinics and telemedicine offer interim solutions. Gaps include limited attention to mental health (including that of health workers), local governance, and sustainable planning frameworks. Conclusions: Sustainable reconstruction requires a durable ceasefire; international stewardship aligned with local ownership; and a phased, equity-driven strategy emphasizing primary care, mental health, trauma management, and community engagement. Full article
Show Figures

Figure 1

Back to TopTop